hcrypto: import libtommath v1.2.0

This commit is contained in:
Luke Howard
2020-04-12 18:37:13 +10:00
parent 7181c109d0
commit c403b66082
287 changed files with 28273 additions and 38374 deletions

View File

@@ -1,109 +1,93 @@
#include <tommath.h>
#include "tommath_private.h"
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
};
static const char rem_105[105] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};
/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(mp_int *arg,int *ret)
mp_err mp_is_square(const mp_int *arg, mp_bool *ret)
{
int res;
mp_digit c;
mp_int t;
unsigned long r;
mp_err err;
mp_digit c;
mp_int t;
unsigned long r;
/* Default to Non-square :) */
*ret = MP_NO;
/* Default to Non-square :) */
*ret = MP_NO;
if (arg->sign == MP_NEG) {
return MP_VAL;
}
if (arg->sign == MP_NEG) {
return MP_VAL;
}
/* digits used? (TSD) */
if (arg->used == 0) {
return MP_OKAY;
}
if (MP_IS_ZERO(arg)) {
return MP_OKAY;
}
/* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
if (rem_128[127 & DIGIT(arg,0)] == 1) {
return MP_OKAY;
}
/* First check mod 128 (suppose that MP_DIGIT_BIT is at least 7) */
if (rem_128[127u & arg->dp[0]] == (char)1) {
return MP_OKAY;
}
/* Next check mod 105 (3*5*7) */
if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
return res;
}
if (rem_105[c] == 1) {
return MP_OKAY;
}
/* Next check mod 105 (3*5*7) */
if ((err = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) {
return err;
}
if (rem_105[c] == (char)1) {
return MP_OKAY;
}
if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
return res;
}
if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
goto ERR;
}
r = mp_get_int(&t);
/* Check for other prime modules, note it's not an ERROR but we must
* free "t" so the easiest way is to goto ERR. We know that res
* is already equal to MP_OKAY from the mp_mod call
*/
if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
if ((err = mp_init_u32(&t, 11u*13u*17u*19u*23u*29u*31u)) != MP_OKAY) {
return err;
}
if ((err = mp_mod(arg, &t, &t)) != MP_OKAY) {
goto LBL_ERR;
}
r = mp_get_u32(&t);
/* Check for other prime modules, note it's not an ERROR but we must
* free "t" so the easiest way is to goto LBL_ERR. We know that err
* is already equal to MP_OKAY from the mp_mod call
*/
if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL) goto LBL_ERR;
/* Final check - is sqr(sqrt(arg)) == arg ? */
if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
goto ERR;
}
/* Final check - is sqr(sqrt(arg)) == arg ? */
if ((err = mp_sqrt(arg, &t)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_sqr(&t, &t)) != MP_OKAY) {
goto LBL_ERR;
}
*ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
ERR:mp_clear(&t);
return res;
*ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO;
LBL_ERR:
mp_clear(&t);
return err;
}
#endif
/* $Source: /cvs/libtom/libtommath/bn_mp_is_square.c,v $ */
/* $Revision: 1.4 $ */
/* $Date: 2006/12/28 01:25:13 $ */