hcrypto: import libtommath v1.2.0

This commit is contained in:
Luke Howard
2020-04-12 18:37:13 +10:00
parent 7181c109d0
commit c403b66082
287 changed files with 28273 additions and 38374 deletions

View File

@@ -1,112 +1,76 @@
#include <tommath.h>
#include "tommath_private.h"
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* this is a shell function that calls either the normal or Montgomery
* exptmod functions. Originally the call to the montgomery code was
* embedded in the normal function but that wasted alot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
int dr;
int dr;
/* modulus P must be positive */
if (P->sign == MP_NEG) {
return MP_VAL;
}
/* modulus P must be positive */
if (P->sign == MP_NEG) {
return MP_VAL;
}
/* if exponent X is negative we have to recurse */
if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
mp_int tmpG, tmpX;
int err;
/* if exponent X is negative we have to recurse */
if (X->sign == MP_NEG) {
mp_int tmpG, tmpX;
mp_err err;
/* first compute 1/G mod P */
if ((err = mp_init(&tmpG)) != MP_OKAY) {
return err;
}
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
if (!MP_HAS(MP_INVMOD)) {
return MP_VAL;
}
/* now get |X| */
if ((err = mp_init(&tmpX)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) {
return err;
}
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
#else
/* no invmod */
return MP_VAL;
#endif
}
/* first compute 1/G mod P */
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
goto LBL_ERR;
}
/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
if (mp_reduce_is_2k_l(P) == MP_YES) {
return s_mp_exptmod(G, X, P, Y, 1);
}
#endif
/* now get |X| */
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
goto LBL_ERR;
}
#ifdef BN_MP_DR_IS_MODULUS_C
/* is it a DR modulus? */
dr = mp_dr_is_modulus(P);
#else
/* default to no */
dr = 0;
#endif
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
err = mp_exptmod(&tmpG, &tmpX, P, Y);
LBL_ERR:
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
#ifdef BN_MP_REDUCE_IS_2K_C
/* if not, is it a unrestricted DR modulus? */
if (dr == 0) {
dr = mp_reduce_is_2k(P) << 1;
}
#endif
/* modified diminished radix reduction */
if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) &&
(mp_reduce_is_2k_l(P) == MP_YES)) {
return s_mp_exptmod(G, X, P, Y, 1);
}
/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
if (mp_isodd (P) == 1 || dr != 0) {
return mp_exptmod_fast (G, X, P, Y, dr);
} else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
/* otherwise use the generic Barrett reduction technique */
return s_mp_exptmod (G, X, P, Y, 0);
#else
/* no exptmod for evens */
return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
}
#endif
/* is it a DR modulus? default to no */
dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0;
/* if not, is it a unrestricted DR modulus? */
if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) {
dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0;
}
/* if the modulus is odd or dr != 0 use the montgomery method */
if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) {
return s_mp_exptmod_fast(G, X, P, Y, dr);
} else if (MP_HAS(S_MP_EXPTMOD)) {
/* otherwise use the generic Barrett reduction technique */
return s_mp_exptmod(G, X, P, Y, 0);
} else {
/* no exptmod for evens */
return MP_VAL;
}
}
#endif
/* $Source: /cvs/libtom/libtommath/bn_mp_exptmod.c,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/12/28 01:25:13 $ */