Make OpenSSL an hcrypto backend proper

This adds a new backend for libhcrypto: the OpenSSL backend.

Now libhcrypto has these backends:

 - hcrypto itself (i.e., the algorithms coded in lib/hcrypto)
 - Common Crypto (OS X)
 - PKCS#11 (specifically for Solaris, but not Solaris-specific)
 - Windows CNG (Windows)
 - OpenSSL (generic)

The ./configure --with-openssl=... option no longer disables the use of
hcrypto.  Instead it enables the use of OpenSSL as a (and the default)
backend in libhcrypto.  The libhcrypto framework is now always used.

OpenSSL should no longer be used directly within Heimdal, except in the
OpenSSL hcrypto backend itself, and files where elliptic curve (EC)
crypto is needed.

Because libhcrypto's EC support is incomplete, we can only use OpenSSL
for EC.  Currently that means separating all EC-using code so that it
does not use hcrypto, thus the libhx509/hxtool and PKINIT EC code has
been moved out of the files it used to be in.
This commit is contained in:
Nicolas Williams
2016-04-13 12:44:58 -05:00
parent 9df88205ba
commit 490337f4f9
60 changed files with 2206 additions and 976 deletions

627
lib/hcrypto/evp-openssl.c Normal file
View File

@@ -0,0 +1,627 @@
/*
* Copyright (c) 2016, Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* OpenSSL provider */
#include "config.h"
#include <roken.h>
#include <heimbase.h>
#include <assert.h>
#ifdef HAVE_HCRYPTO_W_OPENSSL
/*
* This is the OpenSSL 1.x backend for hcrypto. It has been tested with
* OpenSSL 1.0.1f and OpenSSL 1.1.0-pre3-dev.
*
* NOTE: In order for this to work with OpenSSL 1.1.x and up, it is
* critical to use opaque OpenSSL type accessors everywhere /
* never use knowledge of opaque OpenSSL type internals.
*/
#include <evp.h>
#include <evp-openssl.h>
/*
* This being an OpenSSL backend for hcrypto... we need to be able to
* refer to types and objects (functions) from both, OpenSSL and
* hcrypto.
*
* The hcrypto API is *very* similar to the OpenSSL 1.0.x API, with the
* same type and symbol names in many cases, except that the hcrypto
* names are prefixed with hc_*. hcrypto has convenience macros that
* provide OpenSSL aliases for the hcrypto interfaces, and hcrypto
* applications are expected to use the OpenSSL names.
*
* Since here we must be able to refer to types and objects from both
* OpenSSL and from hcrypto, we disable the hcrypto renaming for the
* rest of this file. These #undefs could be collected into an
* <hcrypto/undef.h> for the purpose of permitting other applications to
* use both, hcrypto and OpenSSL in the same source files (provided that
* such applications refer to hcrypto types and objects by their proper
* hc_-prefixed names).
*/
#include <undef.h>
/* Now it's safe to include OpenSSL headers */
#include <openssl/evp.h>
#if OPENSSL_VERSION_NUMBER < 0x10100000L
#define EVP_MD_CTX_new EVP_MD_CTX_create
#define EVP_MD_CTX_free EVP_MD_CTX_destroy
#endif
/* A HEIM_BASE_ONCE argument struct for per-EVP one-time initialization */
struct once_init_cipher_ctx {
hc_EVP_CIPHER **hc_memoizep; /* ptr to static ptr to hc_EVP_CIPHER */
hc_EVP_CIPHER *hc_memoize; /* ptr to static hc_EVP_CIPHER */
unsigned long flags;
unsigned char *initialized;
int nid;
};
/* Our wrapper for OpenSSL EVP_CIPHER_CTXs */
struct ossl_cipher_ctx {
EVP_CIPHER_CTX *ossl_cipher_ctx; /* OpenSSL cipher ctx */
const EVP_CIPHER *ossl_cipher; /* OpenSSL cipher */
int initialized;
};
/*
* Our hc_EVP_CIPHER init() method; wraps around OpenSSL
* EVP_CipherInit_ex().
*
* This is very similar to the init() function pointer in an OpenSSL
* EVP_CIPHER, but a) we can't access them in 1.1, and b) the method
* invocation protocols in hcrypto and OpenSSL are similar but not the
* same, thus we must have this wrapper.
*/
static int
cipher_ctx_init(hc_EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
struct ossl_cipher_ctx *ossl_ctx = ctx->cipher_data; /* EVP_CIPHER_CTX wrapper */
const EVP_CIPHER *c;
assert(ossl_ctx != NULL);
assert(ctx->cipher != NULL);
assert(ctx->cipher->app_data != NULL);
/*
* Here be dragons.
*
* We need to make sure that the OpenSSL EVP_CipherInit_ex() is
* called with cipher!=NULL just once per EVP_CIPHER_CTX, otherwise
* state in the OpenSSL EVP_CIPHER_CTX will get cleaned up and then
* we'll segfault.
*
* hcrypto applications can re-initialize an (hc_)EVP_CIPHER_CTX as
* usual by calling (hc)EVP_CipherInit_ex() with a non-NULL cipher
* argument, and that will cause cipher_cleanup() (below) to be
* called.
*/
c = ossl_ctx->ossl_cipher = ctx->cipher->app_data; /* OpenSSL's EVP_CIPHER * */
if (!ossl_ctx->initialized) {
ossl_ctx->ossl_cipher_ctx = EVP_CIPHER_CTX_new();
if (ossl_ctx->ossl_cipher_ctx == NULL)
return 0;
/*
* So we always call EVP_CipherInit_ex() with c!=NULL, but other
* things NULL...
*/
if (!EVP_CipherInit_ex(ossl_ctx->ossl_cipher_ctx, c, NULL, NULL, NULL, enc))
return 0;
ossl_ctx->initialized = 1;
}
/* ...and from here on always call EVP_CipherInit_ex() with c=NULL */
if ((ctx->cipher->flags & hc_EVP_CIPH_VARIABLE_LENGTH) &&
ctx->key_len > 0)
EVP_CIPHER_CTX_set_key_length(ossl_ctx->ossl_cipher_ctx, ctx->key_len);
return EVP_CipherInit_ex(ossl_ctx->ossl_cipher_ctx, NULL, NULL, key, iv, enc);
}
static int
cipher_do_cipher(hc_EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, unsigned int len)
{
struct ossl_cipher_ctx *ossl_ctx = ctx->cipher_data;
assert(ossl_ctx != NULL);
return EVP_Cipher(ossl_ctx->ossl_cipher_ctx, out, in, len);
}
static int
cipher_cleanup(hc_EVP_CIPHER_CTX *ctx)
{
struct ossl_cipher_ctx *ossl_ctx = ctx->cipher_data;
if (ossl_ctx == NULL || !ossl_ctx->initialized)
return 1;
if (ossl_ctx->ossl_cipher_ctx != NULL)
EVP_CIPHER_CTX_free(ossl_ctx->ossl_cipher_ctx);
ossl_ctx->ossl_cipher_ctx = NULL;
ossl_ctx->ossl_cipher = NULL;
ossl_ctx->initialized = 0;
return 1;
}
static int
cipher_ctrl(hc_EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
{
struct ossl_cipher_ctx *ossl_ctx = ctx->cipher_data;
assert(ossl_ctx != NULL);
return EVP_CIPHER_CTX_ctrl(ossl_ctx->ossl_cipher_ctx, type, arg, ptr);
}
static void
get_EVP_CIPHER_once_cb(void *d)
{
struct once_init_cipher_ctx *arg = d;
const EVP_CIPHER *ossl_evp;
hc_EVP_CIPHER *hc_evp;
hc_evp = arg->hc_memoize;
/*
* We lookup EVP_CIPHER *s by NID so that we don't fail to find a
* symbol such as EVP_aes...() when libcrypto changes after build
* time (e.g., updates, LD_LIBRARY_PATH/LD_PRELOAD).
*/
ossl_evp = EVP_get_cipherbynid(arg->nid);
if (ossl_evp == NULL) {
(void) memset(hc_evp, 0, sizeof(*hc_evp));
*arg->hc_memoizep = NULL;
*arg->initialized = 1;
return;
}
/* Build the hc_EVP_CIPHER */
hc_evp->nid = EVP_CIPHER_nid(ossl_evp); /* We would an hcrypto NIDs if we had them */
hc_evp->block_size = EVP_CIPHER_block_size(ossl_evp);
hc_evp->key_len = EVP_CIPHER_key_length(ossl_evp);
hc_evp->iv_len = EVP_CIPHER_iv_length(ossl_evp);
/*
* We force hc_EVP_CipherInit_ex to always call our init() function,
* otherwise we don't get a chance to call EVP_CipherInit_ex()
* correctly.
*/
hc_evp->flags = hc_EVP_CIPH_ALWAYS_CALL_INIT | arg->flags;
/* Our cipher context */
hc_evp->ctx_size = sizeof(struct ossl_cipher_ctx);
/* Our wrappers */
hc_evp->init = cipher_ctx_init;
hc_evp->do_cipher = cipher_do_cipher;
hc_evp->cleanup = cipher_cleanup;
hc_evp->set_asn1_parameters = NULL;
hc_evp->get_asn1_parameters = NULL;
hc_evp->ctrl = cipher_ctrl;
/* Our link to the OpenSSL EVP_CIPHER */
hc_evp->app_data = (void *)ossl_evp;
/* Finally, set the static hc_EVP_CIPHER * to the one we just built */
*arg->hc_memoizep = hc_evp;
*arg->initialized = 1;
}
static hc_EVP_CIPHER *
get_EVP_CIPHER(heim_base_once_t *once, hc_EVP_CIPHER *hc_memoize,
hc_EVP_CIPHER **hc_memoizep, unsigned long flags,
unsigned char *initialized, int nid)
{
struct once_init_cipher_ctx arg;
arg.flags = flags;
arg.hc_memoizep = hc_memoizep;
arg.hc_memoize = hc_memoize;
arg.initialized = initialized;
arg.nid = nid;
heim_base_once_f(once, &arg, get_EVP_CIPHER_once_cb);
return *hc_memoizep; /* May be NULL */
}
#define OSSL_CIPHER_ALGORITHM(name, flags) \
const hc_EVP_CIPHER *hc_EVP_ossl_##name(void) \
{ \
static hc_EVP_CIPHER ossl_##name##_st; \
static hc_EVP_CIPHER *ossl_##name; \
static heim_base_once_t once = HEIM_BASE_ONCE_INIT; \
static unsigned char initialized; \
if (initialized) \
return ossl_##name; \
return get_EVP_CIPHER(&once, &ossl_##name##_st, &ossl_##name, \
flags, &initialized, NID_##name); \
}
/* As above, but for EVP_MDs */
struct ossl_md_ctx {
EVP_MD_CTX *ossl_md_ctx; /* OpenSSL md ctx */
const EVP_MD *ossl_md; /* OpenSSL md */
int initialized;
};
static int
ossl_md_init(struct ossl_md_ctx *ctx, const EVP_MD *md)
{
if (ctx->initialized)
EVP_MD_CTX_free(ctx->ossl_md_ctx);
ctx->initialized = 0;
ctx->ossl_md = md;
ctx->ossl_md_ctx = EVP_MD_CTX_new();
if (!EVP_DigestInit(ctx->ossl_md_ctx, md)) {
EVP_MD_CTX_free(ctx->ossl_md_ctx);
ctx->ossl_md_ctx = NULL;
ctx->ossl_md = NULL;
return 0;
}
ctx->initialized = 1;
return 1;
}
static int
ossl_md_update(hc_EVP_MD_CTX *d, const void *data, size_t count)
{
struct ossl_md_ctx *ctx = (void *)d;
return EVP_DigestUpdate(ctx->ossl_md_ctx, data, count);
}
static int
ossl_md_final(void *md_data, hc_EVP_MD_CTX *d)
{
struct ossl_md_ctx *ctx = (void *)d;
return EVP_DigestFinal(ctx->ossl_md_ctx, md_data, NULL);
}
static int
ossl_md_cleanup(hc_EVP_MD_CTX *d)
{
struct ossl_md_ctx *ctx = (void *)d;
if (!ctx->initialized)
return 1;
EVP_MD_CTX_free(ctx->ossl_md_ctx);
ctx->ossl_md = NULL;
ctx->initialized = 0;
return 1;
}
struct once_init_md_ctx {
const EVP_MD **ossl_memoizep;
hc_EVP_MD **hc_memoizep;
hc_EVP_MD *hc_memoize;
hc_evp_md_init md_init;
int nid;
unsigned char *initialized;
};
static void
get_EVP_MD_once_cb(void *d)
{
struct once_init_md_ctx *arg = d;
const EVP_MD *ossl_evp;
hc_EVP_MD *hc_evp;
hc_evp = arg->hc_memoize;
*arg->ossl_memoizep = ossl_evp = EVP_get_digestbynid(arg->nid);
if (ossl_evp == NULL) {
(void) memset(hc_evp, 0, sizeof(*hc_evp));
*arg->hc_memoizep = NULL;
*arg->initialized = 1;
return;
}
/* Build the hc_EVP_MD */
hc_evp->ctx_size = sizeof(struct ossl_md_ctx);
hc_evp->init = arg->md_init;
hc_evp->update = ossl_md_update;
hc_evp->final = ossl_md_final;
hc_evp->cleanup = ossl_md_cleanup;
*arg->hc_memoizep = hc_evp;
*arg->initialized = 1;
}
static hc_EVP_MD *
get_EVP_MD(heim_base_once_t *once, hc_EVP_MD *hc_memoize,
hc_EVP_MD **hc_memoizep, const EVP_MD **ossl_memoizep,
hc_evp_md_init md_init, unsigned char *initialized, int nid)
{
struct once_init_md_ctx ctx;
ctx.ossl_memoizep = ossl_memoizep;
ctx.hc_memoizep = hc_memoizep;
ctx.hc_memoize = hc_memoize;
ctx.md_init = md_init;
ctx.initialized = initialized;
ctx.nid = nid;
heim_base_once_f(once, &ctx, get_EVP_MD_once_cb);
return *hc_memoizep; /* May be NULL */
}
#define OSSL_MD_ALGORITHM(name) \
static const EVP_MD *ossl_EVP_##name; \
static hc_EVP_MD *ossl_##name; \
static int ossl_init_##name(hc_EVP_MD_CTX *d) \
{ \
return ossl_md_init((void *)d, ossl_EVP_##name); \
} \
const hc_EVP_MD *hc_EVP_ossl_##name(void) \
{ \
static hc_EVP_MD ossl_##name##_st; \
static heim_base_once_t once = HEIM_BASE_ONCE_INIT; \
static unsigned char initialized; \
if (initialized) \
return ossl_##name; \
return get_EVP_MD(&once, &ossl_##name##_st, &ossl_##name, \
&ossl_EVP_##name, ossl_init_##name, \
&initialized, NID_##name); \
}
/**
* The triple DES cipher type (OpenSSL provider)
*
* @return the DES-EDE3-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(des_ede3_cbc, hc_EVP_CIPH_CBC_MODE)
/**
* The DES cipher type (OpenSSL provider)
*
* @return the DES-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(des_cbc, hc_EVP_CIPH_CBC_MODE)
/**
* The AES-128 cipher type (OpenSSL provider)
*
* @return the AES-128-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(aes_128_cbc, hc_EVP_CIPH_CBC_MODE)
/**
* The AES-192 cipher type (OpenSSL provider)
*
* @return the AES-192-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(aes_192_cbc, hc_EVP_CIPH_CBC_MODE)
/**
* The AES-256 cipher type (OpenSSL provider)
*
* @return the AES-256-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(aes_256_cbc, hc_EVP_CIPH_CBC_MODE)
/**
* The AES-128 CFB8 cipher type (OpenSSL provider)
*
* @return the AES-128-CFB8 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(aes_128_cfb8, hc_EVP_CIPH_CFB8_MODE)
/**
* The AES-192 CFB8 cipher type (OpenSSL provider)
*
* @return the AES-192-CFB8 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(aes_192_cfb8, hc_EVP_CIPH_CFB8_MODE)
/**
* The AES-256 CFB8 cipher type (OpenSSL provider)
*
* @return the AES-256-CFB8 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(aes_256_cfb8, hc_EVP_CIPH_CFB8_MODE)
/*
* RC2 is only needed for tests of PKCS#12 support, which currently uses
* the RC2 PBE. So no RC2 -> tests fail.
*/
/**
* The RC2 cipher type - OpenSSL
*
* @return the RC2 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(rc2_cbc,
hc_EVP_CIPH_CBC_MODE |
hc_EVP_CIPH_VARIABLE_LENGTH)
/**
* The RC2-40 cipher type - OpenSSL
*
* @return the RC2-40 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(rc2_40_cbc,
hc_EVP_CIPH_CBC_MODE)
/**
* The RC2-64 cipher type - OpenSSL
*
* @return the RC2-64 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(rc2_64_cbc,
hc_EVP_CIPH_CBC_MODE |
hc_EVP_CIPH_VARIABLE_LENGTH)
/**
* The Camellia-128 cipher type - OpenSSL
*
* @return the Camellia-128 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(camellia_128_cbc, hc_EVP_CIPH_CBC_MODE)
/**
* The Camellia-198 cipher type - OpenSSL
*
* @return the Camellia-198 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(camellia_192_cbc, hc_EVP_CIPH_CBC_MODE)
/**
* The Camellia-256 cipher type - OpenSSL
*
* @return the Camellia-256 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(camellia_256_cbc, hc_EVP_CIPH_CBC_MODE)
/**
* The RC4 cipher type (OpenSSL provider)
*
* @return the RC4 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(rc4,
hc_EVP_CIPH_STREAM_CIPHER |
hc_EVP_CIPH_VARIABLE_LENGTH)
/**
* The RC4-40 cipher type (OpenSSL provider)
*
* @return the RC4 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_CIPHER_ALGORITHM(rc4_40,
hc_EVP_CIPH_STREAM_CIPHER |
hc_EVP_CIPH_VARIABLE_LENGTH)
/**
* The MD2 hash algorithm (OpenSSL provider)
*
* @return the MD2 EVP_MD pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_MD_ALGORITHM(md2)
/**
* The MD4 hash algorithm (OpenSSL provider)
*
* @return the MD4 EVP_MD pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_MD_ALGORITHM(md4)
/**
* The MD5 hash algorithm (OpenSSL provider)
*
* @return the MD5 EVP_MD pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_MD_ALGORITHM(md5)
/**
* The SHA-1 hash algorithm (OpenSSL provider)
*
* @return the SHA-1 EVP_MD pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_MD_ALGORITHM(sha1)
/**
* The SHA-256 hash algorithm (OpenSSL provider)
*
* @return the SHA-256 EVP_MD pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_MD_ALGORITHM(sha256)
/**
* The SHA-384 hash algorithm (OpenSSL provider)
*
* @return the SHA-384 EVP_MD pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_MD_ALGORITHM(sha384)
/**
* The SHA-512 hash algorithm (OpenSSL provider)
*
* @return the SHA-512 EVP_MD pointer.
*
* @ingroup hcrypto_evp
*/
OSSL_MD_ALGORITHM(sha512)
#else /* HAVE_HCRYPTO_W_OPENSSL */
static char dummy;
#endif /* HAVE_HCRYPTO_W_OPENSSL */