ltm-0.41
This commit is contained in:
		
							
								
								
									
										584
									
								
								lib/hcrypto/libtommath/tommath.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										584
									
								
								lib/hcrypto/libtommath/tommath.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,584 @@ | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com | ||||
|  */ | ||||
| #ifndef BN_H_ | ||||
| #define BN_H_ | ||||
|  | ||||
| #include <stdio.h> | ||||
| #include <string.h> | ||||
| #include <stdlib.h> | ||||
| #include <ctype.h> | ||||
| #include <limits.h> | ||||
|  | ||||
| #include <tommath_class.h> | ||||
|  | ||||
| #ifndef MIN | ||||
|    #define MIN(x,y) ((x)<(y)?(x):(y)) | ||||
| #endif | ||||
|  | ||||
| #ifndef MAX | ||||
|    #define MAX(x,y) ((x)>(y)?(x):(y)) | ||||
| #endif | ||||
|  | ||||
| #ifdef __cplusplus | ||||
| extern "C" { | ||||
|  | ||||
| /* C++ compilers don't like assigning void * to mp_digit * */ | ||||
| #define  OPT_CAST(x)  (x *) | ||||
|  | ||||
| #else | ||||
|  | ||||
| /* C on the other hand doesn't care */ | ||||
| #define  OPT_CAST(x) | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
| /* detect 64-bit mode if possible */ | ||||
| #if defined(__x86_64__)  | ||||
|    #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) | ||||
|       #define MP_64BIT | ||||
|    #endif | ||||
| #endif | ||||
|  | ||||
| /* some default configurations. | ||||
|  * | ||||
|  * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits | ||||
|  * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits | ||||
|  * | ||||
|  * At the very least a mp_digit must be able to hold 7 bits | ||||
|  * [any size beyond that is ok provided it doesn't overflow the data type] | ||||
|  */ | ||||
| #ifdef MP_8BIT | ||||
|    typedef unsigned char      mp_digit; | ||||
|    typedef unsigned short     mp_word; | ||||
| #elif defined(MP_16BIT) | ||||
|    typedef unsigned short     mp_digit; | ||||
|    typedef unsigned long      mp_word; | ||||
| #elif defined(MP_64BIT) | ||||
|    /* for GCC only on supported platforms */ | ||||
| #ifndef CRYPT | ||||
|    typedef unsigned long long ulong64; | ||||
|    typedef signed long long   long64; | ||||
| #endif | ||||
|  | ||||
|    typedef unsigned long      mp_digit; | ||||
|    typedef unsigned long      mp_word __attribute__ ((mode(TI))); | ||||
|  | ||||
|    #define DIGIT_BIT          60 | ||||
| #else | ||||
|    /* this is the default case, 28-bit digits */ | ||||
|     | ||||
|    /* this is to make porting into LibTomCrypt easier :-) */ | ||||
| #ifndef CRYPT | ||||
|    #if defined(_MSC_VER) || defined(__BORLANDC__)  | ||||
|       typedef unsigned __int64   ulong64; | ||||
|       typedef signed __int64     long64; | ||||
|    #else | ||||
|       typedef unsigned long long ulong64; | ||||
|       typedef signed long long   long64; | ||||
|    #endif | ||||
| #endif | ||||
|  | ||||
|    typedef unsigned long      mp_digit; | ||||
|    typedef ulong64            mp_word; | ||||
|  | ||||
| #ifdef MP_31BIT    | ||||
|    /* this is an extension that uses 31-bit digits */ | ||||
|    #define DIGIT_BIT          31 | ||||
| #else | ||||
|    /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ | ||||
|    #define DIGIT_BIT          28 | ||||
|    #define MP_28BIT | ||||
| #endif    | ||||
| #endif | ||||
|  | ||||
| /* define heap macros */ | ||||
| #ifndef CRYPT | ||||
|    /* default to libc stuff */ | ||||
|    #ifndef XMALLOC  | ||||
|        #define XMALLOC  malloc | ||||
|        #define XFREE    free | ||||
|        #define XREALLOC realloc | ||||
|        #define XCALLOC  calloc | ||||
|    #else | ||||
|       /* prototypes for our heap functions */ | ||||
|       extern void *XMALLOC(size_t n); | ||||
|       extern void *XREALLOC(void *p, size_t n); | ||||
|       extern void *XCALLOC(size_t n, size_t s); | ||||
|       extern void XFREE(void *p); | ||||
|    #endif | ||||
| #endif | ||||
|  | ||||
|  | ||||
| /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ | ||||
| #ifndef DIGIT_BIT | ||||
|    #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */ | ||||
| #endif | ||||
|  | ||||
| #define MP_DIGIT_BIT     DIGIT_BIT | ||||
| #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) | ||||
| #define MP_DIGIT_MAX     MP_MASK | ||||
|  | ||||
| /* equalities */ | ||||
| #define MP_LT        -1   /* less than */ | ||||
| #define MP_EQ         0   /* equal to */ | ||||
| #define MP_GT         1   /* greater than */ | ||||
|  | ||||
| #define MP_ZPOS       0   /* positive integer */ | ||||
| #define MP_NEG        1   /* negative */ | ||||
|  | ||||
| #define MP_OKAY       0   /* ok result */ | ||||
| #define MP_MEM        -2  /* out of mem */ | ||||
| #define MP_VAL        -3  /* invalid input */ | ||||
| #define MP_RANGE      MP_VAL | ||||
|  | ||||
| #define MP_YES        1   /* yes response */ | ||||
| #define MP_NO         0   /* no response */ | ||||
|  | ||||
| /* Primality generation flags */ | ||||
| #define LTM_PRIME_BBS      0x0001 /* BBS style prime */ | ||||
| #define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */ | ||||
| #define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */ | ||||
|  | ||||
| typedef int           mp_err; | ||||
|  | ||||
| /* you'll have to tune these... */ | ||||
| extern int KARATSUBA_MUL_CUTOFF, | ||||
|            KARATSUBA_SQR_CUTOFF, | ||||
|            TOOM_MUL_CUTOFF, | ||||
|            TOOM_SQR_CUTOFF; | ||||
|  | ||||
| /* define this to use lower memory usage routines (exptmods mostly) */ | ||||
| /* #define MP_LOW_MEM */ | ||||
|  | ||||
| /* default precision */ | ||||
| #ifndef MP_PREC | ||||
|    #ifndef MP_LOW_MEM | ||||
|       #define MP_PREC                 32     /* default digits of precision */ | ||||
|    #else | ||||
|       #define MP_PREC                 8      /* default digits of precision */ | ||||
|    #endif    | ||||
| #endif | ||||
|  | ||||
| /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ | ||||
| #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) | ||||
|  | ||||
| /* the infamous mp_int structure */ | ||||
| typedef struct  { | ||||
|     int used, alloc, sign; | ||||
|     mp_digit *dp; | ||||
| } mp_int; | ||||
|  | ||||
| /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ | ||||
| typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); | ||||
|  | ||||
|  | ||||
| #define USED(m)    ((m)->used) | ||||
| #define DIGIT(m,k) ((m)->dp[(k)]) | ||||
| #define SIGN(m)    ((m)->sign) | ||||
|  | ||||
| /* error code to char* string */ | ||||
| char *mp_error_to_string(int code); | ||||
|  | ||||
| /* ---> init and deinit bignum functions <--- */ | ||||
| /* init a bignum */ | ||||
| int mp_init(mp_int *a); | ||||
|  | ||||
| /* free a bignum */ | ||||
| void mp_clear(mp_int *a); | ||||
|  | ||||
| /* init a null terminated series of arguments */ | ||||
| int mp_init_multi(mp_int *mp, ...); | ||||
|  | ||||
| /* clear a null terminated series of arguments */ | ||||
| void mp_clear_multi(mp_int *mp, ...); | ||||
|  | ||||
| /* exchange two ints */ | ||||
| void mp_exch(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* shrink ram required for a bignum */ | ||||
| int mp_shrink(mp_int *a); | ||||
|  | ||||
| /* grow an int to a given size */ | ||||
| int mp_grow(mp_int *a, int size); | ||||
|  | ||||
| /* init to a given number of digits */ | ||||
| int mp_init_size(mp_int *a, int size); | ||||
|  | ||||
| /* ---> Basic Manipulations <--- */ | ||||
| #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) | ||||
| #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) | ||||
| #define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) | ||||
|  | ||||
| /* set to zero */ | ||||
| void mp_zero(mp_int *a); | ||||
|  | ||||
| /* set to a digit */ | ||||
| void mp_set(mp_int *a, mp_digit b); | ||||
|  | ||||
| /* set a 32-bit const */ | ||||
| int mp_set_int(mp_int *a, unsigned long b); | ||||
|  | ||||
| /* get a 32-bit value */ | ||||
| unsigned long mp_get_int(mp_int * a); | ||||
|  | ||||
| /* initialize and set a digit */ | ||||
| int mp_init_set (mp_int * a, mp_digit b); | ||||
|  | ||||
| /* initialize and set 32-bit value */ | ||||
| int mp_init_set_int (mp_int * a, unsigned long b); | ||||
|  | ||||
| /* copy, b = a */ | ||||
| int mp_copy(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* inits and copies, a = b */ | ||||
| int mp_init_copy(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* trim unused digits */ | ||||
| void mp_clamp(mp_int *a); | ||||
|  | ||||
| /* ---> digit manipulation <--- */ | ||||
|  | ||||
| /* right shift by "b" digits */ | ||||
| void mp_rshd(mp_int *a, int b); | ||||
|  | ||||
| /* left shift by "b" digits */ | ||||
| int mp_lshd(mp_int *a, int b); | ||||
|  | ||||
| /* c = a / 2**b */ | ||||
| int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); | ||||
|  | ||||
| /* b = a/2 */ | ||||
| int mp_div_2(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* c = a * 2**b */ | ||||
| int mp_mul_2d(mp_int *a, int b, mp_int *c); | ||||
|  | ||||
| /* b = a*2 */ | ||||
| int mp_mul_2(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* c = a mod 2**d */ | ||||
| int mp_mod_2d(mp_int *a, int b, mp_int *c); | ||||
|  | ||||
| /* computes a = 2**b */ | ||||
| int mp_2expt(mp_int *a, int b); | ||||
|  | ||||
| /* Counts the number of lsbs which are zero before the first zero bit */ | ||||
| int mp_cnt_lsb(mp_int *a); | ||||
|  | ||||
| /* I Love Earth! */ | ||||
|  | ||||
| /* makes a pseudo-random int of a given size */ | ||||
| int mp_rand(mp_int *a, int digits); | ||||
|  | ||||
| /* ---> binary operations <--- */ | ||||
| /* c = a XOR b  */ | ||||
| int mp_xor(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* c = a OR b */ | ||||
| int mp_or(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* c = a AND b */ | ||||
| int mp_and(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* ---> Basic arithmetic <--- */ | ||||
|  | ||||
| /* b = -a */ | ||||
| int mp_neg(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* b = |a| */ | ||||
| int mp_abs(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* compare a to b */ | ||||
| int mp_cmp(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* compare |a| to |b| */ | ||||
| int mp_cmp_mag(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* c = a + b */ | ||||
| int mp_add(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* c = a - b */ | ||||
| int mp_sub(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* c = a * b */ | ||||
| int mp_mul(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* b = a*a  */ | ||||
| int mp_sqr(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* a/b => cb + d == a */ | ||||
| int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | ||||
|  | ||||
| /* c = a mod b, 0 <= c < b  */ | ||||
| int mp_mod(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* ---> single digit functions <--- */ | ||||
|  | ||||
| /* compare against a single digit */ | ||||
| int mp_cmp_d(mp_int *a, mp_digit b); | ||||
|  | ||||
| /* c = a + b */ | ||||
| int mp_add_d(mp_int *a, mp_digit b, mp_int *c); | ||||
|  | ||||
| /* c = a - b */ | ||||
| int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); | ||||
|  | ||||
| /* c = a * b */ | ||||
| int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); | ||||
|  | ||||
| /* a/b => cb + d == a */ | ||||
| int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); | ||||
|  | ||||
| /* a/3 => 3c + d == a */ | ||||
| int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); | ||||
|  | ||||
| /* c = a**b */ | ||||
| int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); | ||||
|  | ||||
| /* c = a mod b, 0 <= c < b  */ | ||||
| int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); | ||||
|  | ||||
| /* ---> number theory <--- */ | ||||
|  | ||||
| /* d = a + b (mod c) */ | ||||
| int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | ||||
|  | ||||
| /* d = a - b (mod c) */ | ||||
| int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | ||||
|  | ||||
| /* d = a * b (mod c) */ | ||||
| int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | ||||
|  | ||||
| /* c = a * a (mod b) */ | ||||
| int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* c = 1/a (mod b) */ | ||||
| int mp_invmod(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* c = (a, b) */ | ||||
| int mp_gcd(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* produces value such that U1*a + U2*b = U3 */ | ||||
| int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); | ||||
|  | ||||
| /* c = [a, b] or (a*b)/(a, b) */ | ||||
| int mp_lcm(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* finds one of the b'th root of a, such that |c|**b <= |a| | ||||
|  * | ||||
|  * returns error if a < 0 and b is even | ||||
|  */ | ||||
| int mp_n_root(mp_int *a, mp_digit b, mp_int *c); | ||||
|  | ||||
| /* special sqrt algo */ | ||||
| int mp_sqrt(mp_int *arg, mp_int *ret); | ||||
|  | ||||
| /* is number a square? */ | ||||
| int mp_is_square(mp_int *arg, int *ret); | ||||
|  | ||||
| /* computes the jacobi c = (a | n) (or Legendre if b is prime)  */ | ||||
| int mp_jacobi(mp_int *a, mp_int *n, int *c); | ||||
|  | ||||
| /* used to setup the Barrett reduction for a given modulus b */ | ||||
| int mp_reduce_setup(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* Barrett Reduction, computes a (mod b) with a precomputed value c | ||||
|  * | ||||
|  * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely | ||||
|  * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. | ||||
|  */ | ||||
| int mp_reduce(mp_int *a, mp_int *b, mp_int *c); | ||||
|  | ||||
| /* setups the montgomery reduction */ | ||||
| int mp_montgomery_setup(mp_int *a, mp_digit *mp); | ||||
|  | ||||
| /* computes a = B**n mod b without division or multiplication useful for | ||||
|  * normalizing numbers in a Montgomery system. | ||||
|  */ | ||||
| int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); | ||||
|  | ||||
| /* computes x/R == x (mod N) via Montgomery Reduction */ | ||||
| int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); | ||||
|  | ||||
| /* returns 1 if a is a valid DR modulus */ | ||||
| int mp_dr_is_modulus(mp_int *a); | ||||
|  | ||||
| /* sets the value of "d" required for mp_dr_reduce */ | ||||
| void mp_dr_setup(mp_int *a, mp_digit *d); | ||||
|  | ||||
| /* reduces a modulo b using the Diminished Radix method */ | ||||
| int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); | ||||
|  | ||||
| /* returns true if a can be reduced with mp_reduce_2k */ | ||||
| int mp_reduce_is_2k(mp_int *a); | ||||
|  | ||||
| /* determines k value for 2k reduction */ | ||||
| int mp_reduce_2k_setup(mp_int *a, mp_digit *d); | ||||
|  | ||||
| /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | ||||
| int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); | ||||
|  | ||||
| /* returns true if a can be reduced with mp_reduce_2k_l */ | ||||
| int mp_reduce_is_2k_l(mp_int *a); | ||||
|  | ||||
| /* determines k value for 2k reduction */ | ||||
| int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); | ||||
|  | ||||
| /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | ||||
| int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); | ||||
|  | ||||
| /* d = a**b (mod c) */ | ||||
| int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | ||||
|  | ||||
| /* ---> Primes <--- */ | ||||
|  | ||||
| /* number of primes */ | ||||
| #ifdef MP_8BIT | ||||
|    #define PRIME_SIZE      31 | ||||
| #else | ||||
|    #define PRIME_SIZE      256 | ||||
| #endif | ||||
|  | ||||
| /* table of first PRIME_SIZE primes */ | ||||
| extern const mp_digit ltm_prime_tab[]; | ||||
|  | ||||
| /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ | ||||
| int mp_prime_is_divisible(mp_int *a, int *result); | ||||
|  | ||||
| /* performs one Fermat test of "a" using base "b". | ||||
|  * Sets result to 0 if composite or 1 if probable prime | ||||
|  */ | ||||
| int mp_prime_fermat(mp_int *a, mp_int *b, int *result); | ||||
|  | ||||
| /* performs one Miller-Rabin test of "a" using base "b". | ||||
|  * Sets result to 0 if composite or 1 if probable prime | ||||
|  */ | ||||
| int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); | ||||
|  | ||||
| /* This gives [for a given bit size] the number of trials required | ||||
|  * such that Miller-Rabin gives a prob of failure lower than 2^-96  | ||||
|  */ | ||||
| int mp_prime_rabin_miller_trials(int size); | ||||
|  | ||||
| /* performs t rounds of Miller-Rabin on "a" using the first | ||||
|  * t prime bases.  Also performs an initial sieve of trial | ||||
|  * division.  Determines if "a" is prime with probability | ||||
|  * of error no more than (1/4)**t. | ||||
|  * | ||||
|  * Sets result to 1 if probably prime, 0 otherwise | ||||
|  */ | ||||
| int mp_prime_is_prime(mp_int *a, int t, int *result); | ||||
|  | ||||
| /* finds the next prime after the number "a" using "t" trials | ||||
|  * of Miller-Rabin. | ||||
|  * | ||||
|  * bbs_style = 1 means the prime must be congruent to 3 mod 4 | ||||
|  */ | ||||
| int mp_prime_next_prime(mp_int *a, int t, int bbs_style); | ||||
|  | ||||
| /* makes a truly random prime of a given size (bytes), | ||||
|  * call with bbs = 1 if you want it to be congruent to 3 mod 4  | ||||
|  * | ||||
|  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can | ||||
|  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself | ||||
|  * so it can be NULL | ||||
|  * | ||||
|  * The prime generated will be larger than 2^(8*size). | ||||
|  */ | ||||
| #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) | ||||
|  | ||||
| /* makes a truly random prime of a given size (bits), | ||||
|  * | ||||
|  * Flags are as follows: | ||||
|  *  | ||||
|  *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4 | ||||
|  *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) | ||||
|  *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero | ||||
|  *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one | ||||
|  * | ||||
|  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can | ||||
|  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself | ||||
|  * so it can be NULL | ||||
|  * | ||||
|  */ | ||||
| int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); | ||||
|  | ||||
| /* ---> radix conversion <--- */ | ||||
| int mp_count_bits(mp_int *a); | ||||
|  | ||||
| int mp_unsigned_bin_size(mp_int *a); | ||||
| int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); | ||||
| int mp_to_unsigned_bin(mp_int *a, unsigned char *b); | ||||
| int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); | ||||
|  | ||||
| int mp_signed_bin_size(mp_int *a); | ||||
| int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); | ||||
| int mp_to_signed_bin(mp_int *a,  unsigned char *b); | ||||
| int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); | ||||
|  | ||||
| int mp_read_radix(mp_int *a, const char *str, int radix); | ||||
| int mp_toradix(mp_int *a, char *str, int radix); | ||||
| int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); | ||||
| int mp_radix_size(mp_int *a, int radix, int *size); | ||||
|  | ||||
| int mp_fread(mp_int *a, int radix, FILE *stream); | ||||
| int mp_fwrite(mp_int *a, int radix, FILE *stream); | ||||
|  | ||||
| #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) | ||||
| #define mp_raw_size(mp)           mp_signed_bin_size(mp) | ||||
| #define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str)) | ||||
| #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) | ||||
| #define mp_mag_size(mp)           mp_unsigned_bin_size(mp) | ||||
| #define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str)) | ||||
|  | ||||
| #define mp_tobinary(M, S)  mp_toradix((M), (S), 2) | ||||
| #define mp_tooctal(M, S)   mp_toradix((M), (S), 8) | ||||
| #define mp_todecimal(M, S) mp_toradix((M), (S), 10) | ||||
| #define mp_tohex(M, S)     mp_toradix((M), (S), 16) | ||||
|  | ||||
| /* lowlevel functions, do not call! */ | ||||
| int s_mp_add(mp_int *a, mp_int *b, mp_int *c); | ||||
| int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); | ||||
| #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) | ||||
| int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | ||||
| int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | ||||
| int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | ||||
| int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | ||||
| int fast_s_mp_sqr(mp_int *a, mp_int *b); | ||||
| int s_mp_sqr(mp_int *a, mp_int *b); | ||||
| int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); | ||||
| int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); | ||||
| int mp_karatsuba_sqr(mp_int *a, mp_int *b); | ||||
| int mp_toom_sqr(mp_int *a, mp_int *b); | ||||
| int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); | ||||
| int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); | ||||
| int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); | ||||
| int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); | ||||
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); | ||||
| void bn_reverse(unsigned char *s, int len); | ||||
|  | ||||
| extern const char *mp_s_rmap; | ||||
|  | ||||
| #ifdef __cplusplus | ||||
|    } | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
| /* $Source: /cvs/libtom/libtommath/tommath.h,v $ */ | ||||
| /* $Revision: 1.8 $ */ | ||||
| /* $Date: 2006/03/31 14:18:44 $ */ | ||||
		Reference in New Issue
	
	Block a user
	 Love Hornquist Astrand
					Love Hornquist Astrand