This commit is contained in:
Love Hornquist Astrand
2010-07-01 10:51:29 -07:00
parent 5ca101c63e
commit 1a625c0908
201 changed files with 57213 additions and 0 deletions

View File

@@ -0,0 +1,2 @@
256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979

View File

@@ -0,0 +1,84 @@
/* Makes safe primes of a 2k nature */
#include <tommath.h>
#include <time.h>
int sizes[] = {256, 512, 768, 1024, 1536, 2048, 3072, 4096};
int main(void)
{
char buf[2000];
int x, y;
mp_int q, p;
FILE *out;
clock_t t1;
mp_digit z;
mp_init_multi(&q, &p, NULL);
out = fopen("2kprime.1", "w");
for (x = 0; x < (int)(sizeof(sizes) / sizeof(sizes[0])); x++) {
top:
mp_2expt(&q, sizes[x]);
mp_add_d(&q, 3, &q);
z = -3;
t1 = clock();
for(;;) {
mp_sub_d(&q, 4, &q);
z += 4;
if (z > MP_MASK) {
printf("No primes of size %d found\n", sizes[x]);
break;
}
if (clock() - t1 > CLOCKS_PER_SEC) {
printf("."); fflush(stdout);
// sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC);
t1 = clock();
}
/* quick test on q */
mp_prime_is_prime(&q, 1, &y);
if (y == 0) {
continue;
}
/* find (q-1)/2 */
mp_sub_d(&q, 1, &p);
mp_div_2(&p, &p);
mp_prime_is_prime(&p, 3, &y);
if (y == 0) {
continue;
}
/* test on q */
mp_prime_is_prime(&q, 3, &y);
if (y == 0) {
continue;
}
break;
}
if (y == 0) {
++sizes[x];
goto top;
}
mp_toradix(&q, buf, 10);
printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf); fflush(out);
}
return 0;
}
/* $Source: /cvs/libtom/libtommath/etc/2kprime.c,v $ */
/* $Revision: 1.2 $ */
/* $Date: 2005/05/05 14:38:47 $ */

View File

@@ -0,0 +1,64 @@
/* Makes safe primes of a DR nature */
#include <tommath.h>
int sizes[] = { 1+256/DIGIT_BIT, 1+512/DIGIT_BIT, 1+768/DIGIT_BIT, 1+1024/DIGIT_BIT, 1+2048/DIGIT_BIT, 1+4096/DIGIT_BIT };
int main(void)
{
int res, x, y;
char buf[4096];
FILE *out;
mp_int a, b;
mp_init(&a);
mp_init(&b);
out = fopen("drprimes.txt", "w");
for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
top:
printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
mp_grow(&a, sizes[x]);
mp_zero(&a);
for (y = 1; y < sizes[x]; y++) {
a.dp[y] = MP_MASK;
}
/* make a DR modulus */
a.dp[0] = -1;
a.used = sizes[x];
/* now loop */
res = 0;
for (;;) {
a.dp[0] += 4;
if (a.dp[0] >= MP_MASK) break;
mp_prime_is_prime(&a, 1, &res);
if (res == 0) continue;
printf("."); fflush(stdout);
mp_sub_d(&a, 1, &b);
mp_div_2(&b, &b);
mp_prime_is_prime(&b, 3, &res);
if (res == 0) continue;
mp_prime_is_prime(&a, 3, &res);
if (res == 1) break;
}
if (res != 1) {
printf("Error not DR modulus\n"); sizes[x] += 1; goto top;
} else {
mp_toradix(&a, buf, 10);
printf("\n\np == %s\n\n", buf);
fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf); fflush(out);
}
}
fclose(out);
mp_clear(&a);
mp_clear(&b);
return 0;
}
/* $Source: /cvs/libtom/libtommath/etc/drprime.c,v $ */
/* $Revision: 1.2 $ */
/* $Date: 2005/05/05 14:38:47 $ */

View File

@@ -0,0 +1,25 @@
DR safe primes for 28-bit digits.
224-bit prime:
p == 26959946667150639794667015087019630673637144422540572481103341844143
532-bit prime:
p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
784-bit prime:
p == 101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039
1036-bit prime:
p == 736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821798437127
1540-bit prime:
p == 38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783
2072-bit prime:
p == 542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147
3080-bit prime:
p == 1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503
4116-bit prime:
p == 1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679

View File

@@ -0,0 +1,9 @@
300-bit prime:
p == 2037035976334486086268445688409378161051468393665936250636140449354381298610415201576637819
540-bit prime:
p == 3599131035634557106248430806148785487095757694641533306480604458089470064537190296255232548883112685719936728506816716098566612844395439751206810991770626477344739
780-bit prime:
p == 6359114106063703798370219984742410466332205126109989319225557147754704702203399726411277962562135973685197744935448875852478791860694279747355800678568677946181447581781401213133886609947027230004277244697462656003655947791725966271167

View File

@@ -0,0 +1,50 @@
CFLAGS += -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops -I../
# default lib name (requires install with root)
# LIBNAME=-ltommath
# libname when you can't install the lib with install
LIBNAME=../libtommath.a
#provable primes
pprime: pprime.o
$(CC) pprime.o $(LIBNAME) -o pprime
# portable [well requires clock()] tuning app
tune: tune.o
$(CC) tune.o $(LIBNAME) -o tune
# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
tune86: tune.c
nasm -f coff timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
# for cygwin
tune86c: tune.c
nasm -f gnuwin32 timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
#make tune86 for linux or any ELF format
tune86l: tune.c
nasm -f elf -DUSE_ELF timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
# spits out mersenne primes
mersenne: mersenne.o
$(CC) mersenne.o $(LIBNAME) -o mersenne
# fines DR safe primes for the given config
drprime: drprime.o
$(CC) drprime.o $(LIBNAME) -o drprime
# fines 2k safe primes for the given config
2kprime: 2kprime.o
$(CC) 2kprime.o $(LIBNAME) -o 2kprime
mont: mont.o
$(CC) mont.o $(LIBNAME) -o mont
clean:
rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat \
*.da *.dyn *.dpi *~

View File

@@ -0,0 +1,67 @@
CC = icc
CFLAGS += -I../
# optimize for SPEED
#
# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
# -ax? specifies make code specifically for ? but compatible with IA-32
# -x? specifies compile solely for ? [not specifically IA-32 compatible]
#
# where ? is
# K - PIII
# W - first P4 [Williamette]
# N - P4 Northwood
# P - P4 Prescott
# B - Blend of P4 and PM [mobile]
#
# Default to just generic max opts
CFLAGS += -O3 -xP -ip
# default lib name (requires install with root)
# LIBNAME=-ltommath
# libname when you can't install the lib with install
LIBNAME=../libtommath.a
#provable primes
pprime: pprime.o
$(CC) pprime.o $(LIBNAME) -o pprime
# portable [well requires clock()] tuning app
tune: tune.o
$(CC) tune.o $(LIBNAME) -o tune
# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
tune86: tune.c
nasm -f coff timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
# for cygwin
tune86c: tune.c
nasm -f gnuwin32 timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
#make tune86 for linux or any ELF format
tune86l: tune.c
nasm -f elf -DUSE_ELF timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
# spits out mersenne primes
mersenne: mersenne.o
$(CC) mersenne.o $(LIBNAME) -o mersenne
# fines DR safe primes for the given config
drprime: drprime.o
$(CC) drprime.o $(LIBNAME) -o drprime
# fines 2k safe primes for the given config
2kprime: 2kprime.o
$(CC) 2kprime.o $(LIBNAME) -o 2kprime
mont: mont.o
$(CC) mont.o $(LIBNAME) -o mont
clean:
rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat *.il

View File

@@ -0,0 +1,23 @@
#MSVC Makefile
#
#Tom St Denis
CFLAGS = /I../ /Ox /DWIN32 /W3
pprime: pprime.obj
cl pprime.obj ../tommath.lib
mersenne: mersenne.obj
cl mersenne.obj ../tommath.lib
tune: tune.obj
cl tune.obj ../tommath.lib
mont: mont.obj
cl mont.obj ../tommath.lib
drprime: drprime.obj
cl drprime.obj ../tommath.lib
2kprime: 2kprime.obj
cl 2kprime.obj ../tommath.lib

View File

@@ -0,0 +1,144 @@
/* Finds Mersenne primes using the Lucas-Lehmer test
*
* Tom St Denis, tomstdenis@gmail.com
*/
#include <time.h>
#include <tommath.h>
int
is_mersenne (long s, int *pp)
{
mp_int n, u;
int res, k;
*pp = 0;
if ((res = mp_init (&n)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&u)) != MP_OKAY) {
goto LBL_N;
}
/* n = 2^s - 1 */
if ((res = mp_2expt(&n, s)) != MP_OKAY) {
goto LBL_MU;
}
if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
goto LBL_MU;
}
/* set u=4 */
mp_set (&u, 4);
/* for k=1 to s-2 do */
for (k = 1; k <= s - 2; k++) {
/* u = u^2 - 2 mod n */
if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
goto LBL_MU;
}
if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
goto LBL_MU;
}
/* make sure u is positive */
while (u.sign == MP_NEG) {
if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
goto LBL_MU;
}
}
/* reduce */
if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
goto LBL_MU;
}
}
/* if u == 0 then its prime */
if (mp_iszero (&u) == 1) {
mp_prime_is_prime(&n, 8, pp);
if (*pp != 1) printf("FAILURE\n");
}
res = MP_OKAY;
LBL_MU:mp_clear (&u);
LBL_N:mp_clear (&n);
return res;
}
/* square root of a long < 65536 */
long
i_sqrt (long x)
{
long x1, x2;
x2 = 16;
do {
x1 = x2;
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
} while (x1 != x2);
if (x1 * x1 > x) {
--x1;
}
return x1;
}
/* is the long prime by brute force */
int
isprime (long k)
{
long y, z;
y = i_sqrt (k);
for (z = 2; z <= y; z++) {
if ((k % z) == 0)
return 0;
}
return 1;
}
int
main (void)
{
int pp;
long k;
clock_t tt;
k = 3;
for (;;) {
/* start time */
tt = clock ();
/* test if 2^k - 1 is prime */
if (is_mersenne (k, &pp) != MP_OKAY) {
printf ("Whoa error\n");
return -1;
}
if (pp == 1) {
/* count time */
tt = clock () - tt;
/* display if prime */
printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
}
/* goto next odd exponent */
k += 2;
/* but make sure its prime */
while (isprime (k) == 0) {
k += 2;
}
}
return 0;
}
/* $Source: /cvs/libtom/libtommath/etc/mersenne.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2006/03/31 14:18:47 $ */

View File

@@ -0,0 +1,50 @@
/* tests the montgomery routines */
#include <tommath.h>
int main(void)
{
mp_int modulus, R, p, pp;
mp_digit mp;
long x, y;
srand(time(NULL));
mp_init_multi(&modulus, &R, &p, &pp, NULL);
/* loop through various sizes */
for (x = 4; x < 256; x++) {
printf("DIGITS == %3ld...", x); fflush(stdout);
/* make up the odd modulus */
mp_rand(&modulus, x);
modulus.dp[0] |= 1;
/* now find the R value */
mp_montgomery_calc_normalization(&R, &modulus);
mp_montgomery_setup(&modulus, &mp);
/* now run through a bunch tests */
for (y = 0; y < 1000; y++) {
mp_rand(&p, x/2); /* p = random */
mp_mul(&p, &R, &pp); /* pp = R * p */
mp_montgomery_reduce(&pp, &modulus, mp);
/* should be equal to p */
if (mp_cmp(&pp, &p) != MP_EQ) {
printf("FAILURE!\n");
exit(-1);
}
}
printf("PASSED\n");
}
return 0;
}
/* $Source: /cvs/libtom/libtommath/etc/mont.c,v $ */
/* $Revision: 1.2 $ */
/* $Date: 2005/05/05 14:38:47 $ */

View File

@@ -0,0 +1,400 @@
/* Generates provable primes
*
* See http://gmail.com:8080/papers/pp.pdf for more info.
*
* Tom St Denis, tomstdenis@gmail.com, http://tom.gmail.com
*/
#include <time.h>
#include "tommath.h"
int n_prime;
FILE *primes;
/* fast square root */
static mp_digit
i_sqrt (mp_word x)
{
mp_word x1, x2;
x2 = x;
do {
x1 = x2;
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
} while (x1 != x2);
if (x1 * x1 > x) {
--x1;
}
return x1;
}
/* generates a prime digit */
static void gen_prime (void)
{
mp_digit r, x, y, next;
FILE *out;
out = fopen("pprime.dat", "wb");
/* write first set of primes */
r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
/* get square root, since if 'r' is composite its factors must be < than this */
y = i_sqrt (r);
next = (y + 1) * (y + 1);
for (;;) {
do {
r += 2; /* next candidate */
r &= MP_MASK;
if (r < 31) break;
/* update sqrt ? */
if (next <= r) {
++y;
next = (y + 1) * (y + 1);
}
/* loop if divisible by 3,5,7,11,13,17,19,23,29 */
if ((r % 3) == 0) {
x = 0;
continue;
}
if ((r % 5) == 0) {
x = 0;
continue;
}
if ((r % 7) == 0) {
x = 0;
continue;
}
if ((r % 11) == 0) {
x = 0;
continue;
}
if ((r % 13) == 0) {
x = 0;
continue;
}
if ((r % 17) == 0) {
x = 0;
continue;
}
if ((r % 19) == 0) {
x = 0;
continue;
}
if ((r % 23) == 0) {
x = 0;
continue;
}
if ((r % 29) == 0) {
x = 0;
continue;
}
/* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
for (x = 30; x <= y; x += 30) {
if ((r % (x + 1)) == 0) {
x = 0;
break;
}
if ((r % (x + 7)) == 0) {
x = 0;
break;
}
if ((r % (x + 11)) == 0) {
x = 0;
break;
}
if ((r % (x + 13)) == 0) {
x = 0;
break;
}
if ((r % (x + 17)) == 0) {
x = 0;
break;
}
if ((r % (x + 19)) == 0) {
x = 0;
break;
}
if ((r % (x + 23)) == 0) {
x = 0;
break;
}
if ((r % (x + 29)) == 0) {
x = 0;
break;
}
}
} while (x == 0);
if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
if (r < 31) break;
}
fclose(out);
}
void load_tab(void)
{
primes = fopen("pprime.dat", "rb");
if (primes == NULL) {
gen_prime();
primes = fopen("pprime.dat", "rb");
}
fseek(primes, 0, SEEK_END);
n_prime = ftell(primes) / sizeof(mp_digit);
}
mp_digit prime_digit(void)
{
int n;
mp_digit d;
n = abs(rand()) % n_prime;
fseek(primes, n * sizeof(mp_digit), SEEK_SET);
fread(&d, 1, sizeof(mp_digit), primes);
return d;
}
/* makes a prime of at least k bits */
int
pprime (int k, int li, mp_int * p, mp_int * q)
{
mp_int a, b, c, n, x, y, z, v;
int res, ii;
static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
/* single digit ? */
if (k <= (int) DIGIT_BIT) {
mp_set (p, prime_digit ());
return MP_OKAY;
}
if ((res = mp_init (&c)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&v)) != MP_OKAY) {
goto LBL_C;
}
/* product of first 50 primes */
if ((res =
mp_read_radix (&v,
"19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
10)) != MP_OKAY) {
goto LBL_V;
}
if ((res = mp_init (&a)) != MP_OKAY) {
goto LBL_V;
}
/* set the prime */
mp_set (&a, prime_digit ());
if ((res = mp_init (&b)) != MP_OKAY) {
goto LBL_A;
}
if ((res = mp_init (&n)) != MP_OKAY) {
goto LBL_B;
}
if ((res = mp_init (&x)) != MP_OKAY) {
goto LBL_N;
}
if ((res = mp_init (&y)) != MP_OKAY) {
goto LBL_X;
}
if ((res = mp_init (&z)) != MP_OKAY) {
goto LBL_Y;
}
/* now loop making the single digit */
while (mp_count_bits (&a) < k) {
fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
fflush (stderr);
top:
mp_set (&b, prime_digit ());
/* now compute z = a * b * 2 */
if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */
goto LBL_Z;
}
if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */
goto LBL_Z;
}
if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
goto LBL_Z;
}
/* n = z + 1 */
if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
goto LBL_Z;
}
/* check (n, v) == 1 */
if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
goto LBL_Z;
}
if (mp_cmp_d (&y, 1) != MP_EQ)
goto top;
/* now try base x=bases[ii] */
for (ii = 0; ii < li; ii++) {
mp_set (&x, bases[ii]);
/* compute x^a mod n */
if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
goto LBL_Z;
}
/* if y == 1 loop */
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* now x^2a mod n */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
goto LBL_Z;
}
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* compute x^b mod n */
if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
goto LBL_Z;
}
/* if y == 1 loop */
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* now x^2b mod n */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
goto LBL_Z;
}
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* compute x^c mod n == x^ab mod n */
if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
goto LBL_Z;
}
/* if y == 1 loop */
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* now compute (x^c mod n)^2 */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
goto LBL_Z;
}
/* y should be 1 */
if (mp_cmp_d (&y, 1) != MP_EQ)
continue;
break;
}
/* no bases worked? */
if (ii == li)
goto top;
{
char buf[4096];
mp_toradix(&n, buf, 10);
printf("Certificate of primality for:\n%s\n\n", buf);
mp_toradix(&a, buf, 10);
printf("A == \n%s\n\n", buf);
mp_toradix(&b, buf, 10);
printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
printf("----------------------------------------------------------------\n");
}
/* a = n */
mp_copy (&n, &a);
}
/* get q to be the order of the large prime subgroup */
mp_sub_d (&n, 1, q);
mp_div_2 (q, q);
mp_div (q, &b, q, NULL);
mp_exch (&n, p);
res = MP_OKAY;
LBL_Z:mp_clear (&z);
LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_N:mp_clear (&n);
LBL_B:mp_clear (&b);
LBL_A:mp_clear (&a);
LBL_V:mp_clear (&v);
LBL_C:mp_clear (&c);
return res;
}
int
main (void)
{
mp_int p, q;
char buf[4096];
int k, li;
clock_t t1;
srand (time (NULL));
load_tab();
printf ("Enter # of bits: \n");
fgets (buf, sizeof (buf), stdin);
sscanf (buf, "%d", &k);
printf ("Enter number of bases to try (1 to 8):\n");
fgets (buf, sizeof (buf), stdin);
sscanf (buf, "%d", &li);
mp_init (&p);
mp_init (&q);
t1 = clock ();
pprime (k, li, &p, &q);
t1 = clock () - t1;
printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));
mp_toradix (&p, buf, 10);
printf ("P == %s\n", buf);
mp_toradix (&q, buf, 10);
printf ("Q == %s\n", buf);
return 0;
}
/* $Source: /cvs/libtom/libtommath/etc/pprime.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2006/03/31 14:18:47 $ */

View File

@@ -0,0 +1,414 @@
Enter # of bits:
Enter number of bases to try (1 to 8):
Certificate of primality for:
36360080703173363
A ==
89963569
B ==
202082249
G == 2
----------------------------------------------------------------
Certificate of primality for:
4851595597739856136987139
A ==
36360080703173363
B ==
66715963
G == 2
----------------------------------------------------------------
Certificate of primality for:
19550639734462621430325731591027
A ==
4851595597739856136987139
B ==
2014867
G == 2
----------------------------------------------------------------
Certificate of primality for:
10409036141344317165691858509923818734539
A ==
19550639734462621430325731591027
B ==
266207047
G == 2
----------------------------------------------------------------
Certificate of primality for:
1049829549988285012736475602118094726647504414203
A ==
10409036141344317165691858509923818734539
B ==
50428759
G == 2
----------------------------------------------------------------
Certificate of primality for:
77194737385528288387712399596835459931920358844586615003
A ==
1049829549988285012736475602118094726647504414203
B ==
36765367
G == 2
----------------------------------------------------------------
Certificate of primality for:
35663756695365208574443215955488689578374232732893628896541201763
A ==
77194737385528288387712399596835459931920358844586615003
B ==
230998627
G == 2
----------------------------------------------------------------
Certificate of primality for:
16711831463502165169495622246023119698415848120292671294127567620396469803
A ==
35663756695365208574443215955488689578374232732893628896541201763
B ==
234297127
G == 2
----------------------------------------------------------------
Certificate of primality for:
6163534781560285962890718925972249753147470953579266394395432475622345597103528739
A ==
16711831463502165169495622246023119698415848120292671294127567620396469803
B ==
184406323
G == 2
----------------------------------------------------------------
Certificate of primality for:
814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
A ==
6163534781560285962890718925972249753147470953579266394395432475622345597103528739
B ==
66054487
G == 2
----------------------------------------------------------------
Certificate of primality for:
176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
A ==
814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
B ==
108362239
G == 2
----------------------------------------------------------------
Certificate of primality for:
44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
A ==
176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
B ==
127286707
G == 2
----------------------------------------------------------------
Certificate of primality for:
20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
A ==
44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
B ==
229284691
G == 2
----------------------------------------------------------------
Certificate of primality for:
6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
A ==
20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
B ==
152800771
G == 2
----------------------------------------------------------------
Certificate of primality for:
3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
A ==
6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
B ==
246595759
G == 2
----------------------------------------------------------------
Certificate of primality for:
26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
A ==
3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
B ==
4252063
G == 2
----------------------------------------------------------------
Certificate of primality for:
11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
A ==
26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
B ==
210605419
G == 2
----------------------------------------------------------------
Certificate of primality for:
1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
A ==
11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
B ==
74170111
G == 2
----------------------------------------------------------------
Certificate of primality for:
857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
A ==
1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
B ==
260016763
G == 2
----------------------------------------------------------------
Certificate of primality for:
175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
A ==
857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
B ==
102563707
G == 2
----------------------------------------------------------------
Certificate of primality for:
48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
A ==
175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
B ==
137747527
G == 2
----------------------------------------------------------------
Certificate of primality for:
13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
A ==
48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
B ==
135672847
G == 2
----------------------------------------------------------------
Certificate of primality for:
6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
A ==
13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
B ==
241523587
G == 2
----------------------------------------------------------------
Certificate of primality for:
3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
A ==
6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
B ==
248388667
G == 2
----------------------------------------------------------------
Certificate of primality for:
390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
A ==
3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
B ==
61849651
G == 2
----------------------------------------------------------------
Certificate of primality for:
48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
A ==
390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
B ==
62201707
G == 2
----------------------------------------------------------------
Certificate of primality for:
25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
A ==
48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
B ==
264832231
G == 2
----------------------------------------------------------------
Certificate of primality for:
2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
A ==
25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
B ==
54494047
G == 2
----------------------------------------------------------------
Certificate of primality for:
738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
A ==
2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
B ==
131594179
G == 2
----------------------------------------------------------------
Certificate of primality for:
392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
A ==
738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
B ==
266107603
G == 2
----------------------------------------------------------------
Certificate of primality for:
168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
A ==
392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
B ==
214408111
G == 2
----------------------------------------------------------------
Certificate of primality for:
14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
A ==
168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
B ==
44122723
G == 2
----------------------------------------------------------------
Certificate of primality for:
1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
A ==
14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
B ==
40808563
G == 2
----------------------------------------------------------------
Certificate of primality for:
186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
A ==
1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
B ==
77035759
G == 2
----------------------------------------------------------------
Certificate of primality for:
83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
A ==
186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
B ==
222383587
G == 2
----------------------------------------------------------------
Certificate of primality for:
3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
A ==
83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
B ==
23407687
G == 2
----------------------------------------------------------------
Certificate of primality for:
1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
A ==
3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
B ==
213701827
G == 2
----------------------------------------------------------------
Took 33057 ticks, 1048 bits
P == 1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
Q == 3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443

View File

@@ -0,0 +1,205 @@
Enter # of bits:
Enter number of bases to try (1 to 8):
Certificate of primality for:
85933926807634727
A ==
253758023
B ==
169322581
G == 5
----------------------------------------------------------------
Certificate of primality for:
23930198825086241462113799
A ==
85933926807634727
B ==
139236037
G == 11
----------------------------------------------------------------
Certificate of primality for:
6401844647261612602378676572510019
A ==
23930198825086241462113799
B ==
133760791
G == 2
----------------------------------------------------------------
Certificate of primality for:
269731366027728777712034888684015329354259
A ==
6401844647261612602378676572510019
B ==
21066691
G == 2
----------------------------------------------------------------
Certificate of primality for:
37942338209025571690075025099189467992329684223707
A ==
269731366027728777712034888684015329354259
B ==
70333567
G == 2
----------------------------------------------------------------
Certificate of primality for:
15306904714258982484473490774101705363308327436988160248323
A ==
37942338209025571690075025099189467992329684223707
B ==
201712723
G == 2
----------------------------------------------------------------
Certificate of primality for:
1616744757018513392810355191503853040357155275733333124624513530099
A ==
15306904714258982484473490774101705363308327436988160248323
B ==
52810963
G == 2
----------------------------------------------------------------
Certificate of primality for:
464222094814208047161771036072622485188658077940154689939306386289983787983
A ==
1616744757018513392810355191503853040357155275733333124624513530099
B ==
143566909
G == 5
----------------------------------------------------------------
Certificate of primality for:
187429931674053784626487560729643601208757374994177258429930699354770049369025096447
A ==
464222094814208047161771036072622485188658077940154689939306386289983787983
B ==
201875281
G == 5
----------------------------------------------------------------
Certificate of primality for:
100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
A ==
187429931674053784626487560729643601208757374994177258429930699354770049369025096447
B ==
268311523
G == 2
----------------------------------------------------------------
Certificate of primality for:
1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
A ==
100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
B ==
5834287
G == 2
----------------------------------------------------------------
Certificate of primality for:
191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
A ==
1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
B ==
81567097
G == 5
----------------------------------------------------------------
Certificate of primality for:
57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
A ==
191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
B ==
151095433
G == 7
----------------------------------------------------------------
Certificate of primality for:
13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
A ==
57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
B ==
119178679
G == 2
----------------------------------------------------------------
Certificate of primality for:
7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
A ==
13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
B ==
256552363
G == 2
----------------------------------------------------------------
Certificate of primality for:
1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
A ==
7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
B ==
86720989
G == 5
----------------------------------------------------------------
Certificate of primality for:
446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
A ==
1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
B ==
182015287
G == 2
----------------------------------------------------------------
Certificate of primality for:
5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
A ==
446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
B ==
5920567
G == 2
----------------------------------------------------------------
Took 3454 ticks, 521 bits
P == 5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
Q == 446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763

View File

@@ -0,0 +1,37 @@
; x86 timer in NASM
;
; Tom St Denis, tomstdenis@iahu.ca
[bits 32]
[section .data]
time dd 0, 0
[section .text]
%ifdef USE_ELF
[global t_start]
t_start:
%else
[global _t_start]
_t_start:
%endif
push edx
push eax
rdtsc
mov [time+0],edx
mov [time+4],eax
pop eax
pop edx
ret
%ifdef USE_ELF
[global t_read]
t_read:
%else
[global _t_read]
_t_read:
%endif
rdtsc
sub eax,[time+4]
sbb edx,[time+0]
ret

View File

@@ -0,0 +1,142 @@
/* Tune the Karatsuba parameters
*
* Tom St Denis, tomstdenis@gmail.com
*/
#include <tommath.h>
#include <time.h>
/* how many times todo each size mult. Depends on your computer. For slow computers
* this can be low like 5 or 10. For fast [re: Athlon] should be 25 - 50 or so
*/
#define TIMES (1UL<<14UL)
/* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC (void)
{
#if defined __GNUC__
#if defined(__i386__) || defined(__x86_64__)
unsigned long long a;
__asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
return a;
#else /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
while (__builtin_expect ((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
return result;
#endif
// Microsoft and Intel Windows compilers
#elif defined _M_IX86
__asm rdtsc
#elif defined _M_AMD64
return __rdtsc ();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg (3116);
#else
#error need rdtsc function for this build
#endif
}
#ifndef X86_TIMER
/* generic ISO C timer */
ulong64 LBL_T;
void t_start(void) { LBL_T = TIMFUNC(); }
ulong64 t_read(void) { return TIMFUNC() - LBL_T; }
#else
extern void t_start(void);
extern ulong64 t_read(void);
#endif
ulong64 time_mult(int size, int s)
{
unsigned long x;
mp_int a, b, c;
ulong64 t1;
mp_init (&a);
mp_init (&b);
mp_init (&c);
mp_rand (&a, size);
mp_rand (&b, size);
if (s == 1) {
KARATSUBA_MUL_CUTOFF = size;
} else {
KARATSUBA_MUL_CUTOFF = 100000;
}
t_start();
for (x = 0; x < TIMES; x++) {
mp_mul(&a,&b,&c);
}
t1 = t_read();
mp_clear (&a);
mp_clear (&b);
mp_clear (&c);
return t1;
}
ulong64 time_sqr(int size, int s)
{
unsigned long x;
mp_int a, b;
ulong64 t1;
mp_init (&a);
mp_init (&b);
mp_rand (&a, size);
if (s == 1) {
KARATSUBA_SQR_CUTOFF = size;
} else {
KARATSUBA_SQR_CUTOFF = 100000;
}
t_start();
for (x = 0; x < TIMES; x++) {
mp_sqr(&a,&b);
}
t1 = t_read();
mp_clear (&a);
mp_clear (&b);
return t1;
}
int
main (void)
{
ulong64 t1, t2;
int x, y;
for (x = 8; ; x += 2) {
t1 = time_mult(x, 0);
t2 = time_mult(x, 1);
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
if (t2 < t1) break;
}
y = x;
for (x = 8; ; x += 2) {
t1 = time_sqr(x, 0);
t2 = time_sqr(x, 1);
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
if (t2 < t1) break;
}
printf("KARATSUBA_MUL_CUTOFF = %d\n", y);
printf("KARATSUBA_SQR_CUTOFF = %d\n", x);
return 0;
}
/* $Source: /cvs/libtom/libtommath/etc/tune.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2006/03/31 14:18:47 $ */