ltm-0.41
This commit is contained in:
112
lib/hcrypto/libtommath/bn_mp_exptmod.c
Normal file
112
lib/hcrypto/libtommath/bn_mp_exptmod.c
Normal file
@@ -0,0 +1,112 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_EXPTMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
|
||||
/* this is a shell function that calls either the normal or Montgomery
|
||||
* exptmod functions. Originally the call to the montgomery code was
|
||||
* embedded in the normal function but that wasted alot of stack space
|
||||
* for nothing (since 99% of the time the Montgomery code would be called)
|
||||
*/
|
||||
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
{
|
||||
int dr;
|
||||
|
||||
/* modulus P must be positive */
|
||||
if (P->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if exponent X is negative we have to recurse */
|
||||
if (X->sign == MP_NEG) {
|
||||
#ifdef BN_MP_INVMOD_C
|
||||
mp_int tmpG, tmpX;
|
||||
int err;
|
||||
|
||||
/* first compute 1/G mod P */
|
||||
if ((err = mp_init(&tmpG)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
|
||||
mp_clear(&tmpG);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* now get |X| */
|
||||
if ((err = mp_init(&tmpX)) != MP_OKAY) {
|
||||
mp_clear(&tmpG);
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
|
||||
mp_clear_multi(&tmpG, &tmpX, NULL);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
|
||||
err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
||||
mp_clear_multi(&tmpG, &tmpX, NULL);
|
||||
return err;
|
||||
#else
|
||||
/* no invmod */
|
||||
return MP_VAL;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* modified diminished radix reduction */
|
||||
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
|
||||
if (mp_reduce_is_2k_l(P) == MP_YES) {
|
||||
return s_mp_exptmod(G, X, P, Y, 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef BN_MP_DR_IS_MODULUS_C
|
||||
/* is it a DR modulus? */
|
||||
dr = mp_dr_is_modulus(P);
|
||||
#else
|
||||
/* default to no */
|
||||
dr = 0;
|
||||
#endif
|
||||
|
||||
#ifdef BN_MP_REDUCE_IS_2K_C
|
||||
/* if not, is it a unrestricted DR modulus? */
|
||||
if (dr == 0) {
|
||||
dr = mp_reduce_is_2k(P) << 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* if the modulus is odd or dr != 0 use the montgomery method */
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
if (mp_isodd (P) == 1 || dr != 0) {
|
||||
return mp_exptmod_fast (G, X, P, Y, dr);
|
||||
} else {
|
||||
#endif
|
||||
#ifdef BN_S_MP_EXPTMOD_C
|
||||
/* otherwise use the generic Barrett reduction technique */
|
||||
return s_mp_exptmod (G, X, P, Y, 0);
|
||||
#else
|
||||
/* no exptmod for evens */
|
||||
return MP_VAL;
|
||||
#endif
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_exptmod.c,v $ */
|
||||
/* $Revision: 1.5 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
Reference in New Issue
Block a user