x
git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@13153 ec53bebd-3082-4978-b11e-865c3cabbd6b
This commit is contained in:
		
							
								
								
									
										807
									
								
								doc/standardisation/draft-ietf-cat-kerberos-pk-init-17.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										807
									
								
								doc/standardisation/draft-ietf-cat-kerberos-pk-init-17.txt
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,807 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					INTERNET-DRAFT                                                Brian Tung
 | 
				
			||||||
 | 
					draft-ietf-cat-kerberos-pk-init-17.txt                   Clifford Neuman
 | 
				
			||||||
 | 
					Updates: RFC 1510bis                                             USC/ISI
 | 
				
			||||||
 | 
					expires May 31, 2004                                         Matthew Hur
 | 
				
			||||||
 | 
					                                                           Ari Medvinsky
 | 
				
			||||||
 | 
					                                                   Microsoft Corporation
 | 
				
			||||||
 | 
					                                                         Sasha Medvinsky
 | 
				
			||||||
 | 
					                                                          Motorola, Inc.
 | 
				
			||||||
 | 
					                                                               John Wray
 | 
				
			||||||
 | 
					                                                   Iris Associates, Inc.
 | 
				
			||||||
 | 
					                                                        Jonathan Trostle
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Public Key Cryptography for Initial Authentication in Kerberos
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					0.  Status Of This Memo
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This document is an Internet-Draft and is in full conformance with
 | 
				
			||||||
 | 
					all provision of Section 10 of RFC 2026.  Internet-Drafts are
 | 
				
			||||||
 | 
					working documents of the Internet Engineering Task Force (IETF), its
 | 
				
			||||||
 | 
					areas, and its working groups.  Note that other groups may also
 | 
				
			||||||
 | 
					distribute working documents as Internet-Drafts.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Internet-Drafts are draft documents valid for a maximum of six
 | 
				
			||||||
 | 
					months and may be updated, replaced, or obsoleted by other documents
 | 
				
			||||||
 | 
					at any time.  It is inappropriate to use Internet-Drafts as
 | 
				
			||||||
 | 
					reference material or to cite them other than as "work in progress."
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The list of current Internet-Drafts can be accessed at
 | 
				
			||||||
 | 
					http://www.ietf.org/ietf/1id-abstracts.txt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The list of Internet-Draft Shadow Directories can be accessed at
 | 
				
			||||||
 | 
					http://www.ietf.org/shadow.html
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The distribution of this memo is unlimited.  It is filed as
 | 
				
			||||||
 | 
					draft-ietf-cat-kerberos-pk-init-17.txt and expires May 31, 2004.
 | 
				
			||||||
 | 
					Please send comments to the authors.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1.  Abstract
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This draft describes protocol extensions (hereafter called PKINIT)
 | 
				
			||||||
 | 
					to the Kerberos protocol specification (RFC 1510bis [1]).  These
 | 
				
			||||||
 | 
					extensions provide a method for integrating public key cryptography
 | 
				
			||||||
 | 
					into the initial authentication exchange, by passing cryptographic
 | 
				
			||||||
 | 
					certificates and associated authenticators in preauthentication data
 | 
				
			||||||
 | 
					fields.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					2.  Introduction
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					A client typically authenticates itself to a service in Kerberos
 | 
				
			||||||
 | 
					using three distinct though related exchanges.  First, the client
 | 
				
			||||||
 | 
					requests a ticket-granting ticket (TGT) from the Kerberos
 | 
				
			||||||
 | 
					authentication server (AS).  Then, it uses the TGT to request a
 | 
				
			||||||
 | 
					service ticket from the Kerberos ticket-granting server (TGS).
 | 
				
			||||||
 | 
					Usually, the AS and TGS are integrated in a single device known as
 | 
				
			||||||
 | 
					a Kerberos Key Distribution Center, or KDC.  (In this draft, we will
 | 
				
			||||||
 | 
					refer to both the AS and the TGS as the KDC.) Finally, the client
 | 
				
			||||||
 | 
					uses the service ticket to authenticate itself to the service.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The advantage afforded by the TGT is that the user need only
 | 
				
			||||||
 | 
					explicitly request a ticket and expose his credentials once.  The
 | 
				
			||||||
 | 
					TGT and its associated session key can then be used for any
 | 
				
			||||||
 | 
					subsequent requests.  One implication of this is that all further
 | 
				
			||||||
 | 
					authentication is independent of the method by which the initial
 | 
				
			||||||
 | 
					authentication was performed.  Consequently, initial authentication
 | 
				
			||||||
 | 
					provides a convenient place to integrate public-key cryptography
 | 
				
			||||||
 | 
					into Kerberos authentication.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					As defined, Kerberos authentication exchanges use symmetric-key
 | 
				
			||||||
 | 
					cryptography, in part for performance.  (Symmetric-key cryptography
 | 
				
			||||||
 | 
					is typically 10-100 times faster than public-key cryptography,
 | 
				
			||||||
 | 
					depending on the public-key operations. [c])  One cost of using
 | 
				
			||||||
 | 
					symmetric-key cryptography is that the keys must be shared, so that
 | 
				
			||||||
 | 
					before a user can authentication himself, he must already be
 | 
				
			||||||
 | 
					registered with the KDC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Conversely, public-key cryptography--in conjunction with an
 | 
				
			||||||
 | 
					established certification infrastructure--permits authentication
 | 
				
			||||||
 | 
					without prior registration.  Adding it to Kerberos allows the
 | 
				
			||||||
 | 
					widespread use of Kerberized applications by users without requiring
 | 
				
			||||||
 | 
					them to register first--a requirement that has no inherent security
 | 
				
			||||||
 | 
					benefit.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					As noted above, a convenient and efficient place to introduce
 | 
				
			||||||
 | 
					public-key cryptography into Kerberos is in the initial
 | 
				
			||||||
 | 
					authentication exchange.  This document describes the methods and
 | 
				
			||||||
 | 
					data formats for integrating public-key cryptography into Kerberos
 | 
				
			||||||
 | 
					initial authentication.  Another document (PKCROSS) describes a
 | 
				
			||||||
 | 
					similar protocol for Kerberos cross-realm authentication.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.  Extensions
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This section describes extensions to RFC 1510bis for supporting the
 | 
				
			||||||
 | 
					use of public-key cryptography in the initial request for a ticket
 | 
				
			||||||
 | 
					granting ticket (TGT).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Briefly, the following changes to RFC 1510bis are proposed:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    1.  If public-key authentication is indicated, the client sends
 | 
				
			||||||
 | 
					        the user's public-key data and an authenticator in a
 | 
				
			||||||
 | 
					        preauthentication field accompanying the usual request.
 | 
				
			||||||
 | 
					        This authenticator is signed by the user's private
 | 
				
			||||||
 | 
					        signature key.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    2.  The KDC verifies the client's request against its own
 | 
				
			||||||
 | 
					        policy and certification authorities.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    3.  If the request passes the verification tests, the KDC
 | 
				
			||||||
 | 
					        replies as usual, but the reply is encrypted using either:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        a.  a randomly generated key, signed using the KDC's
 | 
				
			||||||
 | 
					            signature key and encrypted using the user's encryption
 | 
				
			||||||
 | 
					            key; or
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        b.  a key generated through a Diffie-Hellman exchange with
 | 
				
			||||||
 | 
					            the client, signed using the KDC's signature key.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        Any key data required by the client to obtain the encryption
 | 
				
			||||||
 | 
					        key is returned in a preauthentication field accompanying
 | 
				
			||||||
 | 
					        the usual reply.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    4.  The client obtains the encryption key, decrypts the reply,
 | 
				
			||||||
 | 
					        and then proceeds as usual.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Section 3.1 of this document defines the necessary message formats.
 | 
				
			||||||
 | 
					Section 3.2 describes their syntax and use in greater detail.
 | 
				
			||||||
 | 
					Implementation of all specified formats and uses in these sections
 | 
				
			||||||
 | 
					is REQUIRED for compliance with PKINIT.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.1.  Definitions
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.1.1.  Required Algorithms
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[What is the current list of required algorithm? --brian]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.1.2.  Defined Message and Encryption Types
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT makes use of the following new preauthentication types:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    PA-PK-AS-REQ                             TBD
 | 
				
			||||||
 | 
					    PA-PK-AS-REP                             TBD
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT introduces the following new error types:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    KDC_ERR_CLIENT_NOT_TRUSTED                62
 | 
				
			||||||
 | 
					    KDC_ERR_KDC_NOT_TRUSTED                   63
 | 
				
			||||||
 | 
					    KDC_ERR_INVALID_SIG                       64
 | 
				
			||||||
 | 
					    KDC_ERR_KEY_TOO_WEAK                      65
 | 
				
			||||||
 | 
					    KDC_ERR_CERTIFICATE_MISMATCH              66
 | 
				
			||||||
 | 
					    KDC_ERR_CANT_VERIFY_CERTIFICATE           70
 | 
				
			||||||
 | 
					    KDC_ERR_INVALID_CERTIFICATE               71
 | 
				
			||||||
 | 
					    KDC_ERR_REVOKED_CERTIFICATE               72
 | 
				
			||||||
 | 
					    KDC_ERR_REVOCATION_STATUS_UNKNOWN         73
 | 
				
			||||||
 | 
					    KDC_ERR_CLIENT_NAME_MISMATCH              75
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT uses the following typed data types for errors:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    TD-DH-PARAMETERS                         102
 | 
				
			||||||
 | 
					    TD-TRUSTED-CERTIFIERS                    104
 | 
				
			||||||
 | 
					    TD-CERTIFICATE-INDEX                     105
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT defines the following encryption types, for use in the AS-REQ
 | 
				
			||||||
 | 
					message (to indicate acceptance of the corresponding encryption OIDs
 | 
				
			||||||
 | 
					in PKINIT):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    dsaWithSHA1-CmsOID                         9
 | 
				
			||||||
 | 
					    md5WithRSAEncryption-CmsOID               10
 | 
				
			||||||
 | 
					    sha1WithRSAEncryption-CmsOID              11
 | 
				
			||||||
 | 
					    rc2CBC-EnvOID                             12
 | 
				
			||||||
 | 
					    rsaEncryption-EnvOID   (PKCS1 v1.5)       13
 | 
				
			||||||
 | 
					    rsaES-OAEP-ENV-OID     (PKCS1 v2.0)       14
 | 
				
			||||||
 | 
					    des-ede3-cbc-Env-OID                      15
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The above encryption types are used (in PKINIT) only within CMS [8]
 | 
				
			||||||
 | 
					structures within the PKINIT preauthentication fields.  Their use
 | 
				
			||||||
 | 
					within Kerberos EncryptedData structures is unspecified.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.1.3.  Algorithm Identifiers
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT does not define, but does make use of, the following
 | 
				
			||||||
 | 
					algorithm identifiers.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT uses the following algorithm identifier for Diffie-Hellman
 | 
				
			||||||
 | 
					key agreement [11]:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    dhpublicnumber
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT uses the following signature algorithm identifiers [8, 12]:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    sha-1WithRSAEncryption (RSA with SHA1)
 | 
				
			||||||
 | 
					    md5WithRSAEncryption   (RSA with MD5)
 | 
				
			||||||
 | 
					    id-dsa-with-sha1       (DSA with SHA1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT uses the following encryption algorithm identifiers [12] for
 | 
				
			||||||
 | 
					encrypting the temporary key with a public key:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    rsaEncryption          (PKCS1 v1.5)
 | 
				
			||||||
 | 
					    id-RSAES-OAEP          (PKCS1 v2.0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					These OIDs are not to be confused with the encryption types listed
 | 
				
			||||||
 | 
					above.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT uses the following algorithm identifiers [8] for encrypting
 | 
				
			||||||
 | 
					the reply key with the temporary key:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    des-ede3-cbc           (three-key 3DES, CBC mode)
 | 
				
			||||||
 | 
					    rc2-cbc                (RC2, CBC mode)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Again, these OIDs are not to be confused with the encryption types
 | 
				
			||||||
 | 
					listed above.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.2.  PKINIT Preauthentication Syntax and Use
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In this section, we describe the syntax and use of the various
 | 
				
			||||||
 | 
					preauthentication fields employed to implement PKINIT.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.2.1.  Client Request
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The initial authentication request (AS-REQ) is sent as per RFC
 | 
				
			||||||
 | 
					1510bis, except that a preauthentication field containing data
 | 
				
			||||||
 | 
					signed by the user's private signature key accompanies the request,
 | 
				
			||||||
 | 
					as follows:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    PA-PK-AS-REQ ::= SEQUENCE {
 | 
				
			||||||
 | 
					                                    -- PAType TBD
 | 
				
			||||||
 | 
					        signedAuthPack          [0] ContentInfo,
 | 
				
			||||||
 | 
					                                    -- Defined in CMS.
 | 
				
			||||||
 | 
					                                    -- Type is SignedData.
 | 
				
			||||||
 | 
					                                    -- Content is AuthPack
 | 
				
			||||||
 | 
					                                    -- (defined below).
 | 
				
			||||||
 | 
					        trustedCertifiers       [1] SEQUENCE OF TrustedCAs OPTIONAL,
 | 
				
			||||||
 | 
					                                    -- A list of CAs, trusted by
 | 
				
			||||||
 | 
					                                    -- the client, used to certify
 | 
				
			||||||
 | 
					                                    -- KDCs.
 | 
				
			||||||
 | 
					        kdcCert                 [2] IssuerAndSerialNumber OPTIONAL,
 | 
				
			||||||
 | 
					                                    -- Defined in CMS.
 | 
				
			||||||
 | 
					                                    -- Identifies a particular KDC
 | 
				
			||||||
 | 
					                                    -- certificate, if the client
 | 
				
			||||||
 | 
					                                    -- already has it.
 | 
				
			||||||
 | 
					        encryptionCert          [3] IssuerAndSerialNumber OPTIONAL,
 | 
				
			||||||
 | 
					                                    -- May identify the user's
 | 
				
			||||||
 | 
					                                    -- Diffie-Hellman certificate,
 | 
				
			||||||
 | 
					                                    -- or an RSA encryption key
 | 
				
			||||||
 | 
					                                    -- certificate.
 | 
				
			||||||
 | 
					        ...
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    TrustedCAs ::= CHOICE {
 | 
				
			||||||
 | 
					        caName                  [0] Name,
 | 
				
			||||||
 | 
					                                    -- Fully qualified X.500 name
 | 
				
			||||||
 | 
					                                    -- as defined in X.509 [11].
 | 
				
			||||||
 | 
					        issuerAndSerial         [1] IssuerAndSerialNumber,
 | 
				
			||||||
 | 
					                                    -- Identifies a specific CA
 | 
				
			||||||
 | 
					                                    -- certificate, if the client
 | 
				
			||||||
 | 
					                                    -- only trusts one.
 | 
				
			||||||
 | 
					        ...
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[Should we even allow principalName as a choice? --brian]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    AuthPack ::= SEQUENCE {
 | 
				
			||||||
 | 
					        pkAuthenticator         [0] PKAuthenticator,
 | 
				
			||||||
 | 
					        clientPublicValue       [1] SubjectPublicKeyInfo OPTIONAL
 | 
				
			||||||
 | 
					                                    -- Defined in X.509,
 | 
				
			||||||
 | 
					                                    -- reproduced below.
 | 
				
			||||||
 | 
					                                    -- Present only if the client
 | 
				
			||||||
 | 
					                                    -- is using ephemeral-ephemeral
 | 
				
			||||||
 | 
					                                    -- Diffie-Hellman.
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    PKAuthenticator ::= SEQUENCE {
 | 
				
			||||||
 | 
					        cusec                   [0] INTEGER,
 | 
				
			||||||
 | 
					        ctime                   [1] KerberosTime,
 | 
				
			||||||
 | 
					                                    -- cusec and ctime are used as
 | 
				
			||||||
 | 
					                                    -- in RFC 1510bis, for replay
 | 
				
			||||||
 | 
					                                    -- prevention.
 | 
				
			||||||
 | 
					        nonce                   [2] INTEGER,
 | 
				
			||||||
 | 
					                                    -- Binds reply to request,
 | 
				
			||||||
 | 
					                                    -- except is zero when client
 | 
				
			||||||
 | 
					                                    -- will accept cached
 | 
				
			||||||
 | 
					                                    -- Diffie-Hellman parameters
 | 
				
			||||||
 | 
					                                    -- from KDC and MUST NOT be
 | 
				
			||||||
 | 
					                                    -- zero otherwise.
 | 
				
			||||||
 | 
					        paChecksum              [3] Checksum,
 | 
				
			||||||
 | 
					                                    -- Defined in RFC 1510bis.
 | 
				
			||||||
 | 
					                                    -- Performed over KDC-REQ-BODY,
 | 
				
			||||||
 | 
					                                    -- must be unkeyed.
 | 
				
			||||||
 | 
					        ...
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    SubjectPublicKeyInfo ::= SEQUENCE {
 | 
				
			||||||
 | 
					                                    -- As defined in X.509.
 | 
				
			||||||
 | 
					        algorithm                   AlgorithmIdentifier,
 | 
				
			||||||
 | 
					                                    -- Equals dhpublicnumber (see
 | 
				
			||||||
 | 
					                                    -- AlgorithmIdentifier, below)
 | 
				
			||||||
 | 
					                                    -- for PKINIT.
 | 
				
			||||||
 | 
					        subjectPublicKey            BIT STRING
 | 
				
			||||||
 | 
					                                    -- Equals public exponent
 | 
				
			||||||
 | 
					                                    -- (INTEGER encoded as payload
 | 
				
			||||||
 | 
					                                    -- of BIT STRING) for PKINIT.
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    AlgorithmIdentifier ::= SEQUENCE {
 | 
				
			||||||
 | 
					                                    -- As defined in X.509.
 | 
				
			||||||
 | 
					        algorithm                   OBJECT IDENTIFIER,
 | 
				
			||||||
 | 
					                                    -- dhpublicnumber is
 | 
				
			||||||
 | 
					                                    -- { iso (1) member-body (2)
 | 
				
			||||||
 | 
					                                    -- US (840) ansi-x942 (10046)
 | 
				
			||||||
 | 
					                                    -- number-type (2) 1 }
 | 
				
			||||||
 | 
					                                    -- From RFC 2459 [11].
 | 
				
			||||||
 | 
					        parameters                  ANY DEFINED BY algorithm OPTIONAL
 | 
				
			||||||
 | 
					                                    -- Content is DomainParameters
 | 
				
			||||||
 | 
					                                    -- (see below) for PKINIT.
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DomainParameters ::= SEQUENCE {
 | 
				
			||||||
 | 
					                                    -- As defined in RFC 2459.
 | 
				
			||||||
 | 
					        p                           INTEGER,
 | 
				
			||||||
 | 
					                                    -- p is the odd prime, equals
 | 
				
			||||||
 | 
					                                    -- jq+1.
 | 
				
			||||||
 | 
					        g                           INTEGER,
 | 
				
			||||||
 | 
					                                    -- Generator.
 | 
				
			||||||
 | 
					        q                           INTEGER,
 | 
				
			||||||
 | 
					                                    -- Divides p-1.
 | 
				
			||||||
 | 
					        j                           INTEGER OPTIONAL,
 | 
				
			||||||
 | 
					                                    -- Subgroup factor.
 | 
				
			||||||
 | 
					        validationParms             ValidationParms OPTIONAL
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ValidationParms ::= SEQUENCE {
 | 
				
			||||||
 | 
					                                    -- As defined in RFC 2459.
 | 
				
			||||||
 | 
					        seed                        BIT STRING,
 | 
				
			||||||
 | 
					                                    -- Seed for the system parameter
 | 
				
			||||||
 | 
					                                    -- generation process.
 | 
				
			||||||
 | 
					        pgenCounter                 INTEGER
 | 
				
			||||||
 | 
					                                    -- Integer value output as part
 | 
				
			||||||
 | 
					                                    -- of the system parameter
 | 
				
			||||||
 | 
					                                    -- generation process.
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The ContentInfo in the signedAuthPack is filled out as follows:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    1.  The eContent field contains data of type AuthPack.  It MUST
 | 
				
			||||||
 | 
					        contain the pkAuthenticator, and MAY also contain the
 | 
				
			||||||
 | 
					        user's Diffie-Hellman public value (clientPublicValue).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    2.  The eContentType field MUST contain the OID value for
 | 
				
			||||||
 | 
					        pkauthdata: { iso (1) org (3) dod (6) internet (1)
 | 
				
			||||||
 | 
					        security (5) kerberosv5 (2) pkinit (3) pkauthdata (1)}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    3.  The signerInfos field MUST contain the signature of the
 | 
				
			||||||
 | 
					        AuthPack.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    4.  The certificates field MUST contain at least a signature
 | 
				
			||||||
 | 
					        verification certificate chain that the KDC can use to
 | 
				
			||||||
 | 
					        verify the signature on the AuthPack.  Additionally, the
 | 
				
			||||||
 | 
					        client may also insert an encryption certificate chain, if
 | 
				
			||||||
 | 
					        (for example) the client is not using ephemeral-ephemeral
 | 
				
			||||||
 | 
					        Diffie-Hellman.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    5.  If a Diffie-Hellman key is being used, the parameters SHOULD
 | 
				
			||||||
 | 
					        be chosen from the First or Second defined Oakley Groups.
 | 
				
			||||||
 | 
					        (See RFC 2409 [c].)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    6.  The KDC may wish to use cached Diffie-Hellman parameters.
 | 
				
			||||||
 | 
					        To indicate acceptance of caching, the client sends zero in
 | 
				
			||||||
 | 
					        the nonce field of the pkAuthenticator.  Zero is not a valid
 | 
				
			||||||
 | 
					        value for this field under any other circumstances.  Since
 | 
				
			||||||
 | 
					        zero is used to indicate acceptance of cached parameters,
 | 
				
			||||||
 | 
					        message binding in this case is performed instead using the
 | 
				
			||||||
 | 
					        nonce in the main request.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.2.2.  Validation of Client Request
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Upon receiving the client's request, the KDC validates it.  This
 | 
				
			||||||
 | 
					section describes the steps that the KDC MUST (unless otherwise
 | 
				
			||||||
 | 
					noted) take in validating the request.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The KDC must look for a user certificate in the signedAuthPack.
 | 
				
			||||||
 | 
					If it cannot find one signed by a CA it trusts, it sends back an
 | 
				
			||||||
 | 
					error of type KDC_ERR_CANT_VERIFY_CERTIFICATE.  The accompanying
 | 
				
			||||||
 | 
					e-data for this error is a SEQUENCE OF TypedData:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    TypedData ::= SEQUENCE {
 | 
				
			||||||
 | 
					                                    -- As defined in RFC 1510bis.
 | 
				
			||||||
 | 
					        data-type               [0] INTEGER,
 | 
				
			||||||
 | 
					        data-value              [1] OCTET STRING
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					For this error, the data-type is TD-TRUSTED-CERTIFIERS, and the
 | 
				
			||||||
 | 
					data-value is an OCTET STRING containing the DER encoding of
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    TrustedCertifiers ::= SEQUENCE OF Name
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If, while verifying the certificate chain, the KDC determines that
 | 
				
			||||||
 | 
					the signature on one of the certificates in the signedAuthPack is
 | 
				
			||||||
 | 
					invalid, it returns an error of type KDC_ERR_INVALID_CERTIFICATE.
 | 
				
			||||||
 | 
					The accompanying e-data for this error is a SEQUENCE OF TypedData,
 | 
				
			||||||
 | 
					whose data-type is TD-CERTIFICATE-INDEX, and whose data-value is an
 | 
				
			||||||
 | 
					OCTET STRING containing the DER encoding of the index into the
 | 
				
			||||||
 | 
					CertificateSet field, ordered as sent by the client:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    CertificateIndex ::= INTEGER
 | 
				
			||||||
 | 
					                                    -- 0 = first certificate (in
 | 
				
			||||||
 | 
					                                    --     order of encoding),
 | 
				
			||||||
 | 
					                                    -- 1 = second certificate, etc.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If more than one signature is invalid, the KDC sends one TypedData
 | 
				
			||||||
 | 
					per invalid signature.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The KDC MAY also check whether any of the certificates in the user's
 | 
				
			||||||
 | 
					chain have been revoked.  If any of them have been revoked, the KDC
 | 
				
			||||||
 | 
					returns an error of type KDC_ERR_REVOKED_CERTIFICATE; if the KDC
 | 
				
			||||||
 | 
					attempts to determine the revocation status but is unable to do so,
 | 
				
			||||||
 | 
					it returns an error of type KDC_ERR_REVOCATION_STATUS_UNKNOWN.  In
 | 
				
			||||||
 | 
					either case, the certificate or certificates affected are identified
 | 
				
			||||||
 | 
					exactly as for an error of type KDC_ERR_INVALID_CERTIFICATE (see
 | 
				
			||||||
 | 
					above).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If the certificate chain is successfully validated, but the name in
 | 
				
			||||||
 | 
					the user's certificate does not match the name given in the request,
 | 
				
			||||||
 | 
					the KDC returns an error of type KDC_ERR_CLIENT_NAME_MISMATCH.  There
 | 
				
			||||||
 | 
					is no accompanying e-data for this error.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Even if the chain is validated, and the names in the certificate and
 | 
				
			||||||
 | 
					the request match, the KDC may decide not to trust the client.  For
 | 
				
			||||||
 | 
					example, the certificate may include (or not include) an Enhanced
 | 
				
			||||||
 | 
					Key Usage (EKU) OID in the extensions field.  As a matter of local
 | 
				
			||||||
 | 
					policy, the KDC may decide to reject requests on the basis of the
 | 
				
			||||||
 | 
					absence or presence of specific EKU OIDs.  In this case, the KDC
 | 
				
			||||||
 | 
					returns an error of type KDC_ERR_CLIENT_NOT_TRUSTED.  For the
 | 
				
			||||||
 | 
					benefit of implementors, we define a PKINIT EKU OID as follows:
 | 
				
			||||||
 | 
					{ iso (1) org (3) dod (6) internet (1) security (5) kerberosv5 (2)
 | 
				
			||||||
 | 
					pkinit (3) pkekuoid (2) }.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If the certificate chain and usage check out, but the client's
 | 
				
			||||||
 | 
					signature on the signedAuthPack fails to verify, the KDC returns an
 | 
				
			||||||
 | 
					error of type KDC_ERR_INVALID_SIG.  There is no accompanying e-data
 | 
				
			||||||
 | 
					for this error.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[What about the case when all this checks out but one or more
 | 
				
			||||||
 | 
					certificates is rejected for other reasons?  For example, perhaps
 | 
				
			||||||
 | 
					the key is too short for local policy. --DRE]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The KDC must check the timestamp to ensure that the request is not
 | 
				
			||||||
 | 
					a replay, and that the time skew falls within acceptable limits.  If
 | 
				
			||||||
 | 
					the check fails, the KDC returns an error of type KRB_AP_ERR_REPEAT
 | 
				
			||||||
 | 
					or KRB_AP_ERR_SKEW, respectively.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Finally, if the clientPublicValue is filled in, indicating that the
 | 
				
			||||||
 | 
					client wishes to use ephemeral-ephemeral Diffie-Hellman, the KDC
 | 
				
			||||||
 | 
					checks to see if the parameters satisfy its policy.  If they do not,
 | 
				
			||||||
 | 
					it returns an error of type KDC_ERR_KEY_TOO_WEAK.  The accompanying
 | 
				
			||||||
 | 
					e-data is a SEQUENCE OF TypedData, whose data-type is
 | 
				
			||||||
 | 
					TD-DH-PARAMETERS, and whose data-value is an OCTET STRING containing
 | 
				
			||||||
 | 
					the DER encoding of a DomainParameters (see above), including
 | 
				
			||||||
 | 
					appropriate Diffie-Hellman parameters with which to retry the
 | 
				
			||||||
 | 
					request.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[This makes no sense.  For example, maybe the key is too strong for
 | 
				
			||||||
 | 
					local policy. --DRE]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In order to establish authenticity of the reply, the KDC will sign
 | 
				
			||||||
 | 
					some key data (either the random key used to encrypt the reply in
 | 
				
			||||||
 | 
					the case of a KDCDHKeyInfo, or the Diffie-Hellman parameters used to
 | 
				
			||||||
 | 
					generate the reply-encrypting key in the case of a ReplyKeyPack).
 | 
				
			||||||
 | 
					The signature certificate to be used is to be selected as follows:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    1.  If the client included a kdcCert field in the PA-PK-AS-REQ,
 | 
				
			||||||
 | 
					        use the referred-to certificate, if the KDC has it.  If it
 | 
				
			||||||
 | 
					        does not, the KDC returns an error of type
 | 
				
			||||||
 | 
					        KDC_ERR_CERTIFICATE_MISMATCH.
 | 
				
			||||||
 | 
					       
 | 
				
			||||||
 | 
					    2.  Otherwise, if the client did not include a kdcCert field,
 | 
				
			||||||
 | 
					        but did include a trustedCertifiers field, and the KDC
 | 
				
			||||||
 | 
					        possesses a certificate issued by one of the listed
 | 
				
			||||||
 | 
					        certifiers, use that certificate.  if it does not possess
 | 
				
			||||||
 | 
					        one, it returns an error of type KDC_ERR_KDC_NOT_TRUSTED.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    3.  Otherwise, if the client included neither a kdcCert field
 | 
				
			||||||
 | 
					        nor a trustedCertifiers field, and the KDC has only one
 | 
				
			||||||
 | 
					        signature certificate, use that certificate.  If it has
 | 
				
			||||||
 | 
					        more than one certificate, it returns an error of type
 | 
				
			||||||
 | 
					        KDC_ERR_CERTIFICATE_MISMATCH.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.2.3.  KDC Reply
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Assuming that the client's request has been properly validated, the
 | 
				
			||||||
 | 
					KDC proceeds as per RFC 1510bis, except as follows.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The user's name as represented in the AS-REP must be derived from
 | 
				
			||||||
 | 
					the certificate provided in the client's request.  If the KDC has
 | 
				
			||||||
 | 
					its own mapping from the name in the certificate to a Kerberos name,
 | 
				
			||||||
 | 
					it uses that Kerberos name.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Otherwise, if the certificate contains a subjectAltName extension
 | 
				
			||||||
 | 
					with PrincipalName, it uses that name.  In this case, the realm in
 | 
				
			||||||
 | 
					the ticket is that of the local realm (or some other realm name
 | 
				
			||||||
 | 
					chosen by that realm).  (OID and syntax for this extension to be
 | 
				
			||||||
 | 
					specified here.)  Otherwise, the KDC returns an error of type
 | 
				
			||||||
 | 
					KDC_ERR_CLIENT_NAME_MISMATCH.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In addition, the certifiers in the certification path of the user's
 | 
				
			||||||
 | 
					certificate MUST be added to an authdata (to be specified at a later
 | 
				
			||||||
 | 
					time).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The AS-REP is otherwise unchanged from RFC 1510bis.  The KDC then
 | 
				
			||||||
 | 
					encrypts the reply as usual, but not with the user's long-term key.
 | 
				
			||||||
 | 
					Instead, it encrypts it with either a random encryption key, or a
 | 
				
			||||||
 | 
					key derived through a Diffie-Hellman exchange.  Which is the case is
 | 
				
			||||||
 | 
					indicated by the contents of the PA-PK-AS-REP (note tags):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    PA-PK-AS-REP ::= CHOICE {
 | 
				
			||||||
 | 
					                                    -- PAType YY (TBD)
 | 
				
			||||||
 | 
					        dhSignedData            [0] ContentInfo,
 | 
				
			||||||
 | 
					                                    -- Type is SignedData.
 | 
				
			||||||
 | 
					                                    -- Content is KDCDHKeyInfo
 | 
				
			||||||
 | 
					                                    -- (defined below).
 | 
				
			||||||
 | 
					        encKeyPack              [1] ContentInfo,
 | 
				
			||||||
 | 
					                                    -- Type is EnvelopedData.
 | 
				
			||||||
 | 
					                                    -- Content is ReplyKeyPack
 | 
				
			||||||
 | 
					                                    -- (defined below).
 | 
				
			||||||
 | 
					        ...
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Note that PA-PK-AS-REP is a CHOICE: either a dhSignedData, or an
 | 
				
			||||||
 | 
					encKeyPack, but not both.  The former contains data of type
 | 
				
			||||||
 | 
					KDCDHKeyInfo, and is used only when the reply is encrypted using a
 | 
				
			||||||
 | 
					Diffie-Hellman derived key:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    KDCDHKeyInfo ::= SEQUENCE {
 | 
				
			||||||
 | 
					        subjectPublicKey        [0] BIT STRING,
 | 
				
			||||||
 | 
					                                    -- Equals public exponent
 | 
				
			||||||
 | 
					                                    -- (g^a mod p).
 | 
				
			||||||
 | 
					                                    -- INTEGER encoded as payload
 | 
				
			||||||
 | 
					                                    -- of BIT STRING.
 | 
				
			||||||
 | 
					        nonce                   [1] INTEGER,
 | 
				
			||||||
 | 
					                                    -- Binds reply to request.
 | 
				
			||||||
 | 
					                                    -- Exception: A value of zero
 | 
				
			||||||
 | 
					                                    -- indicates that the KDC is
 | 
				
			||||||
 | 
					                                    -- using cached values.
 | 
				
			||||||
 | 
					        dhKeyExpiration         [2] KerberosTime OPTIONAL,
 | 
				
			||||||
 | 
					                                    -- Expiration time for KDC's
 | 
				
			||||||
 | 
					                                    -- cached values.
 | 
				
			||||||
 | 
					        ...
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The fields of the ContentInfo for dhSignedData are to be filled in
 | 
				
			||||||
 | 
					as follows:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    1.  The eContent field contains data of type KDCDHKeyInfo.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    2.  The eContentType field contains the OID value for
 | 
				
			||||||
 | 
					        pkdhkeydata: { iso (1) org (3) dod (6) internet (1)
 | 
				
			||||||
 | 
					        security (5) kerberosv5 (2) pkinit (3) pkdhkeydata (2) }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    3.  The signerInfos field contains a single signerInfo, which is
 | 
				
			||||||
 | 
					        the signature of the KDCDHKeyInfo.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    4.  The certificates field contains a signature verification
 | 
				
			||||||
 | 
					        certificate chain that the client may use to verify the
 | 
				
			||||||
 | 
					        KDC's signature over the KDCDHKeyInfo.)  It may only be left
 | 
				
			||||||
 | 
					        empty if the client did not include a trustedCertifiers
 | 
				
			||||||
 | 
					        field in the PA-PK-AS-REQ, indicating that it has the KDC's
 | 
				
			||||||
 | 
					        certificate.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    5.  If the client and KDC agree to use cached parameters, the
 | 
				
			||||||
 | 
					        KDC SHOULD return a zero in the nonce field and include the
 | 
				
			||||||
 | 
					        expiration time of the cached values in the dhKeyExpiration
 | 
				
			||||||
 | 
					        field.  If this time is exceeded, the client SHOULD NOT use
 | 
				
			||||||
 | 
					        the reply.  If the time is absent, the client SHOULD NOT use
 | 
				
			||||||
 | 
					        the reply and MAY resubmit a request with a non-zero nonce,
 | 
				
			||||||
 | 
					        thus indicating non-acceptance of the cached parameters.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The key is derived as follows: Both the KDC and the client calculate
 | 
				
			||||||
 | 
					the value g^(ab) mod p, where a and b are the client and KDC's
 | 
				
			||||||
 | 
					private exponents, respectively.  They both take the first N bits of
 | 
				
			||||||
 | 
					this secret value and convert it into a reply key, where N depends
 | 
				
			||||||
 | 
					on the key type.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    1.  For example, if the key type is DES, N = 64 bits, where some
 | 
				
			||||||
 | 
					        of the bits are replaced with parity bits, according to FIPS
 | 
				
			||||||
 | 
					        PUB 74 [c].
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    2.  If the key type is (three-key) 3DES, N = 192 bits, where
 | 
				
			||||||
 | 
					        some of the bits are replaced with parity bits, again
 | 
				
			||||||
 | 
					        according to FIPS PUB 74.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If the KDC and client are not using Diffie-Hellman, the KDC encrypts
 | 
				
			||||||
 | 
					the reply with an encryption key, packed in the encKeyPack, which
 | 
				
			||||||
 | 
					contains data of type ReplyKeyPack:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ReplyKeyPack ::= SEQUENCE {
 | 
				
			||||||
 | 
					        replyKey                [0] EncryptionKey,
 | 
				
			||||||
 | 
					                                    -- Defined in RFC 1510bis.
 | 
				
			||||||
 | 
					                                    -- Used to encrypt main reply.
 | 
				
			||||||
 | 
					                                    -- MUST be at least as strong as
 | 
				
			||||||
 | 
					                                    -- enctype of session key.
 | 
				
			||||||
 | 
					        nonce                   [1] INTEGER,
 | 
				
			||||||
 | 
					                                    -- Binds reply to request.
 | 
				
			||||||
 | 
					        ...
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[What exactly does "at least as strong" mean? --DRE]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The fields of the ContentInfo for encKeyPack MUST be filled in as
 | 
				
			||||||
 | 
					follows:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    1.  The innermost data is of type SignedData.  The eContent for
 | 
				
			||||||
 | 
					        this data is of type ReplyKeyPack.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    2.  The eContentType for this data contains the OID value for
 | 
				
			||||||
 | 
					        pkrkeydata: { iso (1) org (3) dod (6) internet (1)
 | 
				
			||||||
 | 
					        security (5) kerberosv5 (2) pkinit (3) pkrkeydata (3) }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    3.  The signerInfos field contains a single signerInfo, which is
 | 
				
			||||||
 | 
					        the signature of the ReplyKeyPack.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    4.  The certificates field contains a signature verification
 | 
				
			||||||
 | 
					        certificate chain, which the client may use to verify the
 | 
				
			||||||
 | 
					        KDC's signature over the ReplyKeyPack.)  It may only be left
 | 
				
			||||||
 | 
					        empty if the client did not include a trustedCertifiers
 | 
				
			||||||
 | 
					        field in the PA-PK-AS-REQ, indicating that it has the KDC's
 | 
				
			||||||
 | 
					        certificate.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    5.  The outer data is of type EnvelopedData.  The
 | 
				
			||||||
 | 
					        encryptedContent for this data is the SignedData described
 | 
				
			||||||
 | 
					        in items 1 through 4, above.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    6.  The encryptedContentType for this data contains the OID
 | 
				
			||||||
 | 
					        value for id-signedData: { iso (1) member-body (2) us (840)
 | 
				
			||||||
 | 
					        rsadsi (113549) pkcs (1) pkcs7 (7) signedData (2) }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    7.  The recipientInfos field is a SET which MUST contain exactly
 | 
				
			||||||
 | 
					        one member of type KeyTransRecipientInfo.  The encryptedKey
 | 
				
			||||||
 | 
					        for this member contains the temporary key which is
 | 
				
			||||||
 | 
					        encrypted using the client's public key.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    8.  Neither the unprotectedAttrs field nor the originatorInfo
 | 
				
			||||||
 | 
					        field is required for PKINIT.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.2.4.  Validation of KDC Reply
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Upon receipt of the KDC's reply, the client proceeds as follows.  If
 | 
				
			||||||
 | 
					the PA-PK-AS-REP contains a dhSignedData, the client obtains and
 | 
				
			||||||
 | 
					verifies the Diffie-Hellman parameters, and obtains the shared key
 | 
				
			||||||
 | 
					as described above.  Otherwise, the message contains an encKeyPack,
 | 
				
			||||||
 | 
					and the client decrypts and verifies the temporary encryption key.
 | 
				
			||||||
 | 
					In either case, the client then decrypts the main reply with the
 | 
				
			||||||
 | 
					resulting key, and then proceeds as described in RFC 1510bis.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					4.  Security Considerations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT raises certain security considerations beyond those that can
 | 
				
			||||||
 | 
					be regulated strictly in protocol definitions.  We will address them
 | 
				
			||||||
 | 
					in this section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT extends the cross-realm model to the public-key
 | 
				
			||||||
 | 
					infrastructure.  Anyone using PKINIT must be aware of how the
 | 
				
			||||||
 | 
					certification infrastructure they are linking to works.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Also, as in standard Kerberos, PKINIT presents the possibility of
 | 
				
			||||||
 | 
					interactions between cryptosystems of varying strengths, and this
 | 
				
			||||||
 | 
					now includes public-key cryptosystems.  Many systems, for example,
 | 
				
			||||||
 | 
					allow the use of 512-bit public keys.  Using such keys to wrap data
 | 
				
			||||||
 | 
					encrypted under strong conventional cryptosystems, such as 3DES, may
 | 
				
			||||||
 | 
					be inappropriate.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT calls for randomly generated keys for conventional
 | 
				
			||||||
 | 
					cryptosystems.  Many such systems contain systematically "weak"
 | 
				
			||||||
 | 
					keys.  For recommendations regarding these weak keys, see RFC
 | 
				
			||||||
 | 
					1510bis.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Care should be taken in how certificates are chosen for the purposes
 | 
				
			||||||
 | 
					of authentication using PKINIT.  Some local policies may require
 | 
				
			||||||
 | 
					that key escrow be applied for certain certificate types.  People
 | 
				
			||||||
 | 
					deploying PKINIT should be aware of the implications of using
 | 
				
			||||||
 | 
					certificates that have escrowed keys for the purposes of
 | 
				
			||||||
 | 
					authentication.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PKINIT does not provide for a "return routability" test to prevent
 | 
				
			||||||
 | 
					attackers from mounting a denial-of-service attack on the KDC by
 | 
				
			||||||
 | 
					causing it to perform unnecessary and expensive public-key
 | 
				
			||||||
 | 
					operations.  Strictly speaking, this is also true of standard
 | 
				
			||||||
 | 
					Kerberos, although the potential cost is not as great, because
 | 
				
			||||||
 | 
					standard Kerberos does not make use of public-key cryptography.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					5.  Acknowledgements
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Some of the ideas on which this proposal is based arose during
 | 
				
			||||||
 | 
					discussions over several years between members of the SAAG, the IETF
 | 
				
			||||||
 | 
					CAT working group, and the PSRG, regarding integration of Kerberos
 | 
				
			||||||
 | 
					and SPX.  Some ideas have also been drawn from the DASS system.
 | 
				
			||||||
 | 
					These changes are by no means endorsed by these groups.  This is an
 | 
				
			||||||
 | 
					attempt to revive some of the goals of those groups, and this
 | 
				
			||||||
 | 
					proposal approaches those goals primarily from the Kerberos
 | 
				
			||||||
 | 
					perspective.  Lastly, comments from groups working on similar ideas
 | 
				
			||||||
 | 
					in DCE have been invaluable.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					6.  Expiration Date
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This draft expires May 31, 2004.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					7.  Bibliography
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[1] J. Kohl, C. Neuman.  The Kerberos Network Authentication Service
 | 
				
			||||||
 | 
					(V5).  Request for Comments 1510.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[2] B.C. Neuman, Theodore Ts'o. Kerberos: An Authentication Service
 | 
				
			||||||
 | 
					for Computer Networks, IEEE Communications, 32(9):33-38.  September
 | 
				
			||||||
 | 
					1994.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[3] M. Sirbu, J. Chuang.  Distributed Authentication in Kerberos
 | 
				
			||||||
 | 
					Using Public Key Cryptography.  Symposium On Network and Distributed
 | 
				
			||||||
 | 
					System Security, 1997.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[4] B. Cox, J.D. Tygar, M. Sirbu.  NetBill Security and Transaction
 | 
				
			||||||
 | 
					Protocol.  In Proceedings of the USENIX Workshop on Electronic
 | 
				
			||||||
 | 
					Commerce, July 1995.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[5] T. Dierks, C. Allen.  The TLS Protocol, Version 1.0.  Request
 | 
				
			||||||
 | 
					for Comments 2246, January 1999.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[6] B.C. Neuman, Proxy-Based Authorization and Accounting for
 | 
				
			||||||
 | 
					Distributed Systems.  In Proceedings of the 13th International
 | 
				
			||||||
 | 
					Conference on Distributed Computing Systems, May 1993.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[7] ITU-T (formerly CCITT) Information technology - Open Systems
 | 
				
			||||||
 | 
					Interconnection - The Directory: Authentication Framework
 | 
				
			||||||
 | 
					Recommendation X.509 ISO/IEC 9594-8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[8] R. Housley. Cryptographic Message Syntax.
 | 
				
			||||||
 | 
					draft-ietf-smime-cms-13.txt, April 1999, approved for publication as
 | 
				
			||||||
 | 
					RFC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[9] PKCS #7: Cryptographic Message Syntax Standard. An RSA
 | 
				
			||||||
 | 
					Laboratories Technical Note Version 1.5. Revised November 1, 1993
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[10] R. Rivest, MIT Laboratory for Computer Science and RSA Data
 | 
				
			||||||
 | 
					Security, Inc. A Description of the RC2(r) Encryption Algorithm.
 | 
				
			||||||
 | 
					March 1998.  Request for Comments 2268.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[11] R. Housley, W. Ford, W. Polk, D. Solo. Internet X.509 Public
 | 
				
			||||||
 | 
					Key Infrastructure, Certificate and CRL Profile, January 1999.
 | 
				
			||||||
 | 
					Request for Comments 2459.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[12] B. Kaliski, J. Staddon. PKCS #1: RSA Cryptography
 | 
				
			||||||
 | 
					Specifications, October 1998.  Request for Comments 2437.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[13] ITU-T (formerly CCITT) Information Processing Systems - Open
 | 
				
			||||||
 | 
					Systems Interconnection - Specification of Abstract Syntax Notation
 | 
				
			||||||
 | 
					One (ASN.1) Rec. X.680 ISO/IEC 8824-1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[14] PKCS #3: Diffie-Hellman Key-Agreement Standard, An RSA
 | 
				
			||||||
 | 
					Laboratories Technical Note, Version 1.4, Revised November 1, 1993.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					8.  Authors
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Brian Tung
 | 
				
			||||||
 | 
					Clifford Neuman
 | 
				
			||||||
 | 
					USC Information Sciences Institute
 | 
				
			||||||
 | 
					4676 Admiralty Way Suite 1001
 | 
				
			||||||
 | 
					Marina del Rey CA 90292-6695
 | 
				
			||||||
 | 
					Phone: +1 310 822 1511
 | 
				
			||||||
 | 
					E-mail: {brian,bcn}@isi.edu
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Matthew Hur
 | 
				
			||||||
 | 
					Ari Medvinsky
 | 
				
			||||||
 | 
					Microsoft Corporation
 | 
				
			||||||
 | 
					One Microsoft Way
 | 
				
			||||||
 | 
					Redmond WA 98052
 | 
				
			||||||
 | 
					Phone: +1 425 707 3336
 | 
				
			||||||
 | 
					E-mail: matthur@microsoft.com, arimed@windows.microsoft.com
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Sasha Medvinsky
 | 
				
			||||||
 | 
					Motorola, Inc.
 | 
				
			||||||
 | 
					6450 Sequence Drive
 | 
				
			||||||
 | 
					San Diego, CA 92121
 | 
				
			||||||
 | 
					+1 858 404 2367
 | 
				
			||||||
 | 
					E-mail: smedvinsky@motorola.com
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					John Wray
 | 
				
			||||||
 | 
					Iris Associates, Inc.
 | 
				
			||||||
 | 
					5 Technology Park Dr.
 | 
				
			||||||
 | 
					Westford, MA 01886
 | 
				
			||||||
 | 
					E-mail: John_Wray@iris.com
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Jonathan Trostle
 | 
				
			||||||
 | 
					E-mail: jtrostle@world.std.com
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										884
									
								
								doc/standardisation/draft-ietf-krb-wg-gssapi-cfx-04.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										884
									
								
								doc/standardisation/draft-ietf-krb-wg-gssapi-cfx-04.txt
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,884 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<Network Working Group>                                       Larry Zhu 
 | 
				
			||||||
 | 
					Internet Draft                                       Karthik Jaganathan 
 | 
				
			||||||
 | 
					Updates: 1964                                                 Microsoft 
 | 
				
			||||||
 | 
					Category: Standards Track                                   Sam Hartman 
 | 
				
			||||||
 | 
					draft-ietf-krb-wg-gssapi-cfx-04.txt                                 MIT 
 | 
				
			||||||
 | 
					                                                      November 21, 2003 
 | 
				
			||||||
 | 
					                                                  Expires: May 21, 2004 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					          The Kerberos Version 5 GSS-API Mechanism: Version 2 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					Status of this Memo 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   This document is an Internet-Draft and is in full conformance with 
 | 
				
			||||||
 | 
					   all provisions of Section 10 of [RFC-2026].  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Internet-Drafts are working documents of the Internet Engineering 
 | 
				
			||||||
 | 
					   Task Force (IETF), its areas, and its working groups.  Note that 
 | 
				
			||||||
 | 
					   other groups may also distribute working documents as Internet-
 | 
				
			||||||
 | 
					   Drafts.  Internet-Drafts are draft documents valid for a maximum of 
 | 
				
			||||||
 | 
					   six months and may be updated, replaced, or obsoleted by other 
 | 
				
			||||||
 | 
					   documents at any time.  It is inappropriate to use Internet-Drafts 
 | 
				
			||||||
 | 
					   as reference material or to cite them other than as "work in 
 | 
				
			||||||
 | 
					   progress."  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The list of current Internet-Drafts can be accessed at 
 | 
				
			||||||
 | 
					   http://www.ietf.org/ietf/1id-abstracts.txt.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The list of Internet-Draft Shadow Directories can be accessed at 
 | 
				
			||||||
 | 
					   http://www.ietf.org/shadow.html. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					Abstract 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   This memo defines protocols, procedures, and conventions to be 
 | 
				
			||||||
 | 
					   employed by peers implementing the Generic Security Service 
 | 
				
			||||||
 | 
					   Application Program Interface (GSS-API as specified in [RFC-2743]) 
 | 
				
			||||||
 | 
					   when using the Kerberos Version 5 mechanism (as specified in 
 | 
				
			||||||
 | 
					   [KRBCLAR]). 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [RFC-1964] is updated and incremental changes are proposed in 
 | 
				
			||||||
 | 
					   response to recent developments such as the introduction of Kerberos 
 | 
				
			||||||
 | 
					   crypto framework [KCRYPTO].  These changes support the inclusion of 
 | 
				
			||||||
 | 
					   new cryptosystems based on crypto profiles [KCRYPTO], by defining 
 | 
				
			||||||
 | 
					   new per-message tokens along with their encryption and checksum 
 | 
				
			||||||
 | 
					   algorithms.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					Conventions used in this document 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 
 | 
				
			||||||
 | 
					   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 
 | 
				
			||||||
 | 
					   document are to be interpreted as described in [RFC-2119]. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					1. Introduction 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                           1 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   [KCRYPTO] defines a generic framework for describing encryption and 
 | 
				
			||||||
 | 
					   checksum types to be used with the Kerberos protocol and associated 
 | 
				
			||||||
 | 
					   protocols. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [RFC-1964] describes the GSS-API mechanism for Kerberos Version 5.  
 | 
				
			||||||
 | 
					   It defines the format of context establishment, per-message and 
 | 
				
			||||||
 | 
					   context deletion tokens and uses algorithm identifiers for each 
 | 
				
			||||||
 | 
					   cryptosystem in per message and context deletion tokens.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The approach taken in this document obviates the need for algorithm 
 | 
				
			||||||
 | 
					   identifiers.  This is accomplished by using the same encryption 
 | 
				
			||||||
 | 
					   algorithm, specified by the crypto profile [KCRYPTO] for the session 
 | 
				
			||||||
 | 
					   key or subkey that is created during context negotiation, and its 
 | 
				
			||||||
 | 
					   required checksum algorithm.  Message layouts of the per-message 
 | 
				
			||||||
 | 
					   tokens are therefore revised to remove algorithm indicators and also 
 | 
				
			||||||
 | 
					   to add extra information to support the generic crypto framework 
 | 
				
			||||||
 | 
					   [KCRYPTO].  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Tokens transferred between GSS-API peers for security context 
 | 
				
			||||||
 | 
					   establishment are also described in this document.  The data 
 | 
				
			||||||
 | 
					   elements exchanged between a GSS-API endpoint implementation and the 
 | 
				
			||||||
 | 
					   Kerberos KDC are not specific to GSS-API usage and are therefore 
 | 
				
			||||||
 | 
					   defined within [KRBCLAR] rather than within this specification. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The new token formats specified in this memo MUST be used with all 
 | 
				
			||||||
 | 
					   "newer" encryption types [KRBCLAR] and MAY be used with "older" 
 | 
				
			||||||
 | 
					   encryption types, provided that the initiator and acceptor know, 
 | 
				
			||||||
 | 
					   from the context establishment, that they can both process these new 
 | 
				
			||||||
 | 
					   token formats. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   "Newer" encryption types are those which have been specified along 
 | 
				
			||||||
 | 
					   with or since the new Kerberos cryptosystem specification [KCRYPTO], 
 | 
				
			||||||
 | 
					   as defined in section 3.1.3 of [KRBCLAR].  The list of not-newer 
 | 
				
			||||||
 | 
					   encryption types is as follows [KCRYPTO]: 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					             Encryption Type             Assigned Number     
 | 
				
			||||||
 | 
					           ---------------------------------------------- 
 | 
				
			||||||
 | 
					            des-cbc-crc                        1              
 | 
				
			||||||
 | 
					            des-cbc-md4                        2              
 | 
				
			||||||
 | 
					            des-cbc-md5                        3              
 | 
				
			||||||
 | 
					            des3-cbc-md5                       5 
 | 
				
			||||||
 | 
					            des3-cbc-sha1                      7 
 | 
				
			||||||
 | 
					            dsaWithSHA1-CmsOID                 9            
 | 
				
			||||||
 | 
					            md5WithRSAEncryption-CmsOID       10            
 | 
				
			||||||
 | 
					            sha1WithRSAEncryption-CmsOID      11           
 | 
				
			||||||
 | 
					            rc2CBC-EnvOID                     12            
 | 
				
			||||||
 | 
					            rsaEncryption-EnvOID              13    
 | 
				
			||||||
 | 
					            rsaES-OAEP-ENV-OID                14    
 | 
				
			||||||
 | 
					            des-ede3-cbc-Env-OID              15            
 | 
				
			||||||
 | 
					            des3-cbc-sha1-kd                  16                       
 | 
				
			||||||
 | 
					            rc4-hmac                          23          
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Note that in this document, the term "little endian order" is used 
 | 
				
			||||||
 | 
					   for brevity to refer to the least-significant-octet-first encoding,
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                           2 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   while the term "big endian order" is for the most-significant-octet-
 | 
				
			||||||
 | 
					   first encoding. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					2. Key Derivation for Per-Message Tokens 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   To limit the exposure of a given key, [KCRYPTO] adopted "one-way" 
 | 
				
			||||||
 | 
					   "entropy-preserving" derived keys, for different purposes or key 
 | 
				
			||||||
 | 
					   usages, from a base key or protocol key.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   This document defines four key usage values below that are used to 
 | 
				
			||||||
 | 
					   derive a specific key for signing and sealing messages, from the 
 | 
				
			||||||
 | 
					   session key or subkey [KRBCLAR] created during the context 
 | 
				
			||||||
 | 
					   establishment. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					        Name                         Value 
 | 
				
			||||||
 | 
					      ------------------------------------- 
 | 
				
			||||||
 | 
					       KG-USAGE-ACCEPTOR-SEAL         22 
 | 
				
			||||||
 | 
					       KG-USAGE-ACCEPTOR-SIGN         23 
 | 
				
			||||||
 | 
					       KG-USAGE-INITIATOR-SEAL        24 
 | 
				
			||||||
 | 
					       KG-USAGE-INITIATOR-SIGN        25 
 | 
				
			||||||
 | 
					          
 | 
				
			||||||
 | 
					   When the sender is the context acceptor, KG-USAGE-ACCEPTOR-SIGN is 
 | 
				
			||||||
 | 
					   used as the usage number in the key derivation function for deriving 
 | 
				
			||||||
 | 
					   keys to be used in MIC tokens, and KG-USAGE-ACCEPTOR-SEAL is used 
 | 
				
			||||||
 | 
					   for Wrap tokens; similarly when the sender is the context initiator, 
 | 
				
			||||||
 | 
					   KG-USAGE-INITIATOR-SIGN is used as the usage number in the key 
 | 
				
			||||||
 | 
					   derivation function for MIC tokens, KG-USAGE-INITIATOR-SEAL is used 
 | 
				
			||||||
 | 
					   for Wrap Tokens.  Even if the Wrap token does not provide for 
 | 
				
			||||||
 | 
					   confidentiality the same usage values specified above are used. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   During the context initiation and acceptance sequence, the acceptor 
 | 
				
			||||||
 | 
					   MAY assert a subkey, and if so, subsequent messages MUST use this 
 | 
				
			||||||
 | 
					   subkey as the protocol key and these messages MUST be flagged as 
 | 
				
			||||||
 | 
					   "AcceptorSubkey" as described in section 4.2.2. 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					3. Quality of Protection 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   The GSS-API specification [RFC-2743] provides for Quality of 
 | 
				
			||||||
 | 
					   Protection (QOP) values that can be used by applications to request 
 | 
				
			||||||
 | 
					   a certain type of encryption or signing.  A zero QOP value is used 
 | 
				
			||||||
 | 
					   to indicate the "default" protection; applications which do not use 
 | 
				
			||||||
 | 
					   the default QOP are not guaranteed to be portable across 
 | 
				
			||||||
 | 
					   implementations or even inter-operate with different deployment 
 | 
				
			||||||
 | 
					   configurations of the same implementation.  Using an algorithm that 
 | 
				
			||||||
 | 
					   is different from the one for which the key is defined may not be 
 | 
				
			||||||
 | 
					   appropriate.  Therefore, when the new method in this document is 
 | 
				
			||||||
 | 
					   used, the QOP value is ignored. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The encryption and checksum algorithms in per-message tokens are now 
 | 
				
			||||||
 | 
					   implicitly defined by the algorithms associated with the session key 
 | 
				
			||||||
 | 
					   or subkey.  Algorithms identifiers as described in [RFC-1964] are 
 | 
				
			||||||
 | 
					   therefore no longer needed and removed from the new token headers. 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					4. Definitions and Token Formats 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                           3 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   This section provides terms and definitions, as well as descriptions 
 | 
				
			||||||
 | 
					   for tokens specific to the Kerberos Version 5 GSS-API mechanism. 
 | 
				
			||||||
 | 
					                                    
 | 
				
			||||||
 | 
					4.1. Context Establishment Tokens 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   All context establishment tokens emitted by the Kerberos V5 GSS-API 
 | 
				
			||||||
 | 
					   mechanism will have the framing shown below: 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					         GSS-API DEFINITIONS ::= 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					         BEGIN 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					         MechType ::= OBJECT IDENTIFIER 
 | 
				
			||||||
 | 
					         -- representing Kerberos V5 mechanism 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					         GSSAPI-Token ::= 
 | 
				
			||||||
 | 
					         -- option indication (delegation, etc.) indicated within 
 | 
				
			||||||
 | 
					         -- mechanism-specific token 
 | 
				
			||||||
 | 
					         [APPLICATION 0] IMPLICIT SEQUENCE { 
 | 
				
			||||||
 | 
					                 thisMech MechType, 
 | 
				
			||||||
 | 
					                 innerToken ANY DEFINED BY thisMech 
 | 
				
			||||||
 | 
					                    -- contents mechanism-specific 
 | 
				
			||||||
 | 
					                    -- ASN.1 structure not required 
 | 
				
			||||||
 | 
					                 } 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					         END 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Where the notation and encoding of this pseudo ASN.1 header, which 
 | 
				
			||||||
 | 
					   is referred as the generic GSS-API token framing later in this 
 | 
				
			||||||
 | 
					   document, are described in [RFC-2743], and the innerToken field 
 | 
				
			||||||
 | 
					   starts with a two-octet token-identifier (TOK_ID) expressed in big 
 | 
				
			||||||
 | 
					   endian order, followed by a Kerberos message.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Here are the TOK_ID values used in the context establishment tokens: 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					         Token               TOK_ID Value in Hex  
 | 
				
			||||||
 | 
					        ----------------------------------------- 
 | 
				
			||||||
 | 
					         KRB_AP_REQUEST        01 00 
 | 
				
			||||||
 | 
					         KRB_AP_REPLY          02 00 
 | 
				
			||||||
 | 
					         KRB_ERROR             03 00 
 | 
				
			||||||
 | 
					             
 | 
				
			||||||
 | 
					   Where Kerberos message KRB_AP_REQUEST, KRB_AP_REPLY, and KRB_ERROR 
 | 
				
			||||||
 | 
					   are defined in [KRBCLAR].   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   If an unknown token identifier (TOK_ID) is received in the initial 
 | 
				
			||||||
 | 
					   context estalishment token, the receiver MUST return 
 | 
				
			||||||
 | 
					   GSS_S_CONTINUE_NEEDED major status, and the returned output token 
 | 
				
			||||||
 | 
					   MUST contain a KRB_ERROR message with the error code 
 | 
				
			||||||
 | 
					   KRB_AP_ERR_MSG_TYPE [KRBCLAR]. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					4.1.1. Authenticator Checksum 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                           4 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   The authenticator in the KRB_AP_REQ message MUST include the 
 | 
				
			||||||
 | 
					   optional sequence number and the checksum field.  The checksum field 
 | 
				
			||||||
 | 
					   is used to convey service flags, channel bindings, and optional 
 | 
				
			||||||
 | 
					   delegation information.  The checksum type MUST be 0x8003.  The 
 | 
				
			||||||
 | 
					   length of the checksum MUST be 24 octets when delegation is not 
 | 
				
			||||||
 | 
					   used.  When delegation is used, a ticket-granting ticket will be 
 | 
				
			||||||
 | 
					   transferred in a KRB_CRED message.  This ticket SHOULD have its 
 | 
				
			||||||
 | 
					   forwardable flag set.  The KRB_CRED message MUST be encrypted in the 
 | 
				
			||||||
 | 
					   session key of the ticket used to authenticate the context. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The format of the authenticator checksum field is as follows. 
 | 
				
			||||||
 | 
					       
 | 
				
			||||||
 | 
					      Octet    Name      Description 
 | 
				
			||||||
 | 
					     ----------------------------------------------------------------- 
 | 
				
			||||||
 | 
					      0..3    Lgth    Number of octets in Bnd field;  Currently  
 | 
				
			||||||
 | 
					                      contains hex value 10 00 00 00 (16, represented  
 | 
				
			||||||
 | 
					                      in little-endian order) 
 | 
				
			||||||
 | 
					      4..19   Bnd     Channel binding information, as described in  
 | 
				
			||||||
 | 
					                      section 4.1.1.2. 
 | 
				
			||||||
 | 
					      20..23  Flags   Four-octet context-establishment flags in little- 
 | 
				
			||||||
 | 
					                      endian order as described in section 4.1.1.1.  
 | 
				
			||||||
 | 
					      24..25  DlgOpt  The Delegation Option identifier (=1) [optional] 
 | 
				
			||||||
 | 
					      26..27  Dlgth   The length of the Deleg field [optional] 
 | 
				
			||||||
 | 
					      28..n   Deleg   A KRB_CRED message (n = Dlgth + 29) [optional] 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					4.1.1.1. Checksum Flags Field 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The checksum "Flags" field is used to convey service options or 
 | 
				
			||||||
 | 
					   extension negotiation information.  The following context 
 | 
				
			||||||
 | 
					   establishment flags are defined in [RFC-2744]. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					        Flag Name              Value     
 | 
				
			||||||
 | 
					      --------------------------------- 
 | 
				
			||||||
 | 
					       GSS_C_DELEG_FLAG           1        
 | 
				
			||||||
 | 
					       GSS_C_MUTUAL_FLAG          2       
 | 
				
			||||||
 | 
					       GSS_C_REPLAY_FLAG          4       
 | 
				
			||||||
 | 
					       GSS_C_SEQUENCE_FLAG        8        
 | 
				
			||||||
 | 
					       GSS_C_CONF_FLAG           16      
 | 
				
			||||||
 | 
					       GSS_C_INTEG_FLAG          32     
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					   Context establishment flags are exposed to the calling application.  
 | 
				
			||||||
 | 
					   If the calling application desires a particular service option then 
 | 
				
			||||||
 | 
					   it requests that option via GSS_Init_sec_context() [RFC-2743].  An 
 | 
				
			||||||
 | 
					   implementation that supports a particular option or extension SHOULD 
 | 
				
			||||||
 | 
					   then set the appropriate flag in the checksum Flags field.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The most significant eight bits of the checksum flags are reserved 
 | 
				
			||||||
 | 
					   for future use.  The receiver MUST ignore unknown checksum flags. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					4.1.1.2. Channel Binding Information 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   Channel bindings are user-specified tags to identify a given context 
 | 
				
			||||||
 | 
					   to the peer application.  These tags are intended to be used to 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                           5 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   identify the particular communications channel that carries the 
 | 
				
			||||||
 | 
					   context [RFC-2743] [RFC-2744]. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   When using C language bindings, channel bindings are communicated to 
 | 
				
			||||||
 | 
					   the GSS-API using the following structure [RFC-2744]: 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					      typedef struct gss_channel_bindings_struct { 
 | 
				
			||||||
 | 
					         OM_uint32       initiator_addrtype; 
 | 
				
			||||||
 | 
					         gss_buffer_desc initiator_address; 
 | 
				
			||||||
 | 
					         OM_uint32       acceptor_addrtype; 
 | 
				
			||||||
 | 
					         gss_buffer_desc acceptor_address; 
 | 
				
			||||||
 | 
					         gss_buffer_desc application_data; 
 | 
				
			||||||
 | 
					      } *gss_channel_bindings_t; 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The member fields and constants used for different address types are 
 | 
				
			||||||
 | 
					   defined in [RFC-2744]. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The "Bnd" field contains the MD5 hash of channel bindings, taken 
 | 
				
			||||||
 | 
					   over all non-null components of bindings, in order of declaration.  
 | 
				
			||||||
 | 
					   Integer fields within channel bindings are represented in little-
 | 
				
			||||||
 | 
					   endian order for the purposes of the MD5 calculation. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   In computing the contents of the Bnd field, the following detailed 
 | 
				
			||||||
 | 
					   points apply:  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   (1) Each integer field shall be formatted into four octets, using 
 | 
				
			||||||
 | 
					   little endian octet ordering, for purposes of MD5 hash computation.  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   (2) All input length fields within gss_buffer_desc elements of a 
 | 
				
			||||||
 | 
					   gss_channel_bindings_struct even those which are zero-valued, shall 
 | 
				
			||||||
 | 
					   be included in the hash calculation; the value elements of 
 | 
				
			||||||
 | 
					   gss_buffer_desc elements shall be dereferenced, and the resulting 
 | 
				
			||||||
 | 
					   data shall be included within the hash computation, only for the 
 | 
				
			||||||
 | 
					   case of gss_buffer_desc elements having non-zero length specifiers.  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   (3) If the caller passes the value GSS_C_NO_BINDINGS instead of a 
 | 
				
			||||||
 | 
					   valid channel binding structure, the Bnd field shall be set to 16 
 | 
				
			||||||
 | 
					   zero-valued octets.  
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					4.2. Per-Message Tokens 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Two classes of tokens are defined in this section:  "MIC" tokens, 
 | 
				
			||||||
 | 
					   emitted by calls to GSS_GetMIC() and consumed by calls to 
 | 
				
			||||||
 | 
					   GSS_VerifyMIC(), "Wrap" tokens, emitted by calls to GSS_Wrap() and 
 | 
				
			||||||
 | 
					   consumed by calls to GSS_Unwrap(). 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The new per-message tokens introduced here do not include the 
 | 
				
			||||||
 | 
					   generic GSS-API token framing used by the context establishment 
 | 
				
			||||||
 | 
					   tokens.  These new tokens are designed to be used with newer crypto 
 | 
				
			||||||
 | 
					   systems that can, for example, have variable-size checksums.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					4.2.1. Sequence Number 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                           6 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   To distinguish intentionally-repeated messages from maliciously-
 | 
				
			||||||
 | 
					   replayed ones, per-message tokens contain a sequence number field, 
 | 
				
			||||||
 | 
					   which is a 64 bit integer expressed in big endian order.  After 
 | 
				
			||||||
 | 
					   sending a GSS_GetMIC() or GSS_Wrap() token, the sender's sequence 
 | 
				
			||||||
 | 
					   numbers are incremented by one. 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					4.2.2. Flags Field 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   The "Flags" field is a one-octet integer used to indicate a set of 
 | 
				
			||||||
 | 
					   attributes for the protected message.  For example, one flag is 
 | 
				
			||||||
 | 
					   allocated as the direction-indicator, thus preventing an adversary 
 | 
				
			||||||
 | 
					   from sending back the same message in the reverse direction and 
 | 
				
			||||||
 | 
					   having it accepted.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The meanings of bits in this field (the least significant bit is bit 
 | 
				
			||||||
 | 
					   0) are as follows: 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					        Bit    Name             Description 
 | 
				
			||||||
 | 
					       --------------------------------------------------------------- 
 | 
				
			||||||
 | 
					        0   SentByAcceptor    When set, this flag indicates the sender  
 | 
				
			||||||
 | 
					                              is the context acceptor.  When not set, 
 | 
				
			||||||
 | 
					                              it indicates the sender is the context  
 | 
				
			||||||
 | 
					                              initiator. 
 | 
				
			||||||
 | 
					        1   Sealed            When set in Wrap tokens, this flag  
 | 
				
			||||||
 | 
					                              indicates confidentiality is provided  
 | 
				
			||||||
 | 
					                              for.  It SHALL NOT be set in MIC tokens. 
 | 
				
			||||||
 | 
					        2   AcceptorSubkey    A subkey asserted by the context acceptor 
 | 
				
			||||||
 | 
					                              is used to protect the message. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The rest of available bits are reserved for future use and MUST be 
 | 
				
			||||||
 | 
					   cleared.  The receiver MUST ignore unknown flags. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					4.2.3. EC Field 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   The "EC" (Extra Count) field is a two-octet integer field expressed 
 | 
				
			||||||
 | 
					   in big endian order.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   In Wrap tokens with confidentiality, the EC field is used to encode 
 | 
				
			||||||
 | 
					   the number of octets in the filler, as described in section 4.2.4. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   In Wrap tokens without confidentiality, the EC field is used to 
 | 
				
			||||||
 | 
					   encode the number of octets in the trailing checksum, as described 
 | 
				
			||||||
 | 
					   in section 4.2.4.   
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					4.2.4. Encryption and Checksum Operations 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The encryption algorithms defined by the crypto profiles provide for 
 | 
				
			||||||
 | 
					   integrity protection [KCRYPTO].  Therefore no separate checksum is 
 | 
				
			||||||
 | 
					   needed.  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The result of decryption can be longer than the original plaintext 
 | 
				
			||||||
 | 
					   [KCRYPTO] and the extra trailing octets are called "crypto-system 
 | 
				
			||||||
 | 
					   garbage".  However, given the size of any plaintext data, one can 
 | 
				
			||||||
 | 
					   always find the next (possibly larger) size so that, when padding 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                           7 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   the to-be-encrypted text to that size, there will be no crypto-
 | 
				
			||||||
 | 
					   system garbage added [KCRYPTO].  
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   In Wrap tokens that provide for confidentiality, the first 16 octets 
 | 
				
			||||||
 | 
					   of the Wrap token (the "header", as defined in section 4.2.6), are 
 | 
				
			||||||
 | 
					   appended to the plaintext data before encryption.  Filler octets can 
 | 
				
			||||||
 | 
					   be inserted between the plaintext data and the "header", and the 
 | 
				
			||||||
 | 
					   values and size of the filler octets are chosen by implementations, 
 | 
				
			||||||
 | 
					   such that there is no crypto-system garbage present after the 
 | 
				
			||||||
 | 
					   decryption.  The resulting Wrap token is {"header" | 
 | 
				
			||||||
 | 
					   encrypt(plaintext-data | filler | "header")}, where encrypt() is the 
 | 
				
			||||||
 | 
					   encryption operation (which provides for integrity protection) 
 | 
				
			||||||
 | 
					   defined in the crypto profile [KCRYPTO], and the RRC field in the 
 | 
				
			||||||
 | 
					   to-be-encrypted header contains the hex value 00 00.   
 | 
				
			||||||
 | 
					           
 | 
				
			||||||
 | 
					   In Wrap tokens that do not provide for confidentiality, the checksum 
 | 
				
			||||||
 | 
					   is calculated first over the to-be-signed plaintext data, and then 
 | 
				
			||||||
 | 
					   the first 16 octets of the Wrap token (the "header", as defined in 
 | 
				
			||||||
 | 
					   section 4.2.6).  Both the EC field and the RRC field in the token 
 | 
				
			||||||
 | 
					   header are filled with zeroes for the purpose of calculating the 
 | 
				
			||||||
 | 
					   checksum.  The resulting Wrap token is {"header" | plaintext-data | 
 | 
				
			||||||
 | 
					   get_mic(plaintext-data | "header")},  where get_mic() is the 
 | 
				
			||||||
 | 
					   checksum operation for the required checksum mechanism of the chosen 
 | 
				
			||||||
 | 
					   encryption mechanism defined in the crypto profile [KCRYPTO].  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The parameters for the key and the cipher-state in the encrypt() and 
 | 
				
			||||||
 | 
					   get_mic() operations have been omitted for brevity.   
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					   For MIC tokens, the checksum is first calculated over the to-be-
 | 
				
			||||||
 | 
					   signed plaintext data, and then the first 16 octets of the MIC 
 | 
				
			||||||
 | 
					   token, where the checksum mechanism is the required checksum 
 | 
				
			||||||
 | 
					   mechanism of the chosen encryption mechanism defined in the crypto 
 | 
				
			||||||
 | 
					   profile [KCRYPTO]. 
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					   The resulting Wrap and MIC tokens bind the data to the token header, 
 | 
				
			||||||
 | 
					   including the sequence number and the direction indicator.  
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					4.2.5. RRC Field 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   The "RRC" (Right Rotation Count) field in Wrap tokens is added to 
 | 
				
			||||||
 | 
					   allow the data to be encrypted in-place by existing [SSPI] 
 | 
				
			||||||
 | 
					   applications that do not provide an additional buffer for the 
 | 
				
			||||||
 | 
					   trailer (the cipher text after the in-place-encrypted data) in 
 | 
				
			||||||
 | 
					   addition to the buffer for the header (the cipher text before the 
 | 
				
			||||||
 | 
					   in-place-encrypted data).  The resulting Wrap token in the previous 
 | 
				
			||||||
 | 
					   section, excluding the first 16 octets of the token header, is 
 | 
				
			||||||
 | 
					   rotated to the right by "RRC" octets.  The net result is that "RRC" 
 | 
				
			||||||
 | 
					   octets of trailing octets are moved toward the header.  Consider the 
 | 
				
			||||||
 | 
					   following as an example of this rotation operation:  Assume that the 
 | 
				
			||||||
 | 
					   RRC value is 3 and the token before the rotation is {"header" | aa | 
 | 
				
			||||||
 | 
					   bb | cc | dd | ee | ff | gg | hh}, the token after rotation would be 
 | 
				
			||||||
 | 
					   {"header" | ff | gg | hh | aa | bb | cc | dd | ee }, where {aa | bb 
 | 
				
			||||||
 | 
					   | cc |...| hh} is used to indicate the octet sequence. 
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                           8 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   The RRC field is expressed as a two-octet integer in big endian 
 | 
				
			||||||
 | 
					   order. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The rotation count value is chosen by the sender based on 
 | 
				
			||||||
 | 
					   implementation details, and the receiver MUST be able to interpret 
 | 
				
			||||||
 | 
					   all possible rotation count values. 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					4.2.6. Message Layouts 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Per-message tokens start with a two-octet token identifier (TOK_ID) 
 | 
				
			||||||
 | 
					   field, expressed in big endian order.  These tokens are defined 
 | 
				
			||||||
 | 
					   separately in subsequent sub-sections. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					4.2.6.1. MIC Tokens 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Use of the GSS_GetMIC() call yields a token, separate from the user  
 | 
				
			||||||
 | 
					   data being protected, which can be used to verify the integrity of  
 | 
				
			||||||
 | 
					   that data as received.  The token has the following format: 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					      Octet no     Name       Description 
 | 
				
			||||||
 | 
					      ----------------------------------------------------------------- 
 | 
				
			||||||
 | 
					       0..1     TOK_ID     Identification field.  Tokens emitted by  
 | 
				
			||||||
 | 
					                           GSS_GetMIC() contain the hex value 04 04  
 | 
				
			||||||
 | 
					                           expressed in big endian order in this field. 
 | 
				
			||||||
 | 
					       2        Flags      Attributes field, as described in section  
 | 
				
			||||||
 | 
					                           4.2.2. 
 | 
				
			||||||
 | 
					       3..7     Filler     Contains five octets of hex value FF. 
 | 
				
			||||||
 | 
					       8..15    SND_SEQ    Sequence number field in clear text,  
 | 
				
			||||||
 | 
					                           expressed in big endian order.  
 | 
				
			||||||
 | 
					       16..last SGN_CKSUM  Checksum of octet 0..15 and the "to-be- 
 | 
				
			||||||
 | 
					                           signed" data, as described in section 4.2.4. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The Filler field is included in the checksum calculation for 
 | 
				
			||||||
 | 
					   simplicity.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					4.2.6.2. Wrap Tokens 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Use of the GSS_Wrap() call yields a token, which consists of a 
 | 
				
			||||||
 | 
					   descriptive header, followed by a body portion that contains either 
 | 
				
			||||||
 | 
					   the input user data in plaintext concatenated with the checksum, or 
 | 
				
			||||||
 | 
					   the input user data encrypted.  The GSS_Wrap() token has the 
 | 
				
			||||||
 | 
					   following format: 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					      Octet no     Name       Description 
 | 
				
			||||||
 | 
					      --------------------------------------------------------------- 
 | 
				
			||||||
 | 
					       0..1     TOK_ID     Identification field.  Tokens emitted by  
 | 
				
			||||||
 | 
					                           GSS_Wrap() contain the the hex value 05 04                 
 | 
				
			||||||
 | 
					                           expressed in big endian order in this field. 
 | 
				
			||||||
 | 
					       2        Flags      Attributes field, as described in section  
 | 
				
			||||||
 | 
					                           4.2.2. 
 | 
				
			||||||
 | 
					       3        Filler     Contains the hex value FF. 
 | 
				
			||||||
 | 
					       4..5     EC         Contains the "extra count" field, in big  
 | 
				
			||||||
 | 
					                           endian order as described in section 4.2.3. 
 | 
				
			||||||
 | 
					       6..7     RRC        Contains the "right rotation count" in big  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                           9 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					                           endian order, as described in section 4.2.5. 
 | 
				
			||||||
 | 
					       8..15    SND_SEQ    Sequence number field in clear text, 
 | 
				
			||||||
 | 
					                           expressed in big endian order. 
 | 
				
			||||||
 | 
					       16..last Data       Encrypted data for Wrap tokens with  
 | 
				
			||||||
 | 
					                           confidentiality, or plaintext data followed  
 | 
				
			||||||
 | 
					                           by the checksum for Wrap tokens without  
 | 
				
			||||||
 | 
					                           confidentiality, as described in section  
 | 
				
			||||||
 | 
					                           4.2.4.         
 | 
				
			||||||
 | 
					             
 | 
				
			||||||
 | 
					4.3. Context Deletion Tokens 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   Context deletion tokens are empty in this mechanism.  Both peers to 
 | 
				
			||||||
 | 
					   a security context invoke GSS_Delete_sec_context() [RFC-2743] 
 | 
				
			||||||
 | 
					   independently, passing a null output_context_token buffer to 
 | 
				
			||||||
 | 
					   indicate that no context_token is required.  Implementations of 
 | 
				
			||||||
 | 
					   GSS_Delete_sec_context() should delete relevant locally-stored 
 | 
				
			||||||
 | 
					   context information. 
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					4.4. Token Identifier Assignment Considerations 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Token identifiers (TOK_ID) from 0x60 0x00 through 0x60 0xFF 
 | 
				
			||||||
 | 
					   inclusive are reserved and SHALL NOT be assigned.  Thus by examining 
 | 
				
			||||||
 | 
					   the first two octets of a token, one can tell unambiguously if it is 
 | 
				
			||||||
 | 
					   wrapped with the generic GSS-API token framing.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					5. Parameter Definitions 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   This section defines parameter values used by the Kerberos V5 GSS-
 | 
				
			||||||
 | 
					   API mechanism.  It defines interface elements in support of 
 | 
				
			||||||
 | 
					   portability, and assumes use of C language bindings per [RFC-2744]. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					5.1. Minor Status Codes 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   This section recommends common symbolic names for minor_status 
 | 
				
			||||||
 | 
					   values to be returned by the Kerberos V5 GSS-API mechanism.  Use of 
 | 
				
			||||||
 | 
					   these definitions will enable independent implementers to enhance 
 | 
				
			||||||
 | 
					   application portability across different implementations of the 
 | 
				
			||||||
 | 
					   mechanism defined in this specification.  (In all cases, 
 | 
				
			||||||
 | 
					   implementations of GSS_Display_status() will enable callers to 
 | 
				
			||||||
 | 
					   convert minor_status indicators to text representations.)  Each 
 | 
				
			||||||
 | 
					   implementation should make available, through include files or other 
 | 
				
			||||||
 | 
					   means, a facility to translate these symbolic names into the 
 | 
				
			||||||
 | 
					   concrete values which a particular GSS-API implementation uses to 
 | 
				
			||||||
 | 
					   represent the minor_status values specified in this section.  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   It is recognized that this list may grow over time, and that the 
 | 
				
			||||||
 | 
					   need for additional minor_status codes specific to particular 
 | 
				
			||||||
 | 
					   implementations may arise.  It is recommended, however, that 
 | 
				
			||||||
 | 
					   implementations should return a minor_status value as defined on a 
 | 
				
			||||||
 | 
					   mechanism-wide basis within this section when that code is 
 | 
				
			||||||
 | 
					   accurately representative of reportable status rather than using a 
 | 
				
			||||||
 | 
					   separate, implementation-defined code.  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					5.1.1. Non-Kerberos-specific codes 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                          10 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_G_BAD_SERVICE_NAME  
 | 
				
			||||||
 | 
					              /* "No @ in SERVICE-NAME name string" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_G_BAD_STRING_UID 
 | 
				
			||||||
 | 
					              /* "STRING-UID-NAME contains nondigits" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_G_NOUSER 
 | 
				
			||||||
 | 
					              /* "UID does not resolve to username" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_G_VALIDATE_FAILED 
 | 
				
			||||||
 | 
					              /* "Validation error" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_G_BUFFER_ALLOC 
 | 
				
			||||||
 | 
					              /* "Couldn't allocate gss_buffer_t data" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_G_BAD_MSG_CTX 
 | 
				
			||||||
 | 
					              /* "Message context invalid" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_G_WRONG_SIZE 
 | 
				
			||||||
 | 
					              /* "Buffer is the wrong size" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_G_BAD_USAGE 
 | 
				
			||||||
 | 
					              /* "Credential usage type is unknown" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_G_UNKNOWN_QOP 
 | 
				
			||||||
 | 
					              /* "Unknown quality of protection specified" */ 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					5.1.2. Kerberos-specific-codes 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					      GSS_KRB5_S_KG_CCACHE_NOMATCH  
 | 
				
			||||||
 | 
					              /* "Client principal in credentials does not match   
 | 
				
			||||||
 | 
					                 specified name" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_KG_KEYTAB_NOMATCH 
 | 
				
			||||||
 | 
					              /* "No key available for specified service principal" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_KG_TGT_MISSING 
 | 
				
			||||||
 | 
					              /* "No Kerberos ticket-granting ticket available" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_KG_NO_SUBKEY 
 | 
				
			||||||
 | 
					              /* "Authenticator has no subkey" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_KG_CONTEXT_ESTABLISHED 
 | 
				
			||||||
 | 
					              /* "Context is already fully established" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_KG_BAD_SIGN_TYPE 
 | 
				
			||||||
 | 
					              /* "Unknown signature type in token" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_KG_BAD_LENGTH 
 | 
				
			||||||
 | 
					              /* "Invalid field length in token" */ 
 | 
				
			||||||
 | 
					      GSS_KRB5_S_KG_CTX_INCOMPLETE 
 | 
				
			||||||
 | 
					              /* "Attempt to use incomplete security context" */ 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					5.2. Buffer Sizes 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   All implementations of this specification shall be capable of 
 | 
				
			||||||
 | 
					   accepting buffers of at least 16K octets as input to GSS_GetMIC(), 
 | 
				
			||||||
 | 
					   GSS_VerifyMIC(), and GSS_Wrap(), and shall be capable of accepting 
 | 
				
			||||||
 | 
					   the output_token generated by GSS_Wrap() for a 16K octet input 
 | 
				
			||||||
 | 
					   buffer as input to GSS_Unwrap().  Support for larger buffer sizes is 
 | 
				
			||||||
 | 
					   optional but recommended. 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					6. Backwards Compatibility Considerations 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   The new token formats defined in this document will only be 
 | 
				
			||||||
 | 
					   recognized by new implementations.  To address this, implementations 
 | 
				
			||||||
 | 
					   can always use the explicit sign or seal algorithm in [RFC-1964] 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                          11 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   when the key type corresponds to "older" enctypes.  An alternative 
 | 
				
			||||||
 | 
					   approach might be to retry sending the message with the sign or seal 
 | 
				
			||||||
 | 
					   algorithm explicitly defined as in [RFC-1964].  However this would 
 | 
				
			||||||
 | 
					   require either the use of a mechanism such as [RFC-2478] to securely 
 | 
				
			||||||
 | 
					   negotiate the method or the use out of band mechanism to choose 
 | 
				
			||||||
 | 
					   appropriate mechanism.  For this reason, it is RECOMMENDED that the 
 | 
				
			||||||
 | 
					   new token formats defined in this document SHOULD be used only if 
 | 
				
			||||||
 | 
					   both peers are known to support the new mechanism during context 
 | 
				
			||||||
 | 
					   negotiation because of, for example, the use of "new" enctypes. 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   GSS_Unwrap() or GSS_Verify_MIC() can process a message token as 
 | 
				
			||||||
 | 
					   follows: it can look at the first octet of the token header, if it 
 | 
				
			||||||
 | 
					   is 0x60 then the token must carry the generic GSS-API pseudo ASN.1 
 | 
				
			||||||
 | 
					   framing, otherwise the first two octets of the token contain the 
 | 
				
			||||||
 | 
					   TOK_ID that uniquely identify the token message format. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					7. Security Considerations 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Under the current mechanism, no negotiation of algorithm types 
 | 
				
			||||||
 | 
					   occurs, so server-side (acceptor) implementations cannot request 
 | 
				
			||||||
 | 
					   that clients not use algorithm types not understood by the server. 
 | 
				
			||||||
 | 
					   However, administration of the server's Kerberos data (e.g., the 
 | 
				
			||||||
 | 
					   service key) has to be done in communication with the KDC, and it is 
 | 
				
			||||||
 | 
					   from the KDC that the client will request credentials.  The KDC 
 | 
				
			||||||
 | 
					   could therefore be given the task of limiting session keys for a 
 | 
				
			||||||
 | 
					   given service to types actually supported by the Kerberos and GSSAPI 
 | 
				
			||||||
 | 
					   software on the server.   
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   This does have a drawback for cases where a service principal name 
 | 
				
			||||||
 | 
					   is used both for GSSAPI-based and non-GSSAPI-based communication 
 | 
				
			||||||
 | 
					   (most notably the "host" service key), if the GSSAPI implementation 
 | 
				
			||||||
 | 
					   does not understand (for example) AES [AES-KRB5] but the Kerberos 
 | 
				
			||||||
 | 
					   implementation does.  It means that AES session keys cannot be 
 | 
				
			||||||
 | 
					   issued for that service principal, which keeps the protection of 
 | 
				
			||||||
 | 
					   non-GSSAPI services weaker than necessary.  KDC administrators 
 | 
				
			||||||
 | 
					   desiring to limit the session key types to support interoperability 
 | 
				
			||||||
 | 
					   with such GSSAPI implementations should carefully weigh the 
 | 
				
			||||||
 | 
					   reduction in protection offered by such mechanisms against the 
 | 
				
			||||||
 | 
					   benefits of interoperability. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					8. Acknowledgments 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					  Ken Raeburn and Nicolas Williams corrected many of our errors in the 
 | 
				
			||||||
 | 
					  use of generic profiles and were instrumental in the creation of this 
 | 
				
			||||||
 | 
					  memo.  
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  The text for security considerations was contributed by Ken Raeburn. 
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  Sam Hartman and Ken Raeburn suggested the "floating trailer" idea, 
 | 
				
			||||||
 | 
					  namely the encoding of the RRC field.   
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  Sam Hartman and Nicolas Williams recommended the replacing our 
 | 
				
			||||||
 | 
					  earlier key derivation function for directional keys with different 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                          12 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					  key usage numbers for each direction as well as retaining the 
 | 
				
			||||||
 | 
					  directional bit for maximum compatibility.   
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  Paul Leach provided numerous suggestions and comments.  
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  Scott Field, Richard Ward, Dan Simon, and Kevin Damour also provided 
 | 
				
			||||||
 | 
					  valuable inputs on this memo. 
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  Jeffrey Hutzelman provided comments on channel bindings and suggested 
 | 
				
			||||||
 | 
					  many editorial changes. 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					  Luke Howard provided implementations of this memo for the Heimdal 
 | 
				
			||||||
 | 
					  code base, and helped inter-operability testing with the Microsoft 
 | 
				
			||||||
 | 
					  code base, together with Love Hornquist Astrand.  These experiments 
 | 
				
			||||||
 | 
					  formed the basis of this memo. 
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  Martin Rex provided suggestions of TOK_ID assignment recommendations 
 | 
				
			||||||
 | 
					  thus the token tagging in this memo is unambiguous if the token is 
 | 
				
			||||||
 | 
					  wrapped with the pseudo ASN.1 header.  
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  This document retains some of the text of RFC-1964 in relevant 
 | 
				
			||||||
 | 
					  sections. 
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					9. References 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					9.1. Normative References 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [RFC-2026] Bradner, S., "The Internet Standards Process -- Revision 
 | 
				
			||||||
 | 
					   3", BCP 9, RFC 2026, October 1996.  
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					   [RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate 
 | 
				
			||||||
 | 
					   Requirement Levels", BCP 14, RFC 2119, March 1997. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [RFC-2743] Linn, J., "Generic Security Service Application Program    
 | 
				
			||||||
 | 
					   Interface Version 2, Update 1", RFC 2743, January 2000. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [RFC-2744] Wray, J., "Generic Security Service API Version 2: C-
 | 
				
			||||||
 | 
					   bindings", RFC 2744, January 2000. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [RFC-1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",    
 | 
				
			||||||
 | 
					   RFC 1964, June 1996. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [KCRYPTO] Raeburn, K., "Encryption and Checksum Specifications for 
 | 
				
			||||||
 | 
					   Kerberos 5", draft-ietf-krb-wg-crypto-05.txt, June, 2003.  Work in 
 | 
				
			||||||
 | 
					   progress.  
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [KRBCLAR] Neuman, C., Kohl, J., Ts'o T., Yu T., Hartman, S.,    
 | 
				
			||||||
 | 
					   Raeburn, K., "The Kerberos Network Authentication Service (V5)",    
 | 
				
			||||||
 | 
					   draft-ietf-krb-wg-kerberos-clarifications-04.txt, February 2002. 
 | 
				
			||||||
 | 
					   Work in progress. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [AES-KRB5] Raeburn, K., "AES Encryption for Kerberos 5", draft-
 | 
				
			||||||
 | 
					   raeburn-krb-rijndael-krb-05.txt, June 2003.  Work in progress. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                          13 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   [RFC-2478] Baize, E., Pinkas D., "The Simple and Protected GSS-API 
 | 
				
			||||||
 | 
					   Negotiation Mechanism", RFC 2478, December 1998. 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					9.2. Informative References 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   [SSPI] Leach, P., "Security Service Provider Interface", Microsoft 
 | 
				
			||||||
 | 
					   Developer Network (MSDN), April 2003. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					10. Author's Address 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Larry Zhu 
 | 
				
			||||||
 | 
					   One Microsoft Way 
 | 
				
			||||||
 | 
					   Redmond, WA 98052 - USA 
 | 
				
			||||||
 | 
					   EMail: LZhu@microsoft.com 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   Karthik Jaganathan 
 | 
				
			||||||
 | 
					   One Microsoft Way 
 | 
				
			||||||
 | 
					   Redmond, WA 98052 - USA 
 | 
				
			||||||
 | 
					   EMail: karthikj@microsoft.com 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					   Sam Hartman 
 | 
				
			||||||
 | 
					   Massachusetts Institute of Technology 
 | 
				
			||||||
 | 
					   77 Massachusetts Avenue 
 | 
				
			||||||
 | 
					   Cambridge, MA 02139 - USA 
 | 
				
			||||||
 | 
					   Email: hartmans@MIT.EDU 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                          14 
 | 
				
			||||||
 | 
					                 Kerberos Version 5 GSS-API      November 2003 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					Full Copyright Statement 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   Copyright (C) The Internet Society (date). All Rights Reserved. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   This document and translations of it may be copied and furnished to 
 | 
				
			||||||
 | 
					   others, and derivative works that comment on or otherwise explain it 
 | 
				
			||||||
 | 
					   or assist in its implementation may be prepared, copied, published 
 | 
				
			||||||
 | 
					   and distributed, in whole or in part, without restriction of any 
 | 
				
			||||||
 | 
					   kind, provided that the above copyright notice and this paragraph 
 | 
				
			||||||
 | 
					   are included on all such copies and derivative works.  However, this 
 | 
				
			||||||
 | 
					   document itself may not be modified in any way, such as by removing 
 | 
				
			||||||
 | 
					   the copyright notice or references to the Internet Society or other 
 | 
				
			||||||
 | 
					   Internet organizations, except as needed for the purpose of 
 | 
				
			||||||
 | 
					   developing Internet standards in which case the procedures for 
 | 
				
			||||||
 | 
					   copyrights defined in the Internet Standards process must be 
 | 
				
			||||||
 | 
					   followed, or as required to translate it into languages other than 
 | 
				
			||||||
 | 
					   English. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   The limited permissions granted above are perpetual and will not be 
 | 
				
			||||||
 | 
					   revoked by the Internet Society or its successors or assigns. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					   This document and the information contained herein is provided on an 
 | 
				
			||||||
 | 
					   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING 
 | 
				
			||||||
 | 
					   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING 
 | 
				
			||||||
 | 
					   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION 
 | 
				
			||||||
 | 
					   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF 
 | 
				
			||||||
 | 
					   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Zhu                         Internet Draft                          15 
 | 
				
			||||||
		Reference in New Issue
	
	Block a user