MA0001/Task 1/tasks/4.tex

70 lines
2.0 KiB
TeX

\begin{deloppgaver}
\delo
\begin{align*}
3+2x &= 2-x\\
\cancel{3} +2x -\cancel{3} +x &= 2 -\cancel{x} -3 +\cancel{x} \\
3x &= -1\\
x &= -\frac{1}{3}\\
\end{align*}
\delo
\begin{align*}
x^2 + x &= 3 \\
x^2 + x - 3 &= 0 \\
\end{align*}
Vi bruker andregradsformelen:
\begin{equation*}
x = \frac{-b \pm \sqrt{ b^2 - 4ac }}{ 2a }
\end{equation*}
\begin{align*}
x &= \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot -3}}{ 2 \cdot 1} \\[2ex]
x &= \frac{-1 \pm \sqrt{1 - (-12)}}{2} \\[2ex]
x &= -\frac{1}{2} \pm \frac{\sqrt{13}}{2}
\end{align*}
\begin{equation*}
x = -\frac{1}{2} + \frac{\sqrt{13}}{2} \quad \vee \quad x = -\frac{1}{2} - \frac{\sqrt{13}}{2}
\end{equation*}
\delo
\begin{align*}
-x \left( x+2 \right) \left( 5x-4 \right) = 0 \\
\end{align*}
Etter nullfaktorregelen må en av faktorene være 0 for at produktet skal bli 0.
\begin{align*}
-x &= 0 &&\vee& x+2 &= 0 &&\vee& 5x-4 &=0 \\
x &= 0 &&\vee& x &= -2 &&\vee& x &= \frac{4}{5} \\
\end{align*}
\delo
\begin{align*}
\frac{x}{x+1} &= \frac{1}{3} + \frac{x-1}{3} \\[2ex]
\frac{x}{x+1} &= \frac{x}{3} \\[2ex]
\frac{3 \cdot x}{3 \cdot (x+1)} &= \frac{(x+1) \cdot x}{(x+1) \cdot 3} \\[2ex]
\frac{3x - x(x+1)}{3(x+1)} &= 0 \\[2ex]
\frac{x(3 - (x+1))}{3(x+1)} &= 0 \\[2ex]
\frac{x(-x+2)}{3(x+1)} &= 0 \\[2ex]
\end{align*}
Telleren må være 0 for at hele uttrykket skal bli 0, men x-verdien er ikke en gyldig løsning når nevner også blir 0. Vi deler opp telleren etter nullfaktorregelen:
\begin{align*}
x &= 0 &&\vee& -x+2 &= 0 \\
x &= 0 &&\vee& x &= 2 \\
\end{align*}
Om vi løser for nevneren:
\begin{equation*}
3(x+1) = 0 \rightarrow x=-1
\end{equation*}
så ser vi at begge løsningene er gyldige.
\end{deloppgaver}