Files
TMA4135/exercise9/problem2.typ

63 lines
1.6 KiB
Typst

#import "@preview/physica:0.9.6": *
= problem 2
== a)
$h(x) := f(x) g(x)$ is odd for odd $f$ and even $g$, since
$
h(x) = -f(-x) g(-x) = - (f(-x) g(-x)) = -h(-x)
$
== b)
if $f$ and $g$ are both odd or even, then $h(x) := f(x) g(x)$ is even
1. for the first case: $f$ and $g$ are both even
$
h(x) = f(x) g(x) = f(-x) g(-x) = h(-x)
$
2. for the second case: $f$ and $g$ are both odd
$
h(x) & = f(x) g(x) \
& = (-f(-x)) (-g(-x)) = f(-x) g(-x) = h(-x)
$
== c)
if $f$ is odd and $g$ is even then both $f compose g$ and $g compose f$ are
even, since
1. $f(g(x)) = f(g(-x))$, since g is even
2. $g(f(x)) = g(-f(-x)) = g(f(-x))$
== d)
if $f$ is odd and $L > 0$,
$
integral_(-L)^L f(x) dd(x) & = integral_(-L)^0 f(x) dd(x)
+ integral_0^L f(x) dd(x) \
& = integral_0^L f(-x) (-1) dd(x)
+ integral_0^L f(x) dd(x) \
& = -integral_0^L f(-x) dd(x)
+ integral_0^L f(x) dd(x) \
& = -integral_0^L f(x) dd(x)
+ integral_0^L f(x) dd(x) \
& = 0
$
== e)
if $f$ is even and $L > 0$,
$
integral_(-L)^L f(x) dd(x) & = integral_(-L)^0 f(x) dd(x)
+ integral_0^L f(x) dd(x) \
& = integral_0^L f(-x) dd(x)
+ integral_0^L f(x) dd(x) \
& = integral_0^L f(x) dd(x)
+ integral_0^L f(x) dd(x) \
& = 2 integral_0^L f(x) dd(x)
$