#import "@preview/physica:0.9.6": * = problem 2 == a) $h(x) := f(x) g(x)$ is odd for odd $f$ and even $g$, since $ h(x) = -f(-x) g(-x) = - (f(-x) g(-x)) = -h(-x) $ == b) if $f$ and $g$ are both odd or even, then $h(x) := f(x) g(x)$ is even 1. for the first case: $f$ and $g$ are both even $ h(x) = f(x) g(x) = f(-x) g(-x) = h(-x) $ 2. for the second case: $f$ and $g$ are both odd $ h(x) & = f(x) g(x) \ & = (-f(-x)) (-g(-x)) = f(-x) g(-x) = h(-x) $ == c) if $f$ is odd and $g$ is even then both $f compose g$ and $g compose f$ are even, since 1. $f(g(x)) = f(g(-x))$, since g is even 2. $g(f(x)) = g(-f(-x)) = g(f(-x))$ == d) if $f$ is odd and $L > 0$, $ integral_(-L)^L f(x) dd(x) & = integral_(-L)^0 f(x) dd(x) + integral_0^L f(x) dd(x) \ & = integral_0^L f(-x) (-1) dd(x) + integral_0^L f(x) dd(x) \ & = -integral_0^L f(-x) dd(x) + integral_0^L f(x) dd(x) \ & = -integral_0^L f(x) dd(x) + integral_0^L f(x) dd(x) \ & = 0 $ == e) if $f$ is even and $L > 0$, $ integral_(-L)^L f(x) dd(x) & = integral_(-L)^0 f(x) dd(x) + integral_0^L f(x) dd(x) \ & = integral_0^L f(-x) dd(x) + integral_0^L f(x) dd(x) \ & = integral_0^L f(x) dd(x) + integral_0^L f(x) dd(x) \ & = 2 integral_0^L f(x) dd(x) $