finalize
This commit is contained in:
Binary file not shown.
@@ -153,14 +153,13 @@ this document was created using
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
== b)
|
||||
|
||||
|
||||
define $ f^i_k := (partial f^i) / (partial y^k)
|
||||
quad quad f^i_(k l) := (partial f^i) / (partial y^k partial y^l) $
|
||||
|
||||
and let the jacobian matrix $ frak(J) = [ (f_y)_(i j) = f^i_j ] $
|
||||
and let the jacobian matrix $ frak(J) := [ (f_y)_(i j) = f^i_j ] $
|
||||
|
||||
where $f^2_y$ is the matrix product and $f_(y y)$ has entries $(f^i_(k l))$.
|
||||
|
||||
@@ -194,17 +193,18 @@ thus we need to prove that $ f^T f_y = 0 $
|
||||
but $ f^T f_y = (f(pdv(f, y)))^T = (f^1(f^1_y, ..., f^m_y), ..., f^m (f^1_y, ..., f^m_y)) $
|
||||
|
||||
|
||||
no more, i yield, i yield!!
|
||||
|
||||
= problem 2
|
||||
|
||||
== a)
|
||||
|
||||
let $f(x) = x^4 + 3 x^3 - 2 x + 5$; find all taylor polynomials around
|
||||
$x_0 = -2$.
|
||||
let $f(x) := x^4 + 3 x^3 - 2 x + 5$; find all taylor polynomials around
|
||||
$x_0 := -2$.
|
||||
|
||||
#align(center)[#line(length: 75%)]
|
||||
|
||||
recall that each term is given by $ P_k (x) = (f^((k)) (x_0)) / k! (x - x_0)^k $
|
||||
recall that each term is given by $ P_k (x) := (f^((k)) (x_0)) / k! (x - x_0)^k $
|
||||
for $k in [0, deg(f)] inter ZZ$.
|
||||
|
||||
first compute
|
||||
@@ -217,22 +217,25 @@ $
|
||||
|
||||
then
|
||||
$
|
||||
P_0 & = f(-2) = 16 - 24 + 4 + 5 = 1 \
|
||||
P_1 & = f'(-2) dot (x + 2) = 2 (x+2) = 2x + 4 \
|
||||
P_2 & = (f''(-2))/2 dot (x + 2)^2 = 6 x^2 + 24x + 24 \
|
||||
P_3 & = (f^((3)) (-2))/6 dot (x + 2)^3 = -5 (x + 2)^3 \
|
||||
& = -5x^3 - 30 x^2 - 60 x - 40 \
|
||||
P_4 & = (x + 2)^4 = x^4 + 8 x^3 + 24 x^2 + 32 x + 16
|
||||
P_0(x) & = f(-2) = 16 - 24 + 4 + 5 = 1 \
|
||||
P_1(x) & = f'(-2) dot (x + 2) = 2 (x+2) = 2x + 4 \
|
||||
P_2(x) & = (f''(-2))/2 dot (x + 2)^2 = 6 x^2 + 24x + 24 \
|
||||
P_3(x) & = (f^((3)) (-2))/6 dot (x + 2)^3 = -5 (x + 2)^3 \
|
||||
& = -5x^3 - 30 x^2 - 60 x - 40 \
|
||||
P_4(x) & = (x + 2)^4 = x^4 + 8 x^3 + 24 x^2 + 32 x + 16
|
||||
$
|
||||
|
||||
note that there are finitely many unique derivatives, as $f(x)$ is a polynomial
|
||||
of degree 4.
|
||||
|
||||
then the $k$-th taylor polynomial can be expressed as
|
||||
$
|
||||
T_k = sum_(i=0)^k P_i
|
||||
T_k := sum_(i=0)^k P_i
|
||||
$
|
||||
|
||||
or alternatively
|
||||
or recursively
|
||||
$
|
||||
T_k = T_(k-1) + P_k
|
||||
T_k = T_(k-1) + P_k quad and quad T_0 = P_0 = 1
|
||||
$
|
||||
|
||||
for $k in NN^+$.
|
||||
@@ -241,14 +244,18 @@ thus the taylor polynomials for $f$ are
|
||||
$
|
||||
T_0 & = P_0 = 1 \
|
||||
T_1 & = P_0 + P_1 = 2x + 5 \
|
||||
T_2 & = 6x^2 + 26x + 28 \
|
||||
T_3 & = -5x^3 - 24x^2 + 34x - 12 \
|
||||
T_4 & = x^4 + 3x^3 + 66x + 4
|
||||
T_2 & = 6x^2 + 26x + 29 \
|
||||
T_3 & = -5x^3 - 24x^2 - 34x - 11 \
|
||||
T_4 & = x^4 + 3x^3 - 2x + 5 = f(x)
|
||||
$
|
||||
|
||||
naturally we are able to perfectly describe a fourth-degree polynomial with
|
||||
a taylor series.
|
||||
|
||||
== b)
|
||||
|
||||
let $g(x) = ln(1 + x)$; calculate its maclaurin series.
|
||||
let $g(x) := ln(1 + x)$; calculate its maclaurin series -- i.e. taylor series at
|
||||
$x_0 = 0$.
|
||||
|
||||
#align(center)[#line(length: 75%)]
|
||||
|
||||
@@ -262,31 +269,34 @@ $
|
||||
|
||||
for $k in NN^+$.
|
||||
|
||||
recall that the maclaurin series of a non-analytic function $f$ is
|
||||
as the function is infinitely differentiable and continuous around $x = 0$, we
|
||||
can conclude that $g(x)$ is analytic.
|
||||
|
||||
recall that the maclaurin series of an analytic function $f$ is
|
||||
$
|
||||
f(x) = sum_(i=0)^k (f^((i)) (0))/(i!) x^i + O(x^(k+1))
|
||||
f(x) = sum_(i=0)^infinity (f^((i)) (0))/(i!) x^i
|
||||
$
|
||||
|
||||
now lucky us, since
|
||||
fortunately we have
|
||||
$
|
||||
g^((k)) (0) = (-1)^(k-1) dot (k - 1)!
|
||||
$
|
||||
|
||||
so
|
||||
$
|
||||
g(x) & = sum_(i=1)^k (g^((i)) (0)) / (i!) x^i + O(x^(k+1)) \
|
||||
& = sum_(i=1)^k (-1)^(i-1) (i-1)! / (i!) x^i + O(x^(k+1)) \
|
||||
& = sum_(i=1)^k ((-1)^(i-1) x^i) / i + O(x^(k+1)) \
|
||||
& = x - x^2 / 2 + x^3 / 3 + dots.c + O(x^(k+1))
|
||||
g(x) & = sum_(i=1)^k (g^((i)) (0)) / (i!) x^i \
|
||||
& = sum_(i=1)^k (-1)^(i-1) (i-1)! / (i!) x^i \
|
||||
& = sum_(i=1)^k ((-1)^(i-1) x^i) / i \
|
||||
& = x - x^2 / 2 + x^3 / 3 - dots.c
|
||||
$
|
||||
|
||||
we may choose $O(x^(k+1)) = 0$.
|
||||
thus we have the maclaurin series of $g(x)$.
|
||||
|
||||
= problem 3
|
||||
|
||||
== a)
|
||||
|
||||
are $1+x$, $1-x$ and $x-x^2$ linearly independent in $P_2$?
|
||||
are $1+x$, $1-x$ and $x-x^2$ linearly independent in $P_2$? what do they span?
|
||||
|
||||
#align(center)[#line(length: 75%)]
|
||||
|
||||
@@ -311,7 +321,7 @@ our affine space has two conditions, $p(1) = 1$ and $p(2) = 2$.
|
||||
|
||||
let
|
||||
$
|
||||
p(x) = a x^3 + b x^2 + c x + d
|
||||
p(x) := a x^3 + b x^2 + c x + d
|
||||
$
|
||||
such that
|
||||
$
|
||||
@@ -328,8 +338,14 @@ $
|
||||
mat(1, 1, 1, 1 | 1; 7, 3, 1, 0 | 1)
|
||||
$
|
||||
|
||||
thus we can see that there are two linearly independent basis vectors that may
|
||||
form a two-dimensional linear space.
|
||||
thus the condition vectors are linearly independent and the matrix has rank 2,
|
||||
so they span out a two-dimensional constraint space. by the rank-nullity theorem
|
||||
we can conclude that the solution space must have
|
||||
$
|
||||
dim(P_3) - "rank" = 4 - 2 = 2
|
||||
$
|
||||
dimensions.
|
||||
|
||||
|
||||
== c)
|
||||
|
||||
@@ -346,7 +362,7 @@ conditions.
|
||||
|
||||
so let
|
||||
$
|
||||
p(x) = alpha (x - 1) + beta (x^2 - 1) + gamma (x^3 - 1)
|
||||
p(x) := alpha (x - 1) + beta (x^2 - 1) + gamma (x^3 - 1)
|
||||
$
|
||||
such that
|
||||
$
|
||||
@@ -361,6 +377,8 @@ equations, thus ending up in the same situation as the last subtask, meaning we
|
||||
will not be able to choose the remaining values arbitrarily, since the system of
|
||||
equations will be underdetermined.
|
||||
|
||||
as such, if we choose for $y_1 = 0$ to hold, it is possible.
|
||||
|
||||
|
||||
= problem 4
|
||||
|
||||
@@ -371,7 +389,7 @@ equations will be underdetermined.
|
||||
prove that ${sin(t), cos(t), 1}$ is orthogonal in the space $C[0, 2 pi]$ with
|
||||
inner product
|
||||
$
|
||||
inner(f, g) = integral_0^(2 pi) f(s) g(s) dd(s)
|
||||
inner(f, g) := integral_0^(2 pi) f(s) g(s) dd(s)
|
||||
$
|
||||
i.e. that it is an orthogonal basis for $C[0, 2 pi]$.
|
||||
|
||||
@@ -379,11 +397,17 @@ i.e. that it is an orthogonal basis for $C[0, 2 pi]$.
|
||||
|
||||
we must compute the pair-wise inner product of each base vector
|
||||
$
|
||||
inner(sin, cos) & = integral_0^(2 pi) sin(t) cos(t) dd(t) = \
|
||||
inner(sin, 1) & = integral_0^(2 pi) sin(t) dd(t) = \
|
||||
inner(1, cos) & = integral_0^(2 pi) cos(t) dd(t) = 0
|
||||
// inner(sin, cos) & = integral_0^(2 pi) sin(t) cos(t) dd(t) = \
|
||||
inner(sin, 1) & = integral_0^(2 pi) sin(t) dd(t) = 0, \
|
||||
inner(1, cos) & = integral_0^(2 pi) cos(t) dd(t) = 0
|
||||
$
|
||||
because $sin(t)$ and $cos(t)$ all have a period of $2 pi$. lastly,
|
||||
|
||||
$
|
||||
inner(sin, cos) & = integral_0^(2 pi) sin(t) cos(t) dd(t) \
|
||||
& = 1/2 integral_0^(2 pi) sin(2 t) dd(t) \
|
||||
& = 1/4 integral_0^(4 pi) sin(u) dd(u) = 0.
|
||||
$
|
||||
because $sin(t) cos(t)$, $sin(t)$ and $cos(t)$ all have a period of $2 pi$.
|
||||
|
||||
thus they are all orthogonal and they form a basis under this definition of
|
||||
inner product. to make it an orthonormal basis, we can scale each base component
|
||||
@@ -401,11 +425,11 @@ $
|
||||
== b)
|
||||
|
||||
to form an orthonormal basis for the monomials ${1, x, x^2}$, we use the
|
||||
gram-schmidt method with $vectorbold(v_1) = 1$.
|
||||
gram-schmidt method with $vectorbold(v_1) := 1$.
|
||||
|
||||
then
|
||||
$
|
||||
vectorbold(v_2) & = x - "proj"_(vectorbold(v_1)) (x) \
|
||||
vectorbold(v_2) & := x - "proj"_(vectorbold(v_1)) (x) \
|
||||
& = x - (inner(vectorbold(v_1), x) / inner(
|
||||
vectorbold(v_1),
|
||||
vectorbold(v_1)
|
||||
@@ -415,9 +439,9 @@ $
|
||||
& = x
|
||||
$
|
||||
|
||||
then similarly for the last vector
|
||||
and similarly for the last vector
|
||||
$
|
||||
vectorbold(v_3) & = x^2
|
||||
vectorbold(v_3) & := x^2
|
||||
- "proj"_(vectorbold(v_1))(x^2)
|
||||
- "proj"_(vectorbold(v_2))(x^2) \
|
||||
& = x^2
|
||||
@@ -432,5 +456,5 @@ $
|
||||
frak(O) := {1/a, x/b, (x^2 - 1/3)/c}
|
||||
$
|
||||
|
||||
where $a & := sqrt(2), b & := sqrt(2/3)$ and $c & := sqrt(2/5)$.
|
||||
where $a & = sqrt(2), b & = sqrt(2/3)$ and $c & = sqrt(2/5)$.
|
||||
|
||||
|
Reference in New Issue
Block a user