exercise set 1 problem 1

This commit is contained in:
2025-08-20 20:20:07 +02:00
parent 281c2ee139
commit 03920610a3
2 changed files with 149 additions and 0 deletions

BIN
exercise1/exercise1.pdf Normal file

Binary file not shown.

149
exercise1/exercise1.typ Normal file
View File

@@ -0,0 +1,149 @@
#import "@preview/cetz:0.3.2";
#import "@preview/cetz-plot:0.1.1": plot
#import "@preview/physica:0.9.4": *
#import "@preview/plotsy-3d:0.1.0": plot-3d-parametric-surface
#import "@preview/fletcher:0.5.4" as fletcher: diagram, edge, node
#set page(paper: "a4", margin: (x: 2.6cm, y: 2.8cm), numbering: "1 : 1")
#set par(justify: true, leading: 0.52em)
#let FONT_SIZE = 18pt;
#set text(font: "FreeSerif", size: FONT_SIZE, lang: "us")
#show math.equation: set text(font: "Euler Math", size: (FONT_SIZE * 1.0), lang: "en")
#set heading(numbering: none)
#show heading.where(level: 1): it => {
rect(inset: FONT_SIZE / 2)[#it]
}
#align(center)[
#text(size: FONT_SIZE * 2, weight: "bold")[#underline[exercise 1]]
]
these are my solutions to the first exercise set of TMA4135.
i recommend using a PDF-reader with document rotation capabilities, like
#link("https://wiki.archlinux.org/title/Zathura")[#text(blue.darken(5%))[zathura]].
this document was created using
#link("https://typst.app/")[#text(blue.darken(5%))[typst]].
#v(42pt)
#outline(title: none)
= problem 1
== a)
#[#show math.equation: set text(size: (FONT_SIZE * 0.7))
#rotate(
-90deg,
reflow: true,
table(
$bold(u(x, y, t))$, $bold(u_y)$, $bold(u_t)$, $bold(u_(x x))$, $bold(u_(x y))$, $bold(u_(y x))$,
$t^4 - cos(x y)$,
$x sin(x y)$,
$4 t^3$,
$y^2 cos(x y)$,
$x y cos(x y)$,
$x
y cos(x y)$,
$-sin(t x y)$,
$- t x cos(t x y)$,
$- x y cos(t x y)$,
$t^2 y^2 sin(t x y)$,
$t^2 x y sin(t x y)$,
$t^2 x y cos(t x y)$,
$e^(-t) sin(x) ln(y)$,
$(e^(-t) sin(x)) slash y$,
$- e^(-t) sin(x) ln(y)$,
$-e^(-t) sin(x) ln(y)$,
$(e^(-t) cos(x)) slash y$,
$(e^(-t) cos(x)) slash y$,
$e^(-x) sqrt(x^3 + y^2)$,
$(2 y e^(-x)) slash sqrt(x^3 + y^2)$,
$0$,
$(dagger)$,
$(dagger.double)$,
$(dagger dagger)$,
$$, $$, $$, $$, $$, $$,
$$, $$, $$, $$, $$, $$,
rows: 7,
columns: 6,
)
+ [#set text(size: FONT_SIZE * 0.6, fill: gray.darken(35%))
#show math.equation: set text(size: FONT_SIZE * 0.5)
some calculations\
#table(
table.cell(
rowspan: 2,
$(dagger)$,
),
table.cell(
rowspan: 2,
$
& quad pdv(, x, 2)e^(-x) sqrt(x^3 + y^2) \
& = pdv(, x) ((3 x^2 e^(-x) ) / (2 sqrt(x^3 + y^2))
- e^(-x) sqrt(x^3 + y^2)) \
& = 3/2 dot ((2 x e^(-x) - x^2 e^(-x)) sqrt(x^3 + y^2)
- (3 x^4 e^(-x)) / (2 sqrt(x^3 + y^2))) / (x^3 + y^2)
- (3 x^2 e^(-x) ) / (2 sqrt(x^3 + y^2))
+ e^(-x) sqrt(x^3 + y^2) \
& = (3 e^(-x) ((2 x - x^2) (x^3 + y^2) - 3 x^4))
/ (4(x^3 + y^2)^(3/2))
- (6 x^2 e^(-x) (x^3 + y^2)) / (4 (x^3 + y^2)^(3/2))
+ (4 e^(-x) (x^3 + y^2)^2) / (4 (x^3 + y^2)^(3/2)) \
& = (3 e^(-x) (2 x y^2 - x^5 - x^2 y^2 - x^4)
- 6 x^2 e^(-x) (x^3 + y^2)
+ 4 e^(-x) (x^6 + 2 x^3 y^2 + y^4))
/ (4 (x^3 + y^2)^(3/2)) \
& = (6 x y^2 e^(-x) - 3 x^5 e^(-x) - 3 x^2 y^2 e^(-x) - 3 x^4 e^(-x)
- 6 x^5 e^(-x) + 6 y^2 e^(-x)
+ 4 x^6 e^(-x) + 8 x^3 y^2 e^(-x) + 8 y^4 e^(-x))
/ (4 (x^3 + y^2)^(3/2)) \
& = (6 x y^2 e^(-x) - 9 x^5 e^(-x) - 3 x^2 y^2 e^(-x) - 3 x^4 e^(-x)
+ 6 y^2 e^(-x)
+ 4 x^6 e^(-x) + 8 x^3 y^2 e^(-x) + 8 y^4 e^(-x))
/ (4 (x^3 + y^2)^(3/2)) \
& = e^(-x) dot (6 x y^2 - 9 x^5 - 3 x^2 y^2 - 3 x^4
+ 6 y^2
+ 4 x^6 + 8 x^3 y^2 + 8 y^4)
/ (4 (x^3 + y^2)^(3/2)) \
& #[a few errors somewhere, but close enough...]
$,
),
$(dagger.double)$,
$
& quad pdv(, y, x) e^(-x) sqrt(x^3 + y^2) \
& = pdv(, y) ((3 x^2 e^(-x) ) / (2 sqrt(x^3 + y^2))
- e^(-x) sqrt(x^3 + y^2)) \
& = (-3 x^2 y e^(-x))/2 dot (x^3 + y^2)^(-3/2)
- (2 y e^(-x))/(2 sqrt(x^3 + y^2))
$,
$(dagger dagger)$,
$
& quad pdv(, x, y) e^(-x) sqrt(x^3 + y^2) \
& = pdv(, x) space (-y e^(-x))/(sqrt(x^3 + y^2)) \
& = (y e^(-x) sqrt(x^3 + y^2) + y e^(-x) dot 1 slash 2 dot (x^3
+ y^2)^(-1/2)) / (x^3 + y^2) \
& = (y e^(-x) (sqrt(x^3 + y^2) + 1 slash 2 dot (x^3
+ y^2)^(-1/2))) / (x^3 + y^2)
$,
columns: 4,
stroke: none,
)
],
)
]