Uploaded running version of the minesweeper game

Thanks to oysteikt for the colorization code; an extension of this would be very welcome.
The game ended up on the torus because that is just what modulo results in and I couldn't be hassled to _not_ identify the edges with each other.
This commit is contained in:
bjornoka 2023-03-28 02:43:07 +02:00
parent 5209759065
commit 8b4df7dbeb

227
minesweeper.py Normal file
View File

@ -0,0 +1,227 @@
import numpy as np
from random import sample
def linear_to_pair(i, s):
x = i // s
y = i - x * s
return x, y
def offset_inside(x, y, ox, oy, s):
_x = (x + ox) % s
_y = (y + oy) % s
return (_x, _y)
def reveal_around(x, y, mf):
unchecked_interior = set()
boundary = set()
offsets = [(-1, 0), (1, 0), (0, -1), (0, 1)]
for ox, oy in offsets:
_x, _y = offset_inside(x, y, ox, oy, mf.shape[0])
if mf[_x, _y] == 0:
unchecked_interior.add((_x, _y))
else:
boundary.add((_x, _y))
return unchecked_interior, boundary
def generate_revelation_matrix(x, y, mf):
reveal = np.zeros(mf.shape)
if mf[x, y] == -1:
return None
elif mf[x, y] > 0:
reveal[x, y] = 1
return reveal
else:
checked_interior = set()
checked_interior.add((x, y))
unchecked_interor, boundary = reveal_around(x, y, mf)
while len(unchecked_interor) > 0:
x, y = unchecked_interor.pop()
int_nbhd, bdry_nbdh = reveal_around(x, y, mf)
unchecked_interor.update(int_nbhd.difference(checked_interior))
boundary.update(bdry_nbdh)
checked_interior.add((x, y))
interior = list(checked_interior)
boundary = list(boundary)
for x, y in interior:
reveal[x, y] = 1
for x, y in boundary:
if mf[x, y] > 0:
reveal[x, y] = 1
else:
print("Mine in boundary")
return reveal
class Minesweeper:
def __init__(self, size, mines):
self.m = mines
self.s = size
self.f = mines
self.lost = False
self.initialize_field()
def initialize_field(self):
minefield = np.zeros((self.s, self.s))
fog_of_war = np.zeros((self.s, self.s))
flagged = set()
mine_positions = sample(range(self.s*self.s), self.m)
xs = [-1, 0, 1]
ys = [-1, 0, 1]
for i in mine_positions:
x, y = linear_to_pair(i, self.s)
minefield[x, y] = -1
for i in range(self.s*self.s):
x, y = linear_to_pair(i, self.s)
if minefield[x, y] == -1:
continue
else:
sub = np.zeros((3, 3))
for ox in xs:
for oy in ys:
sub[ox+1, oy+1] = minefield[offset_inside(x, y, ox, oy, self.s)]
num_mines = np.sum(sub < 0)
minefield[x, y] = num_mines
self.mf = minefield
self.fow = fog_of_war
self.flagged = flagged
def flag_at(self, x, y) -> None:
self.flagged.add((x, y))
def unflag_at(self, x, y) -> None:
self.flagged.remove((x, y))
def reveal_at(self, x, y):
r = generate_revelation_matrix(x, y, self.mf)
if r is None:
self.lost = True
else:
self.fow = np.logical_or(self.fow, r)
def show_minefield(self):
field = np.abs(self.mf * self.fow)
return '\n'.join(' '.join(self.colorize(int(i)) for i in row) for row in field)
@classmethod
def colorize(cls, i: int) -> str:
return [
lambda x: f'\033[0m{x}\033[0m',
lambda x: f'\033[31m{x}\033[0m',
lambda x: f'\033[32m{x}\033[0m',
lambda x: f'\033[33m{x}\033[0m',
lambda x: f'\033[34m{x}\033[0m',
][i](i)
def __repr__(self):
field = np.abs(self.mf * self.fow)
s = ""
upper = " |"
lower = " |"
divider = "---"
for x in range(self.s):
u, l = numeral_vertical(x, len(str(self.s)), "b")
upper = upper + u + "|"
lower = lower + l + "|"
divider += "--"
s = s + upper + "\n" + lower + "\n" + divider + "\n"
for x in range(self.s):
s = s + numeral_horizontal(x, len(str(self.s)), "r") + "|"
for y in range(self.s):
# if self.mf[x, y] == -1:
# s += "m "
if (x, y) in self.flagged:
s += "f "
elif self.fow[x, y] == 0:
s += "x "
else:
s += self.colorize(int(field[x, y]))
s += " "
s = s[:-1]
s += "|\n"
return s[:-1] + "\n" + divider
def check_victory(self):
return (
len(self.flagged) == self.m # all mines are flagged
and
int(np.sum(self.fow)) == (self.s**2 - self.m) # no stone unturned
)
def numeral_horizontal(number, space, justification):
n = str(number)
if justification == "l":
s = n + " " * (space - len(n))
elif justification == "r":
s = (n[::-1] + " " * (space - len(n)))[::-1]
elif justification == "c":
pre = (space - len(n)) // 2
s = " " * pre + n + " " * (space - len(n) - pre)
return s
def numeral_vertical(number, space, justification):
just_map = {"t": "l", "b": "r", "c": "c"}
n = numeral_horizontal(number, space, just_map[justification])
return list(n)
def dispatch_choice(ms: Minesweeper, choice) -> None:
cmd = choice.split(" ")
if cmd[0] == "f":
x = int(cmd[1])
y = int(cmd[2])
ms.flag_at(x, y)
elif cmd[0] == "u":
x = int(cmd[1])
y = int(cmd[2])
ms.unflag_at(x, y)
elif cmd[0] == "r":
ms.s = int(cmd[1])
ms.m = int(cmd[2])
ms.initialize_field()
elif cmd[0] == "o":
x = int(cmd[1])
y = int(cmd[2])
ms.reveal_at(x, y)
else:
print("""Legal actions are:
"f x y" to place a flag
"u x y" to remove a flag
"o x y" to open a tile
"r s m" o reset the board with size s and m mines
"q" to quit
""")
if __name__ == "__main__":
# ms = Minesweeper(20, 1)
is_running = True
has_won = False
print("You're playing minesweeper on the torus.")
size = int(input("What size of board would you like to play? "))
num_mines = int(input("How many mines would you like? "))
ms = Minesweeper(size, num_mines)
while is_running:
if has_won:
print("You won!")
has_won = False
else:
print(ms)
print(f"Flagged {len(ms.flagged)} of {ms.m} mines. Board size is {ms.s}.")
print(f"Revealed {int(np.sum(ms.fow))} of {ms.s**2} tiles.")
cmd = input("What would you like to do? ")
if cmd == "q":
is_running = False
else:
dispatch_choice(ms, cmd)
has_won = ms.check_victory()