mpd/src/tree.c
Max Kellermann a383f45117 enable -Wpointer-arith, -Wstrict-prototypes
Also enable -Wunused-parameter - this forces us to add the gcc
"unused" attribute to a lot of parameters (mostly library callback
functions), but it's worth it during code refactorizations.
2008-08-26 08:27:02 +02:00

700 lines
14 KiB
C

/* the Music Player Daemon (MPD)
* Copyright (C) 2006-2007 by Warren Dukes (warren.dukes@gmail.com)
* This project's homepage is: http://www.musicpd.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "tree.h"
#include "utils.h"
#include "os_compat.h"
#ifndef CHILDREN_PER_NODE
#define CHILDREN_PER_NODE 25
#endif
#define DATA_PER_NODE (CHILDREN_PER_NODE-1)
#if CHILDREN_PER_NODE > 7
#define USE_BINARY_SEARCH 1
#endif
/************************* DATA STRUCTURES **********************************/
struct _TreeNode
{
TreeKeyData keyData[DATA_PER_NODE];
struct _TreeNode * parent;
short parentPos;
struct _TreeNode * children[CHILDREN_PER_NODE];
short count;
};
struct _Tree
{
TreeCompareKeyFunction compareKey;
TreeFreeFunction freeKey;
TreeFreeFunction freeData;
TreeNode * rootNode;
int size;
};
/************************* STATIC METHODS ***********************************/
static
TreeNode *
_MakeNode(void)
{
TreeNode * ret = xmalloc(sizeof(TreeNode));
memset(ret, 0, sizeof(TreeNode));
return ret;
}
static
void
_ClearKeyData(TreeKeyData * keyData)
{
memset(keyData, 0, sizeof(TreeKeyData));
}
static
int
_FindPosition(Tree * tree, TreeNode * node, void * key, int * pos)
{
#ifdef USE_BINARY_SEARCH
int low = 0;
int high = node->count;
int cmp = -1;
while (high > low)
{
int cur = (high + low) >> 1;
cmp = tree->compareKey(key, node->keyData[cur].key);
if (cmp > 0)
{
low = cur+1;
}
else if (cmp < 0)
{
high = cur;
}
else
{
low = cur;
break;
}
}
*pos = low;
return (cmp == 0);
#else
int i = 0;
int cmp = -1;
for (;
i < node->count &&
(cmp = tree->compareKey(key, node->keyData[i].key)) > 0;
i++);
*pos = i;
return (cmp == 0);
#endif
}
static
int
_Find(TreeIterator * iter, void * key)
{
while (1)
{
if (_FindPosition(iter->tree, iter->node, key, &iter->which))
{
iter->which++;
return 1;
}
if (iter->node->children[iter->which])
{
iter->node = iter->node->children[iter->which];
}
else
{
return 0;
}
}
}
static void _SetIteratorToRoot(Tree * tree, TreeIterator * iter)
{
iter->tree = tree;
iter->node = tree->rootNode;
iter->which = 0;
}
static
TreeNode *
_SplitNode(TreeNode * node)
{
TreeNode *newNode = _MakeNode();
int i = DATA_PER_NODE/2;
int j = 0;
assert(node->count == DATA_PER_NODE);
for (; i < DATA_PER_NODE; i++, j++)
{
newNode->keyData[j] = node->keyData[i];
newNode->children[j+1] = node->children[i+1];
if (newNode->children[j+1])
{
newNode->children[j+1]->parent = newNode;
newNode->children[j+1]->parentPos = j+1;
}
_ClearKeyData(&(node->keyData[i]));
node->children[i+1] = NULL;
}
newNode->count = (DATA_PER_NODE-DATA_PER_NODE/2);
node->count -= (DATA_PER_NODE-DATA_PER_NODE/2);
return newNode;
}
static
void
_InsertNodeAndData(TreeNode * node,
int pos,
TreeNode * newNode,
TreeKeyData keyData)
{
int j = node->count;
assert(node->count < DATA_PER_NODE);
for (; j > pos; j--)
{
node->keyData[j] = node->keyData[j-1];
node->children[j+1] = node->children[j];
if (node->children[j+1])
{
node->children[j+1]->parentPos = j+1;
}
}
node->keyData[pos] = keyData;
node->count++;
node->children[pos+1] = newNode;
if (newNode)
{
newNode->parent = node;
newNode->parentPos = pos+1;
}
}
static
TreeKeyData
_AddDataToSplitNodes(TreeNode * lessNode,
TreeNode * moreNode,
int pos,
TreeNode * newNode,
TreeKeyData keyData)
{
TreeKeyData retKeyData;
assert(moreNode->children[0] == NULL);
if (pos <= lessNode->count)
{
_InsertNodeAndData(lessNode, pos, newNode, keyData);
lessNode->count--;
retKeyData = lessNode->keyData[lessNode->count];
_ClearKeyData(&(lessNode->keyData[lessNode->count]));
moreNode->children[0] =
lessNode->children[lessNode->count+1];
if (moreNode->children[0])
{
moreNode->children[0]->parent = moreNode;
moreNode->children[0]->parentPos = 0;
}
lessNode->children[lessNode->count+1] = NULL;
}
else
{
int j;
pos -= lessNode->count;
retKeyData = moreNode->keyData[0];
assert(!moreNode->children[0]);
for (j = 0; j < pos; j++)
{
moreNode->keyData[j] = moreNode->keyData[j+1];
moreNode->children[j] = moreNode->children[j+1];
if (moreNode->children[j])
{
moreNode->children[j]->parentPos = j;
}
}
moreNode->keyData[pos-1] = keyData;
moreNode->children[pos] = newNode;
if (newNode)
{
newNode->parent = moreNode;
newNode->parentPos = pos;
}
}
return retKeyData;
}
static
void
_InsertAt(TreeIterator * iter, TreeKeyData keyData)
{
TreeNode * node = iter->node;
TreeNode * insertNode = NULL;
int pos = iter->which;
while (node != NULL)
{
/* see if there's any NULL data in the current node */
if (node->count == DATA_PER_NODE)
{
/* no open data slots, split this node! */
TreeNode * newNode = _SplitNode(node);
/* insert data in split nodes */
keyData = _AddDataToSplitNodes(node,
newNode,
pos,
insertNode,
keyData);
if (node->parent == NULL)
{
assert(node == iter->tree->rootNode);
iter->tree->rootNode = _MakeNode();
iter->tree->rootNode->children[0] = node;
node->parent = iter->tree->rootNode;
node->parentPos = 0;
iter->tree->rootNode->children[1] = newNode;
newNode->parent = iter->tree->rootNode;
newNode->parentPos = 1;
iter->tree->rootNode->keyData[0] = keyData;
iter->tree->rootNode->count = 1;
return;
}
pos = node->parentPos;
node = node->parent;
insertNode = newNode;
}
else
{
/* insert the data and newNode */
_InsertNodeAndData(node,
pos,
insertNode,
keyData);
return;
}
}
}
static
void
_MergeNodes(TreeNode * lessNode, TreeNode * moreNode)
{
int i = 0;
int j = lessNode->count;
assert((lessNode->count + moreNode->count) <= DATA_PER_NODE);
assert(lessNode->children[j] == NULL);
for(; i < moreNode->count; i++,j++)
{
assert(!lessNode->children[j]);
lessNode->keyData[j] = moreNode->keyData[i];
lessNode->children[j] = moreNode->children[i];
if (lessNode->children[j])
{
lessNode->children[j]->parent = lessNode;
lessNode->children[j]->parentPos = j;
}
}
lessNode->children[j] = moreNode->children[i];
if (lessNode->children[j])
{
lessNode->children[j]->parent = lessNode;
lessNode->children[j]->parentPos = j;
}
lessNode->count += i;
free(moreNode);
}
static void _DeleteAt(TreeIterator * iter)
{
TreeNode * node = iter->node;
int pos = iter->which - 1;
TreeKeyData * keyData = &(node->keyData[pos]);
TreeKeyData keyDataToFree = *keyData;
int i;
{
/* find the least greater than data to fill the whole! */
if (node->children[pos+1])
{
TreeNode * child = node->children[++pos];
while (child->children[0])
{
pos = 0;
child = child->children[0];
}
*keyData = child->keyData[0];
keyData = &(child->keyData[0]);
node = child;
}
/* or the greatest lesser than data to fill the whole! */
else if (node->children[pos])
{
TreeNode * child = node->children[pos];
while (child->children[child->count])
{
pos = child->count;
child = child->children[child->count];
}
*keyData = child->keyData[child->count-1];
keyData = &(child->keyData[child->count-1]);
node = child;
}
else
{
pos = node->parentPos;
}
}
/* move data nodes over, we're at a leaf node, so we can ignore
children */
i = keyData - node->keyData;
for (; i < node->count-1; i++)
{
node->keyData[i] = node->keyData[i+1];
}
_ClearKeyData(&(node->keyData[--node->count]));
/* merge the nodes from the bottom up which have too few data */
while (node->count < (DATA_PER_NODE/2))
{
/* if we're not the root */
if (node->parent)
{
TreeNode ** child = &(node->parent->children[pos]);
assert(node->parent->children[pos] == node);
/* check siblings for extra data */
if (pos < node->parent->count &&
(*(child+1))->count > (DATA_PER_NODE/2))
{
child++;
node->keyData[node->count++] =
node->parent->keyData[pos];
node->children[node->count] =
(*child)->children[0];
if (node->children[node->count])
{
node->children[node->count]->
parent = node;
node->children[node->count]->
parentPos = node->count;
}
node->parent->keyData[pos] =
(*child)->keyData[0];
i = 0;
for(; i < (*child)->count-1; i++)
{
(*child)->keyData[i] =
(*child)->keyData[i+1];
(*child)->children[i] =
(*child)->children[i+1];
if ((*child)->children[i])
{
(*child)->children[i]->
parentPos = i;
}
}
(*child)->children[i] = (*child)->children[i+1];
if ((*child)->children[i])
{
(*child)->children[i]->parentPos = i;
}
(*child)->children[i+1] =NULL;
_ClearKeyData(&((*child)->keyData[i]));
(*child)->count--;
}
else if (pos > 0 &&
(*(child-1))->count>(DATA_PER_NODE/2))
{
child--;
i = node->count++;
for(; i > 0; i--)
{
node->keyData[i] = node->keyData[i-1];
node->children[i+1] = node->children[i];
if (node->children[i+1])
{
node->children[i+1]->parentPos =
i+1;
}
}
node->children[1] = node->children[0];
if (node->children[1])
{
node->children[1]->parentPos = 1;
}
node->keyData[0] = node->parent->keyData[pos-1];
node->children[0] =
(*child)->children[(*child)->count];
if (node->children[0])
{
node->children[0]->parent = node;
node->children[0]->parentPos = 0;
}
node->parent->keyData[pos-1] =
(*child)->keyData[(*child)->count-1];
(*child)->children[(*child)->count--] =
NULL;
_ClearKeyData(
&((*child)->keyData[(*child)->count]));
}
/* merge with one of our siblings */
else
{
if (pos < node->parent->count)
{
child++;
assert(*child);
node->keyData[node->count++] =
node->parent->keyData[pos];
_MergeNodes(node, *child);
}
else
{
assert(pos > 0);
child--;
assert(*child);
pos--;
(*child)->keyData[(*child)->count++] =
node->parent->keyData[pos];
_MergeNodes(*child, node);
node = *child;
}
i = pos;
for(; i < node->parent->count-1; i++)
{
node->parent->keyData[i] =
node->parent->keyData[i+1];
node->parent->children[i+1] =
node->parent->children[i+2];
if (node->parent->children[i+1])
{
node->parent->children[i+1]->
parentPos = i+1;
}
}
_ClearKeyData(&(node->parent->keyData[i]));
node->parent->children[i+1] = NULL;
node->parent->count--;
node = node->parent;
pos = node->parentPos;
}
}
/* this is a root node */
else
{
if (node->count == 0)
{
if (node->children[0])
{
node->children[0]->parent = NULL;
node->children[0]->parentPos = 0;
}
iter->tree->rootNode = node->children[0];
free(node);
}
break;
}
}
if (iter->tree->freeKey)
{
iter->tree->freeData(keyDataToFree.key);
}
if (iter->tree->freeData)
{
iter->tree->freeData(keyDataToFree.data);
}
}
/************************* PUBLIC METHODS ***********************************/
Tree *
MakeTree(TreeCompareKeyFunction compareKey,
TreeFreeFunction freeKey,
TreeFreeFunction freeData)
{
Tree * ret = xmalloc(sizeof(Tree));
ret->compareKey = compareKey;
ret->freeKey = freeKey;
ret->freeData = freeData;
ret->rootNode = _MakeNode();
ret->size = 0;
return ret;
}
void
FreeTree(Tree * tree)
{
assert(tree->rootNode == NULL);
free(tree);
}
int
GetTreeSize(Tree * tree)
{
return tree->size;
}
void SetTreeIteratorToBegin(Tree * tree, TreeIterator * iter)
{
_SetIteratorToRoot(tree, iter);
IncrementTreeIterator(iter);
}
int IsTreeIteratorAtEnd(const TreeIterator * iter)
{
return (iter->node == NULL);
}
void IncrementTreeIterator(TreeIterator * iter)
{
while(iter->node)
{
if (iter->node->children[iter->which])
{
iter->node = iter->node->children[iter->which];
iter->which = 0;
}
else
{
iter->which++;
}
while (iter->node && iter->which > iter->node->count)
{
iter->which = iter->node->parentPos + 1;
iter->node = iter->node->parent;
}
if (iter->node &&
iter->which > 0 && iter->which <= iter->node->count)
{
return;
}
}
}
const TreeKeyData *
GetTreeKeyData(TreeIterator * iter)
{
assert(iter->node &&
iter->which > 0 &&
iter->which <= iter->node->count);
return &iter->node->keyData[iter->which-1];
}
int
InsertInTree(Tree * tree, void * key, void * data)
{
TreeKeyData keyData;
TreeIterator iter;
_SetIteratorToRoot(tree, &iter);
if (_Find(&iter, key))
{
return 0;
}
keyData.key = key;
keyData.data = data;
_InsertAt(&iter, keyData);
tree->size++;
return 1;
}
int
RemoveFromTreeByKey(Tree * tree, void * key)
{
TreeIterator iter;
_SetIteratorToRoot(tree, &iter);
if (_Find(&iter, key))
{
_DeleteAt(&iter);
tree->size--;
return 1;
}
return 0;
}
void
RemoveFromTreeByIterator(Tree * tree, TreeIterator * iter)
{
_DeleteAt(iter);
tree->size--;
}
int
FindInTree(Tree * tree, void * key, TreeIterator * iter)
{
TreeIterator i;
if (iter == NULL)
{
iter = &i;
}
_SetIteratorToRoot(tree, iter);
if (_Find(iter, key))
{
return 1;
}
return 0;
}