mpd/src/PlayerThread.cxx
Max Kellermann a9b62a2ece PlayerControl: add second Cond object
This fixes a deadlock bug introduced by 18076ac9.  After all, the
second Cond was necessary.

The problem: two threads can wait for a signal at the same time.  The
player thread waits for the output thread to finish playback.  The
main thread waits for the player thread to complete a command.  The
output thread finishes playback, and sends a signal, which
unfortunately does not wake up the player thread, but the main
thread.  The main thread sees that the command is still not finished,
and waits again.  The signal is lost forever, and MPD is deadlocked.
2013-01-25 23:53:43 +01:00

1198 lines
27 KiB
C++

/*
* Copyright (C) 2003-2013 The Music Player Daemon Project
* http://www.musicpd.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include "PlayerThread.hxx"
#include "DecoderThread.hxx"
#include "DecoderControl.hxx"
#include "MusicPipe.hxx"
#include "MusicBuffer.hxx"
#include "MusicChunk.hxx"
#include "song.h"
#include "Main.hxx"
#include "mpd_error.h"
#include "CrossFade.hxx"
#include "PlayerControl.hxx"
#include "OutputAll.hxx"
#include "tag.h"
#include "Idle.hxx"
#include "GlobalEvents.hxx"
#include <cmath>
#include <glib.h>
#undef G_LOG_DOMAIN
#define G_LOG_DOMAIN "player_thread"
enum xfade_state {
XFADE_DISABLED = -1,
XFADE_UNKNOWN = 0,
XFADE_ENABLED = 1
};
struct player {
struct player_control *pc;
struct decoder_control *dc;
struct music_pipe *pipe;
/**
* are we waiting for buffered_before_play?
*/
bool buffering;
/**
* true if the decoder is starting and did not provide data
* yet
*/
bool decoder_starting;
/**
* is the player paused?
*/
bool paused;
/**
* is there a new song in pc.next_song?
*/
bool queued;
/**
* Was any audio output opened successfully? It might have
* failed meanwhile, but was not explicitly closed by the
* player thread. When this flag is unset, some output
* methods must not be called.
*/
bool output_open;
/**
* the song currently being played
*/
struct song *song;
/**
* is cross fading enabled?
*/
enum xfade_state xfade;
/**
* has cross-fading begun?
*/
bool cross_fading;
/**
* The number of chunks used for crossfading.
*/
unsigned cross_fade_chunks;
/**
* The tag of the "next" song during cross-fade. It is
* postponed, and sent to the output thread when the new song
* really begins.
*/
struct tag *cross_fade_tag;
/**
* The current audio format for the audio outputs.
*/
struct audio_format play_audio_format;
/**
* The time stamp of the chunk most recently sent to the
* output thread. This attribute is only used if
* audio_output_all_get_elapsed_time() didn't return a usable
* value; the output thread can estimate the elapsed time more
* precisely.
*/
float elapsed_time;
player(player_control *_pc, decoder_control *_dc)
:pc(_pc), dc(_dc),
buffering(false),
decoder_starting(false),
paused(false),
queued(true),
output_open(false),
song(NULL),
xfade(XFADE_UNKNOWN),
cross_fading(false),
cross_fade_chunks(0),
cross_fade_tag(NULL),
elapsed_time(0.0) {}
};
static struct music_buffer *player_buffer;
static void
player_command_finished_locked(struct player_control *pc)
{
assert(pc->command != PLAYER_COMMAND_NONE);
pc->command = PLAYER_COMMAND_NONE;
pc->ClientSignal();
}
static void
player_command_finished(struct player_control *pc)
{
pc->Lock();
player_command_finished_locked(pc);
pc->Unlock();
}
/**
* Start the decoder.
*
* Player lock is not held.
*/
static void
player_dc_start(struct player *player, struct music_pipe *pipe)
{
struct player_control *pc = player->pc;
struct decoder_control *dc = player->dc;
assert(player->queued || pc->command == PLAYER_COMMAND_SEEK);
assert(pc->next_song != NULL);
unsigned start_ms = pc->next_song->start_ms;
if (pc->command == PLAYER_COMMAND_SEEK)
start_ms += (unsigned)(pc->seek_where * 1000);
dc->Start(song_dup_detached(pc->next_song),
start_ms, pc->next_song->end_ms,
player_buffer, pipe);
}
/**
* Is the decoder still busy on the same song as the player?
*
* Note: this function does not check if the decoder is already
* finished.
*/
static bool
player_dc_at_current_song(const struct player *player)
{
assert(player != NULL);
assert(player->pipe != NULL);
return player->dc->pipe == player->pipe;
}
/**
* Returns true if the decoder is decoding the next song (or has begun
* decoding it, or has finished doing it), and the player hasn't
* switched to that song yet.
*/
static bool
player_dc_at_next_song(const struct player *player)
{
return player->dc->pipe != NULL && !player_dc_at_current_song(player);
}
/**
* Stop the decoder and clears (and frees) its music pipe.
*
* Player lock is not held.
*/
static void
player_dc_stop(struct player *player)
{
struct decoder_control *dc = player->dc;
dc->Stop();
if (dc->pipe != NULL) {
/* clear and free the decoder pipe */
music_pipe_clear(dc->pipe, player_buffer);
if (dc->pipe != player->pipe)
music_pipe_free(dc->pipe);
dc->pipe = NULL;
}
}
/**
* After the decoder has been started asynchronously, wait for the
* "START" command to finish. The decoder may not be initialized yet,
* i.e. there is no audio_format information yet.
*
* The player lock is not held.
*/
static bool
player_wait_for_decoder(struct player *player)
{
struct player_control *pc = player->pc;
struct decoder_control *dc = player->dc;
assert(player->queued || pc->command == PLAYER_COMMAND_SEEK);
assert(pc->next_song != NULL);
player->queued = false;
GError *error = dc->LockGetError();
if (error != NULL) {
pc->Lock();
pc->SetError(PLAYER_ERROR_DECODER, error);
song_free(pc->next_song);
pc->next_song = NULL;
pc->Unlock();
return false;
}
if (player->song != NULL)
song_free(player->song);
player->song = pc->next_song;
player->elapsed_time = 0.0;
/* set the "starting" flag, which will be cleared by
player_check_decoder_startup() */
player->decoder_starting = true;
pc->Lock();
/* update player_control's song information */
pc->total_time = song_get_duration(pc->next_song);
pc->bit_rate = 0;
audio_format_clear(&pc->audio_format);
/* clear the queued song */
pc->next_song = NULL;
pc->Unlock();
/* call syncPlaylistWithQueue() in the main thread */
GlobalEvents::Emit(GlobalEvents::PLAYLIST);
return true;
}
/**
* Returns the real duration of the song, comprising the duration
* indicated by the decoder plugin.
*/
static double
real_song_duration(const struct song *song, double decoder_duration)
{
assert(song != NULL);
if (decoder_duration <= 0.0)
/* the decoder plugin didn't provide information; fall
back to song_get_duration() */
return song_get_duration(song);
if (song->end_ms > 0 && song->end_ms / 1000.0 < decoder_duration)
return (song->end_ms - song->start_ms) / 1000.0;
return decoder_duration - song->start_ms / 1000.0;
}
/**
* Wrapper for audio_output_all_open(). Upon failure, it pauses the
* player.
*
* @return true on success
*/
static bool
player_open_output(struct player *player)
{
struct player_control *pc = player->pc;
assert(audio_format_defined(&player->play_audio_format));
assert(pc->state == PLAYER_STATE_PLAY ||
pc->state == PLAYER_STATE_PAUSE);
GError *error = NULL;
if (audio_output_all_open(&player->play_audio_format, player_buffer,
&error)) {
player->output_open = true;
player->paused = false;
pc->Lock();
pc->state = PLAYER_STATE_PLAY;
pc->Unlock();
return true;
} else {
g_warning("%s", error->message);
player->output_open = false;
/* pause: the user may resume playback as soon as an
audio output becomes available */
player->paused = true;
pc->Lock();
pc->SetError(PLAYER_ERROR_OUTPUT, error);
pc->state = PLAYER_STATE_PAUSE;
pc->Unlock();
return false;
}
}
/**
* The decoder has acknowledged the "START" command (see
* player_wait_for_decoder()). This function checks if the decoder
* initialization has completed yet.
*
* The player lock is not held.
*/
static bool
player_check_decoder_startup(struct player *player)
{
struct player_control *pc = player->pc;
struct decoder_control *dc = player->dc;
assert(player->decoder_starting);
dc->Lock();
GError *error = dc->GetError();
if (error != NULL) {
/* the decoder failed */
dc->Unlock();
pc->Lock();
pc->SetError(PLAYER_ERROR_DECODER, error);
pc->Unlock();
return false;
} else if (!dc->IsStarting()) {
/* the decoder is ready and ok */
dc->Unlock();
if (player->output_open &&
!audio_output_all_wait(pc, 1))
/* the output devices havn't finished playing
all chunks yet - wait for that */
return true;
pc->Lock();
pc->total_time = real_song_duration(dc->song, dc->total_time);
pc->audio_format = dc->in_audio_format;
pc->Unlock();
player->play_audio_format = dc->out_audio_format;
player->decoder_starting = false;
if (!player->paused && !player_open_output(player)) {
char *uri = song_get_uri(dc->song);
g_warning("problems opening audio device "
"while playing \"%s\"", uri);
g_free(uri);
return true;
}
return true;
} else {
/* the decoder is not yet ready; wait
some more */
dc->WaitForDecoder();
dc->Unlock();
return true;
}
}
/**
* Sends a chunk of silence to the audio outputs. This is called when
* there is not enough decoded data in the pipe yet, to prevent
* underruns in the hardware buffers.
*
* The player lock is not held.
*/
static bool
player_send_silence(struct player *player)
{
assert(player->output_open);
assert(audio_format_defined(&player->play_audio_format));
struct music_chunk *chunk = music_buffer_allocate(player_buffer);
if (chunk == NULL) {
g_warning("Failed to allocate silence buffer");
return false;
}
#ifndef NDEBUG
chunk->audio_format = player->play_audio_format;
#endif
size_t frame_size =
audio_format_frame_size(&player->play_audio_format);
/* this formula ensures that we don't send
partial frames */
unsigned num_frames = sizeof(chunk->data) / frame_size;
chunk->times = -1.0; /* undefined time stamp */
chunk->length = num_frames * frame_size;
memset(chunk->data, 0, chunk->length);
GError *error = NULL;
if (!audio_output_all_play(chunk, &error)) {
g_warning("%s", error->message);
g_error_free(error);
music_buffer_return(player_buffer, chunk);
return false;
}
return true;
}
/**
* This is the handler for the #PLAYER_COMMAND_SEEK command.
*
* The player lock is not held.
*/
static bool player_seek_decoder(struct player *player)
{
struct player_control *pc = player->pc;
struct song *song = pc->next_song;
struct decoder_control *dc = player->dc;
assert(pc->next_song != NULL);
const unsigned start_ms = song->start_ms;
if (!dc->LockIsCurrentSong(song)) {
/* the decoder is already decoding the "next" song -
stop it and start the previous song again */
player_dc_stop(player);
/* clear music chunks which might still reside in the
pipe */
music_pipe_clear(player->pipe, player_buffer);
/* re-start the decoder */
player_dc_start(player, player->pipe);
if (!player_wait_for_decoder(player)) {
/* decoder failure */
player_command_finished(pc);
return false;
}
} else {
if (!player_dc_at_current_song(player)) {
/* the decoder is already decoding the "next" song,
but it is the same song file; exchange the pipe */
music_pipe_clear(player->pipe, player_buffer);
music_pipe_free(player->pipe);
player->pipe = dc->pipe;
}
song_free(pc->next_song);
pc->next_song = NULL;
player->queued = false;
}
/* wait for the decoder to complete initialization */
while (player->decoder_starting) {
if (!player_check_decoder_startup(player)) {
/* decoder failure */
player_command_finished(pc);
return false;
}
}
/* send the SEEK command */
double where = pc->seek_where;
if (where > pc->total_time)
where = pc->total_time - 0.1;
if (where < 0.0)
where = 0.0;
if (!dc->Seek(where + start_ms / 1000.0)) {
/* decoder failure */
player_command_finished(pc);
return false;
}
player->elapsed_time = where;
player_command_finished(pc);
player->xfade = XFADE_UNKNOWN;
/* re-fill the buffer after seeking */
player->buffering = true;
audio_output_all_cancel();
return true;
}
/**
* Player lock must be held before calling.
*/
static void player_process_command(struct player *player)
{
struct player_control *pc = player->pc;
G_GNUC_UNUSED struct decoder_control *dc = player->dc;
switch (pc->command) {
case PLAYER_COMMAND_NONE:
case PLAYER_COMMAND_STOP:
case PLAYER_COMMAND_EXIT:
case PLAYER_COMMAND_CLOSE_AUDIO:
break;
case PLAYER_COMMAND_UPDATE_AUDIO:
pc->Unlock();
audio_output_all_enable_disable();
pc->Lock();
player_command_finished_locked(pc);
break;
case PLAYER_COMMAND_QUEUE:
assert(pc->next_song != NULL);
assert(!player->queued);
assert(!player_dc_at_next_song(player));
player->queued = true;
player_command_finished_locked(pc);
break;
case PLAYER_COMMAND_PAUSE:
pc->Unlock();
player->paused = !player->paused;
if (player->paused) {
audio_output_all_pause();
pc->Lock();
pc->state = PLAYER_STATE_PAUSE;
} else if (!audio_format_defined(&player->play_audio_format)) {
/* the decoder hasn't provided an audio format
yet - don't open the audio device yet */
pc->Lock();
pc->state = PLAYER_STATE_PLAY;
} else {
player_open_output(player);
pc->Lock();
}
player_command_finished_locked(pc);
break;
case PLAYER_COMMAND_SEEK:
pc->Unlock();
player_seek_decoder(player);
pc->Lock();
break;
case PLAYER_COMMAND_CANCEL:
if (pc->next_song == NULL) {
/* the cancel request arrived too late, we're
already playing the queued song... stop
everything now */
pc->command = PLAYER_COMMAND_STOP;
return;
}
if (player_dc_at_next_song(player)) {
/* the decoder is already decoding the song -
stop it and reset the position */
pc->Unlock();
player_dc_stop(player);
pc->Lock();
}
song_free(pc->next_song);
pc->next_song = NULL;
player->queued = false;
player_command_finished_locked(pc);
break;
case PLAYER_COMMAND_REFRESH:
if (player->output_open && !player->paused) {
pc->Unlock();
audio_output_all_check();
pc->Lock();
}
pc->elapsed_time = audio_output_all_get_elapsed_time();
if (pc->elapsed_time < 0.0)
pc->elapsed_time = player->elapsed_time;
player_command_finished_locked(pc);
break;
}
}
static void
update_song_tag(struct song *song, const struct tag *new_tag)
{
if (song_is_file(song))
/* don't update tags of local files, only remote
streams may change tags dynamically */
return;
struct tag *old_tag = song->tag;
song->tag = tag_dup(new_tag);
if (old_tag != NULL)
tag_free(old_tag);
/* the main thread will update the playlist version when he
receives this event */
GlobalEvents::Emit(GlobalEvents::TAG);
/* notify all clients that the tag of the current song has
changed */
idle_add(IDLE_PLAYER);
}
/**
* Plays a #music_chunk object (after applying software volume). If
* it contains a (stream) tag, copy it to the current song, so MPD's
* playlist reflects the new stream tag.
*
* Player lock is not held.
*/
static bool
play_chunk(struct player_control *pc,
struct song *song, struct music_chunk *chunk,
const struct audio_format *format,
GError **error_r)
{
assert(chunk->CheckFormat(*format));
if (chunk->tag != NULL)
update_song_tag(song, chunk->tag);
if (chunk->length == 0) {
music_buffer_return(player_buffer, chunk);
return true;
}
pc->Lock();
pc->bit_rate = chunk->bit_rate;
pc->Unlock();
/* send the chunk to the audio outputs */
if (!audio_output_all_play(chunk, error_r))
return false;
pc->total_play_time += (double)chunk->length /
audio_format_time_to_size(format);
return true;
}
/**
* Obtains the next chunk from the music pipe, optionally applies
* cross-fading, and sends it to all audio outputs.
*
* @return true on success, false on error (playback will be stopped)
*/
static bool
play_next_chunk(struct player *player)
{
struct player_control *pc = player->pc;
struct decoder_control *dc = player->dc;
if (!audio_output_all_wait(pc, 64))
/* the output pipe is still large enough, don't send
another chunk */
return true;
unsigned cross_fade_position;
struct music_chunk *chunk = NULL;
if (player->xfade == XFADE_ENABLED &&
player_dc_at_next_song(player) &&
(cross_fade_position = music_pipe_size(player->pipe))
<= player->cross_fade_chunks) {
/* perform cross fade */
struct music_chunk *other_chunk =
music_pipe_shift(dc->pipe);
if (!player->cross_fading) {
/* beginning of the cross fade - adjust
crossFadeChunks which might be bigger than
the remaining number of chunks in the old
song */
player->cross_fade_chunks = cross_fade_position;
player->cross_fading = true;
}
if (other_chunk != NULL) {
chunk = music_pipe_shift(player->pipe);
assert(chunk != NULL);
assert(chunk->other == NULL);
/* don't send the tags of the new song (which
is being faded in) yet; postpone it until
the current song is faded out */
player->cross_fade_tag =
tag_merge_replace(player->cross_fade_tag,
other_chunk->tag);
other_chunk->tag = NULL;
if (std::isnan(pc->mixramp_delay_seconds)) {
chunk->mix_ratio = ((float)cross_fade_position)
/ player->cross_fade_chunks;
} else {
chunk->mix_ratio = nan("");
}
if (other_chunk->IsEmpty()) {
/* the "other" chunk was a music_chunk
which had only a tag, but no music
data - we cannot cross-fade that;
but since this happens only at the
beginning of the new song, we can
easily recover by throwing it away
now */
music_buffer_return(player_buffer,
other_chunk);
other_chunk = NULL;
}
chunk->other = other_chunk;
} else {
/* there are not enough decoded chunks yet */
dc->Lock();
if (dc->IsIdle()) {
/* the decoder isn't running, abort
cross fading */
dc->Unlock();
player->xfade = XFADE_DISABLED;
} else {
/* wait for the decoder */
dc->Signal();
dc->WaitForDecoder();
dc->Unlock();
return true;
}
}
}
if (chunk == NULL)
chunk = music_pipe_shift(player->pipe);
assert(chunk != NULL);
/* insert the postponed tag if cross-fading is finished */
if (player->xfade != XFADE_ENABLED && player->cross_fade_tag != NULL) {
chunk->tag = tag_merge_replace(chunk->tag,
player->cross_fade_tag);
player->cross_fade_tag = NULL;
}
/* play the current chunk */
GError *error = NULL;
if (!play_chunk(player->pc, player->song, chunk,
&player->play_audio_format, &error)) {
g_warning("%s", error->message);
music_buffer_return(player_buffer, chunk);
pc->Lock();
pc->SetError(PLAYER_ERROR_OUTPUT, error);
/* pause: the user may resume playback as soon as an
audio output becomes available */
pc->state = PLAYER_STATE_PAUSE;
player->paused = true;
pc->Unlock();
return false;
}
/* this formula should prevent that the decoder gets woken up
with each chunk; it is more efficient to make it decode a
larger block at a time */
dc->Lock();
if (!dc->IsIdle() &&
music_pipe_size(dc->pipe) <= (pc->buffered_before_play +
music_buffer_size(player_buffer) * 3) / 4)
dc->Signal();
dc->Unlock();
return true;
}
/**
* This is called at the border between two songs: the audio output
* has consumed all chunks of the current song, and we should start
* sending chunks from the next one.
*
* The player lock is not held.
*
* @return true on success, false on error (playback will be stopped)
*/
static bool
player_song_border(struct player *player)
{
player->xfade = XFADE_UNKNOWN;
char *uri = song_get_uri(player->song);
g_message("played \"%s\"", uri);
g_free(uri);
music_pipe_free(player->pipe);
player->pipe = player->dc->pipe;
audio_output_all_song_border();
if (!player_wait_for_decoder(player))
return false;
struct player_control *const pc = player->pc;
pc->Lock();
if (pc->border_pause) {
player->paused = true;
pc->state = PLAYER_STATE_PAUSE;
}
pc->Unlock();
return true;
}
/*
* The main loop of the player thread, during playback. This is
* basically a state machine, which multiplexes data between the
* decoder thread and the output threads.
*/
static void do_play(struct player_control *pc, struct decoder_control *dc)
{
player player(pc, dc);
pc->Unlock();
player.pipe = music_pipe_new();
player_dc_start(&player, player.pipe);
if (!player_wait_for_decoder(&player)) {
assert(player.song == NULL);
player_dc_stop(&player);
player_command_finished(pc);
music_pipe_free(player.pipe);
GlobalEvents::Emit(GlobalEvents::PLAYLIST);
pc->Lock();
return;
}
pc->Lock();
pc->state = PLAYER_STATE_PLAY;
if (pc->command == PLAYER_COMMAND_SEEK)
player.elapsed_time = pc->seek_where;
player_command_finished_locked(pc);
while (true) {
player_process_command(&player);
if (pc->command == PLAYER_COMMAND_STOP ||
pc->command == PLAYER_COMMAND_EXIT ||
pc->command == PLAYER_COMMAND_CLOSE_AUDIO) {
pc->Unlock();
audio_output_all_cancel();
break;
}
pc->Unlock();
if (player.buffering) {
/* buffering at the start of the song - wait
until the buffer is large enough, to
prevent stuttering on slow machines */
if (music_pipe_size(player.pipe) < pc->buffered_before_play &&
!dc->LockIsIdle()) {
/* not enough decoded buffer space yet */
if (!player.paused &&
player.output_open &&
audio_output_all_check() < 4 &&
!player_send_silence(&player))
break;
dc->Lock();
/* XXX race condition: check decoder again */
dc->WaitForDecoder();
dc->Unlock();
pc->Lock();
continue;
} else {
/* buffering is complete */
player.buffering = false;
}
}
if (player.decoder_starting) {
/* wait until the decoder is initialized completely */
if (!player_check_decoder_startup(&player))
break;
pc->Lock();
continue;
}
#ifndef NDEBUG
/*
music_pipe_check_format(&play_audio_format,
player.next_song_chunk,
&dc->out_audio_format);
*/
#endif
if (dc->LockIsIdle() && player.queued &&
dc->pipe == player.pipe) {
/* the decoder has finished the current song;
make it decode the next song */
assert(dc->pipe == NULL || dc->pipe == player.pipe);
player_dc_start(&player, music_pipe_new());
}
if (/* no cross-fading if MPD is going to pause at the
end of the current song */
!pc->border_pause &&
player_dc_at_next_song(&player) &&
player.xfade == XFADE_UNKNOWN &&
!dc->LockIsStarting()) {
/* enable cross fading in this song? if yes,
calculate how many chunks will be required
for it */
player.cross_fade_chunks =
cross_fade_calc(pc->cross_fade_seconds, dc->total_time,
pc->mixramp_db,
pc->mixramp_delay_seconds,
dc->replay_gain_db,
dc->replay_gain_prev_db,
dc->mixramp_start,
dc->mixramp_prev_end,
&dc->out_audio_format,
&player.play_audio_format,
music_buffer_size(player_buffer) -
pc->buffered_before_play);
if (player.cross_fade_chunks > 0) {
player.xfade = XFADE_ENABLED;
player.cross_fading = false;
} else
/* cross fading is disabled or the
next song is too short */
player.xfade = XFADE_DISABLED;
}
if (player.paused) {
pc->Lock();
if (pc->command == PLAYER_COMMAND_NONE)
pc->Wait();
continue;
} else if (!music_pipe_empty(player.pipe)) {
/* at least one music chunk is ready - send it
to the audio output */
play_next_chunk(&player);
} else if (audio_output_all_check() > 0) {
/* not enough data from decoder, but the
output thread is still busy, so it's
okay */
/* XXX synchronize in a better way */
g_usleep(10000);
} else if (player_dc_at_next_song(&player)) {
/* at the beginning of a new song */
if (!player_song_border(&player))
break;
} else if (dc->LockIsIdle()) {
/* check the size of the pipe again, because
the decoder thread may have added something
since we last checked */
if (music_pipe_empty(player.pipe)) {
/* wait for the hardware to finish
playback */
audio_output_all_drain();
break;
}
} else if (player.output_open) {
/* the decoder is too busy and hasn't provided
new PCM data in time: send silence (if the
output pipe is empty) */
if (!player_send_silence(&player))
break;
}
pc->Lock();
}
player_dc_stop(&player);
music_pipe_clear(player.pipe, player_buffer);
music_pipe_free(player.pipe);
if (player.cross_fade_tag != NULL)
tag_free(player.cross_fade_tag);
if (player.song != NULL)
song_free(player.song);
pc->Lock();
if (player.queued) {
assert(pc->next_song != NULL);
song_free(pc->next_song);
pc->next_song = NULL;
}
pc->state = PLAYER_STATE_STOP;
pc->Unlock();
GlobalEvents::Emit(GlobalEvents::PLAYLIST);
pc->Lock();
}
static gpointer
player_task(gpointer arg)
{
struct player_control *pc = (struct player_control *)arg;
struct decoder_control *dc = new decoder_control();
decoder_thread_start(dc);
player_buffer = music_buffer_new(pc->buffer_chunks);
pc->Lock();
while (1) {
switch (pc->command) {
case PLAYER_COMMAND_SEEK:
case PLAYER_COMMAND_QUEUE:
assert(pc->next_song != NULL);
do_play(pc, dc);
break;
case PLAYER_COMMAND_STOP:
pc->Unlock();
audio_output_all_cancel();
pc->Lock();
/* fall through */
case PLAYER_COMMAND_PAUSE:
if (pc->next_song != NULL) {
song_free(pc->next_song);
pc->next_song = NULL;
}
player_command_finished_locked(pc);
break;
case PLAYER_COMMAND_CLOSE_AUDIO:
pc->Unlock();
audio_output_all_release();
pc->Lock();
player_command_finished_locked(pc);
#ifndef NDEBUG
/* in the DEBUG build, check for leaked
music_chunk objects by freeing the
music_buffer */
music_buffer_free(player_buffer);
player_buffer = music_buffer_new(pc->buffer_chunks);
#endif
break;
case PLAYER_COMMAND_UPDATE_AUDIO:
pc->Unlock();
audio_output_all_enable_disable();
pc->Lock();
player_command_finished_locked(pc);
break;
case PLAYER_COMMAND_EXIT:
pc->Unlock();
dc->Quit();
delete dc;
audio_output_all_close();
music_buffer_free(player_buffer);
player_command_finished(pc);
return NULL;
case PLAYER_COMMAND_CANCEL:
if (pc->next_song != NULL) {
song_free(pc->next_song);
pc->next_song = NULL;
}
player_command_finished_locked(pc);
break;
case PLAYER_COMMAND_REFRESH:
/* no-op when not playing */
player_command_finished_locked(pc);
break;
case PLAYER_COMMAND_NONE:
pc->Wait();
break;
}
}
}
void
player_create(struct player_control *pc)
{
assert(pc->thread == NULL);
GError *e = NULL;
pc->thread = g_thread_create(player_task, pc, true, &e);
if (pc->thread == NULL)
MPD_ERROR("Failed to spawn player task: %s", e->message);
}