Files
euler/src/task69 - Totient maximum.py
2020-06-21 23:53:32 +02:00

57 lines
1.3 KiB
Python

import math
def is_prime(n):
if n == 2 or n == 3: return True
if n < 2 or n%2 == 0: return False
if n < 9: return True
if n%3 == 0: return False
r = int(n**0.5)
f = 5
while f <= r:
if n%f == 0: return False
if n%(f+2) == 0: return False
f +=6
return True
def tot(n):
if is_prime(n):
return n-1
else:
return len([i for i in range(1,n) if math.gcd(i,n)==1])
def phi(n) :
result = n # Initialize result as n
# Consider all prime factors
# of n and for every prime
# factor p, multiply result with (1 - 1 / p)
p = 2
while(p * p<= n) :
# Check if p is a prime factor.
if (n % p == 0) :
# If yes, then update n and result
while (n % p == 0) :
n = n // p
result = result * (1.0 - (1.0 / (float) (p)))
p = p + 1
# If n has a prime factor
# greater than sqrt(n)
# (There can be at-most one
# such prime factor)
if (n > 1) :
result = result * (1.0 - (1.0 / (float)(n)))
return (int)(result)
max = [0,0]
for n in range(2,1000001):
totn = phi(n)
if n/totn > max[1]:
max = [n, n/totn]
print(max)