277 lines
6.3 KiB
Plaintext
277 lines
6.3 KiB
Plaintext
{
|
|
"Exc": {
|
|
"scope": "latex",
|
|
"prefix": ["\\exc"],
|
|
"body":
|
|
[
|
|
"\\exc{}",
|
|
"\\begin{subexcs}",
|
|
" \\subexc{}",
|
|
" $0",
|
|
"\\end{subexcs}"
|
|
],
|
|
"description": "Adds new exc with subexcs",
|
|
},
|
|
|
|
"Subexc": {
|
|
"scope": "latex",
|
|
"prefix": ["\\subexc"],
|
|
"body":
|
|
[
|
|
"\\subexc{}",
|
|
"\\begin{ssubexcs}",
|
|
" \\ssubexc{}",
|
|
" $0",
|
|
"\\end{ssubexcs}"
|
|
],
|
|
"description": "Adds new subexc with ssubexcs",
|
|
},
|
|
|
|
"Diagram": {
|
|
"scope": "latex",
|
|
"prefix": ["dia"],
|
|
"body": "\\includeDiagram[caption={}, width=1\\linewidth]{graphics/$0.tex}",
|
|
"description": "Include a diagram",
|
|
},
|
|
|
|
"Graph Table": {
|
|
"scope": "latex",
|
|
"prefix": ["graph-table"],
|
|
"body":
|
|
[
|
|
"\\begin{figure}[H]",
|
|
" \\center",
|
|
" \\begin{tabular}{c|cc}",
|
|
" $A$ & \\multicolumn{2}{c}{$v$} \\\\",
|
|
" \\hline",
|
|
" & $a$ & $b$ \\\\",
|
|
" \\hline",
|
|
" $s_0$ & $s_$ & $s_$ \\\\",
|
|
" $s_1$ & $s_$ & $s_$ \\\\",
|
|
" $s_2$ & $s_$ & $s_$ \\\\",
|
|
" \\end{tabular}",
|
|
"\\end{figure}"
|
|
],
|
|
"description": "Adds graph-table",
|
|
},
|
|
|
|
"Graph Table Double": {
|
|
"scope": "latex",
|
|
"prefix": ["graph-dtable"],
|
|
"body":
|
|
[
|
|
"\\begin{figure}[H]",
|
|
" \\center",
|
|
" \\begin{tabular}{c|cc}",
|
|
" $A$ & \\multicolumn{2}{c}{$v$} \\\\",
|
|
" \\hline",
|
|
" & $a$ & $b$ \\\\",
|
|
" \\hline",
|
|
" $s_0$ & $s_$ & $s_$ \\\\",
|
|
" $s_1$ & $s_$ & $s_$ \\\\",
|
|
" $s_2$ & $s_$ & $s_$ \\\\",
|
|
" \\end{tabular}",
|
|
"\\end{figure}"
|
|
],
|
|
"description": "Adds graph-table",
|
|
},
|
|
|
|
"Graph Table Line": {
|
|
"scope": "latex",
|
|
"prefix": ["gtl"],
|
|
"body": " $s_$ & $s_$ & $s_$ \\\\",
|
|
"description": "Adds line inside graph-table",
|
|
},
|
|
|
|
"Graph Table Double Line": {
|
|
"scope": "latex",
|
|
"prefix": ["gtdl"],
|
|
"body": " $s_$ & $s_$ & $s_$ & $s_$ & $s_$ \\\\",
|
|
"description": "Adds line inside a double graph-table",
|
|
},
|
|
|
|
"Induction Proof": {
|
|
"scope": "latex",
|
|
"prefix": ["prove-induction"],
|
|
"body": [
|
|
"Base case:",
|
|
"",
|
|
"\\begin{align*}",
|
|
"",
|
|
"\\end{align*}",
|
|
"",
|
|
"Assume that",
|
|
"",
|
|
"\\[ $1 \\]",
|
|
"",
|
|
"Then",
|
|
"",
|
|
"\begin{align*}",
|
|
" &= $1 + \\\\",
|
|
" &=",
|
|
"\\end{align*}",
|
|
"",
|
|
"\\qed"
|
|
],
|
|
"description": "Template for induction proof",
|
|
},
|
|
|
|
"Injective Proof": {
|
|
"scope": "latex",
|
|
"prefix": ["prove-injective"],
|
|
"body": [
|
|
"In order for $f(x)$ to be injective, it has to hold that",
|
|
"",
|
|
"\\[ f(a) = f(b) \\Rightarrow a = b \\]",
|
|
"",
|
|
"\\begin{align*}",
|
|
" f(a) &= f(b) \\\\",
|
|
" $0",
|
|
"\\end{align*}",
|
|
"",
|
|
"Hence $f(x)$ is injective."
|
|
],
|
|
"description": "Template for injective proof",
|
|
},
|
|
|
|
"Surjective Proof": {
|
|
"scope": "latex",
|
|
"prefix": ["prove-surjective"],
|
|
"body": [
|
|
"In order for $f(x)$ to be surjective, it has to hold that",
|
|
"",
|
|
"\\[ \\forall x \\in SET \\exists y \\in SET [f(x) = y] \\]",
|
|
"",
|
|
"\\begin{align*}",
|
|
" y &= $1 \\\\",
|
|
"",
|
|
" x &= \\\\" ,
|
|
"\\end{align*}",
|
|
"",
|
|
"$ $ makes up all the elements in SET",
|
|
"",
|
|
"\\begin{align*}",
|
|
" f(y) &= \\\\",
|
|
"",
|
|
"\\end{align*}",
|
|
"",
|
|
"Hence $f(x)$ is surjective"
|
|
],
|
|
"description": "Template for surjective proof",
|
|
},
|
|
|
|
"Bijective Function Proof": {
|
|
"scope": "latex",
|
|
"prefix": ["prove-bijective"],
|
|
"body": [
|
|
"\\textbf{Injective:}",
|
|
"",
|
|
"In order for $f(x)$ to be injective, it has to hold that",
|
|
"",
|
|
"\\[ f(a) = f(b) \\Rightarrow a = b \\]",
|
|
"",
|
|
"\\begin{align*}",
|
|
" f(a) &= f(b) \\\\",
|
|
" $0",
|
|
"\\end{align*}",
|
|
"",
|
|
"Hence $f(x)$ is injective.",
|
|
"",
|
|
"",
|
|
"\\textbf{Surjective:}",
|
|
"",
|
|
"In order for $f(x)$ to be surjective, it has to hold that",
|
|
"",
|
|
"\\[ \\forall x \\in SET \\exists y \\in SET [f(x) = y] \\]",
|
|
"",
|
|
"\\begin{align*}",
|
|
" y &= $1 \\\\",
|
|
"",
|
|
" x &= \\\\" ,
|
|
"\\end{align*}",
|
|
"",
|
|
"$ $ makes up all the elements in SET",
|
|
"",
|
|
"\\begin{align*}",
|
|
" f(y) &= \\\\",
|
|
"",
|
|
"\\end{align*}",
|
|
"",
|
|
"Hence $f(x)$ is surjective",
|
|
"",
|
|
"",
|
|
"\\textbf{Inverse:}",
|
|
"",
|
|
"The inverse is the same as the expression which makes up $x$ which we used to prove that $f(x)$ is surjective. Hence",
|
|
"",
|
|
"\\[ f^{-1}(x) = \\]",
|
|
],
|
|
"description": "Template for bijective proof",
|
|
},
|
|
|
|
"Equivalence Relation Proof": {
|
|
"scope": "latex",
|
|
"prefix": ["prove-eq-rel"],
|
|
"body": [
|
|
"In order for this relation to be an equivalence equation, it has to be reflexive, symmetric and transitive.",
|
|
"",
|
|
"\\textbf{Reflexive:}",
|
|
"",
|
|
"\\[ \\]",
|
|
"",
|
|
"\\textbf{Symmetric:}",
|
|
"",
|
|
"\\[ \\]",
|
|
"",
|
|
"\\textbf{Transitive:}",
|
|
"",
|
|
"\\[ \\]",
|
|
"",
|
|
"Hence the relation is an equivalence relation",
|
|
],
|
|
"description": "Template for equivalence relation proof",
|
|
},
|
|
|
|
"Partial Order Proof": {
|
|
"scope": "latex",
|
|
"prefix": ["prove-poset"],
|
|
"body": [
|
|
"In order for this relation to be a partial order, it has to be reflexive, antisymmetric and transitive.",
|
|
"",
|
|
"\\textbf{Reflexive:}",
|
|
"",
|
|
"\\[ \\]",
|
|
"",
|
|
"\\textbf{Antisymmetric:}",
|
|
"",
|
|
"\\[ \\]",
|
|
"",
|
|
"\\textbf{Transitive:}",
|
|
"",
|
|
"\\[ \\]",
|
|
"",
|
|
"Hence the relation is a partial order",
|
|
],
|
|
"description": "Template for poset proof",
|
|
},
|
|
|
|
"Poset MinMax": {
|
|
"scope": "latex",
|
|
"prefix": ["minmax-poset"],
|
|
"body": [
|
|
"Minimal elements:",
|
|
" \\[ \\{ $0 \\} \\]",
|
|
"Maximal elements:",
|
|
" \\[ \\{ \\} \\]"
|
|
],
|
|
"description": "Minimal maximal elements for poset",
|
|
},
|
|
|
|
"Binomial Coefficient": {
|
|
"scope": "latex",
|
|
"prefix": ["binom-co"],
|
|
"body": "\\[ \nCr{$0}{$1}x^{$2}y^{$1} = $3 x^{$2}y^{$1}\\]",
|
|
"description": "Formula for a binomial coefficient",
|
|
},
|
|
|
|
} |