Several fixes

This commit is contained in:
Oystein Kristoffer Tveit 2021-05-17 18:39:28 +02:00
parent a2f9fdbe09
commit adfc6c4bc4
30 changed files with 563 additions and 155 deletions

View File

@ -2,6 +2,8 @@ from sys import argv
from pathlib import Path from pathlib import Path
import re import re
from common import replaceContent
placementChart = { placementChart = {
'a': 'above', 'a': 'above',
'b': 'below', 'b': 'below',
@ -62,16 +64,17 @@ def generate_latex(inputLines):
return '\n'.join(output) return '\n'.join(output)
def processFileContent(raw, template): def processFileContent(raw):
content = generate_latex(raw) content = generate_latex(raw)
return template.replace('%CONTENT', content) return replaceContent(content, 'FSA')
if __name__ == '__main__': if __name__ == '__main__':
filename = argv[1] pass
# filename = argv[1]
with open(filename) as file: # with open(filename) as file:
content = generate_latex(file.read()) # content = generate_latex(file.read())
with open(str(Path(__file__).parent.absolute()) + '/tex_templates/FSA.tex') as template: # with open(str(Path(__file__).parent.absolute()) + '/tex_templates/FSA.tex') as template:
with open(argv[2], 'w') as destination_file: # with open(argv[2], 'w') as destination_file:
destination_file.write(template.read().replace('%CONTENT', content)) # destination_file.write(template.read().replace('%CONTENT', content))

View File

@ -2,7 +2,7 @@ from sys import argv
from pathlib import Path from pathlib import Path
from math import sin, cos, pi from math import sin, cos, pi
from common import printc from common import printc, replaceContent
class Matrix: class Matrix:
""" Adjacency matrix which supports 0 and 1 """ """ Adjacency matrix which supports 0 and 1 """
@ -186,7 +186,7 @@ def generateNodeCoords(n):
return nodeCoords return nodeCoords
def processFileContent(raw, template): def processFileContent(raw):
lines = raw.split('\n') lines = raw.split('\n')
lines.pop(1) lines.pop(1)
outputType = lines.pop(0) outputType = lines.pop(0)
@ -198,15 +198,20 @@ def processFileContent(raw, template):
if outputType == 'toGraph': if outputType == 'toGraph':
content = graph.toLaTeX() content = graph.toLaTeX()
return template.replace('%NODES', content[0]).replace('%EDGES', content[1]) return replaceContent(
content,
'Graph',
replaceF = lambda temp, cont: temp.replace('%NODES', cont[0]).replace('%EDGES', cont[1])
)
else: else:
content = graph.toMatrix().toLaTeX() content = graph.toMatrix().toLaTeX()
return template.replace('%CONTENT', content) return replaceContent(content, 'Matrix')
if __name__ == '__main__': if __name__ == '__main__':
matrix = Matrix([[False, False, True], [True, False, True], [True, False, False]]) pass
print(matrix) # matrix = Matrix([[False, False, True], [True, False, True], [True, False, False]])
print(matrix.toGraph()) # print(matrix)
print(matrix.toGraph().isUndirected()) # print(matrix.toGraph())
# print(matrix.toGraph().isUndirected())

View File

@ -1,7 +1,7 @@
from sys import argv from sys import argv
from pathlib import Path from pathlib import Path
from common import printc from common import printc, replaceContent
# Increase if the diagram becomes too clobbered # Increase if the diagram becomes too clobbered
HEIGHT_SEPARATOR = 1 HEIGHT_SEPARATOR = 1
@ -64,23 +64,11 @@ def latex_hasse(hasse):
return '\n'.join(output) return '\n'.join(output)
def processFileContent(raw, template): def processFileContent(raw):
rels = getRels(raw) rels = getRels(raw)
content = latex_hasse(hasse_diagram(rels)) content = latex_hasse(hasse_diagram(rels))
return template.replace("%CONTENT", content) return replaceContent(content, 'Hasse')
if __name__ == '__main__': if __name__ == '__main__':
filename = argv[1] pass
with open(filename) as file:
rels = getRels(file.read())
# rels = getRels()
# rels = divisibility_graph(30)
content = latex_hasse(hasse_diagram(rels))
with open(str(Path(__file__).parent.absolute()) + '/tex_templates/Hasse.tex') as template:
with open(argv[2], 'w') as destination_file:
destination_file.write(template.read().replace('%CONTENT', content))

View File

@ -1,5 +1,7 @@
from itertools import combinations from itertools import combinations
from common import replaceContent
class Set: class Set:
def __init__(self, elements): def __init__(self, elements):
self.elements = set(elements) self.elements = set(elements)
@ -28,6 +30,10 @@ class Set:
def __le__(self, value): def __le__(self, value):
return self < value return self < value
@classmethod
def fromString(cls, string):
return cls(string.split(' '))
def cardinality(self): def cardinality(self):
return len(self) return len(self)
@ -44,6 +50,13 @@ class Set:
column.append(str(e) + ' \\\\') column.append(str(e) + ' \\\\')
return '\\{\n' + '\n'.join(column) + '\n\\}' return '\\{\n' + '\n'.join(column) + '\n\\}'
def processFileContent(raw):
s = Set.fromString(raw)
content = s.powerset().to_vertical_latex()
return replaceContent(content, 'Powerset')
#TODO: make process input func #TODO: make process input func
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -1,11 +1,10 @@
from sys import argv from sys import argv
from pathlib import Path from pathlib import Path
from common import printc, printerr from common import printc, printerr, replaceContent
from Graph import Graph import Graph
# Increase if hasse diagram becomes too clobbered # Increase if hasse diagram becomes too clobbered
HEIGHT_SEPARATOR = 1
def pairToString(pair): def pairToString(pair):
if str(pair[0]).isdigit() or str(pair[1]).isdigit(): if str(pair[0]).isdigit() or str(pair[1]).isdigit():
@ -19,6 +18,18 @@ def stringToPair(string):
else: else:
return tuple(list(string)) return tuple(list(string))
def textLatex(string):
return '\\text{' + string + '}'
def mathModeListLatex(elements):
if len(elements) > 7 or len(elements) and max(len(str(e)) for e in elements) > 10:
return '\\begin{gather*}\n' \
+ ' \\\\\n'.join(elements) + '\n' \
+ '\\end{gather*}'
else:
return f'\\[ {", ".join(elements)} \\]'
class Relation: class Relation:
def __init__(self, pairs): # pair = (str,str) def __init__(self, pairs): # pair = (str,str)
@ -29,7 +40,7 @@ class Relation:
@classmethod @classmethod
def fromString(cls, string): def fromString(cls, string):
relations = (stringToPair(x) for x in relations.split(' ')) relations = (stringToPair(x) for x in string.split(' '))
return cls(relations) return cls(relations)
@classmethod @classmethod
@ -43,7 +54,7 @@ class Relation:
return cls(pairs) return cls(pairs)
def isReflexive(self): def isReflexive(self, verbose=False):
elements = set(list(sum(self.pairs, ()))) elements = set(list(sum(self.pairs, ())))
result = all((x,x) in self.pairs for x in elements) result = all((x,x) in self.pairs for x in elements)
@ -51,31 +62,47 @@ class Relation:
printc('Not reflexive, missing following pairs:', color='green') printc('Not reflexive, missing following pairs:', color='green')
missingPairs = [(x,x) for x in elements if (x,x) not in self.pairs] missingPairs = [(x,x) for x in elements if (x,x) not in self.pairs]
print(f'\\[ {", ".join(pairToString(p) for p in missingPairs)} \\]') print(f'\\[ {", ".join(pairToString(p) for p in missingPairs)} \\]')
if verbose:
return (False, missingPairs)
if verbose:
return (True, [(x,x) for x in elements if (x,x) in self.pairs])
return result return result
def isSymmetric(self): def isSymmetric(self, verbose=False):
result = all((y,x) in self.pairs for x,y in self.pairs) result = all((y,x) in self.pairs for x,y in self.pairs)
if not result: if not result:
printc('Not symmetric, missing following pairs:', color='green') printc('Not symmetric, missing following pairs:', color='green')
missingPairs = [(x,y) for x,y in self.pairs if (y,x) not in self.pairs] missingPairs = [(x,y) for x,y in self.pairs if (y,x) not in self.pairs]
print(f'\\[ {", ".join(pairToString(p) for p in missingPairs)} \\]') print(f'\\[ {", ".join(pairToString(p) for p in missingPairs)} \\]')
if verbose:
return (False, missingPairs)
if verbose:
return (True, [((x,y), (y,x)) for x,y in self.pairs if (y,x) in self.pairs and x < y])
return result return result
def isAntiSymmetric(self): def isAntiSymmetric(self, verbose=False):
result = not any((y,x) in self.pairs and y != x for x,y in self.pairs) result = not any((y,x) in self.pairs and y != x for x,y in self.pairs)
if not result: if not result:
printc('Not antisymmetric, following pairs are symmetric:', color='green') printc('Not antisymmetric, following pairs are symmetric:', color='green')
symmetricPairs = [((x,y), (y,x)) for x,y in self.pairs if (y,x) in self.pairs and y > x] symmetricPairs = [((x,y), (y,x)) for x,y in self.pairs if (y,x) in self.pairs and y > x]
print(f'\\[ {", ".join(f"{pairToString(p)} and {pairToString(q)}" for p,q in symmetricPairs)} \\]') print(f'\\[ {", ".join(f"""{pairToString(p)}{textLatex(" and ")}{pairToString(q)}""" for p,q in symmetricPairs)} \\]')
if verbose:
return (False, symmetricPairs)
if verbose:
return (True, [])
return result return result
def isTransitive(self): def isTransitive(self, verbose=False):
result = True result = True
transitivePairs = []
nonTransitivePairs = [] nonTransitivePairs = []
for x,y in self.pairs: for x,y in self.pairs:
@ -83,33 +110,110 @@ class Relation:
if not (y != z or ((x,w) in self.pairs)): if not (y != z or ((x,w) in self.pairs)):
nonTransitivePairs.append(((x,y), (z,w))) nonTransitivePairs.append(((x,y), (z,w)))
result = False result = False
elif (y == z and x != y != w and ((x,w) in self.pairs)):
transitivePairs.append(((x,y), (z,w)))
if not result: if not result:
printc('Not transitive, following pairs are missing its transitive counterpart:', color='green') printc('Not transitive, following pairs are missing its transitive counterpart:', color='green')
print(f'\\[ {", ".join(f"{pairToString(p)} and {pairToString(q)} without {pairToString((p[0], q[1]))}" for p,q in nonTransitivePairs)} \\]') print(f'\\[ {", ".join(f"""{pairToString(p)}{textLatex(" and ")}{pairToString(q)}{textLatex(" without ")}{pairToString((p[0], q[1]))}""" for p,q in nonTransitivePairs)} \\]')
if verbose:
return (False, nonTransitivePairs)
if verbose:
return (True, transitivePairs)
return result return result
def isEquivalenceRelation(self): def isEquivalenceRelation(self, verbose=False):
if verbose:
isReflexive, reflexivePairs = self.isReflexive(verbose=True)
isSymmetric, symmetricPairs = self.isSymmetric(verbose=True)
isTransitive, transitivePairs = self.isTransitive(verbose=True)
if not isReflexive:
return 'The relation is not an equivalence relation, because it is not reflexive.'
+ ' The following elements should be related:\n\n'
+ f'\\[ {", ".join(pairToString(p) for p in reflexivePairs)} \\]'
if not isSymmetric:
return 'The relation is not an equivalence relation, because it is not symmetric.'
+ ' It is missing the following symmetric pairs of relations\n\n'
+ f'\\[ {", ".join(f"""{pairToString(p)}{textLatex(" and ")}{pairToString(q)}""" for p,q in symmetricPairs)} \\]'
if not isTransitive:
return 'The relation is not an equivalence relation, because it is not transitive.'
+ ' The following pairs of relations are missing its transitive counterpart\n\n'
+ f'\\[ {", ".join(f"""{pairToString(p)}{textLatex(" and ")}{pairToString(q)}{textLatex(" without ")}{pairToString((p[0], q[1]))}""" for p,q in transitivePairs)} \\]'
rxStr = mathModeListLatex([pairToString(p) for p in reflexivePairs])
smStr = mathModeListLatex([f"""{pairToString(p)}{textLatex(" and ")}{pairToString(q)}""" for p,q in symmetricPairs])
trStr = mathModeListLatex([f"""{pairToString(p)}{textLatex(" and ")}{pairToString(q)}{textLatex(" with ")}{pairToString((p[0], q[1]))}""" for p,q in transitivePairs])
return replaceContent(
(rxStr, smStr, trStr),
'Relations/EquivalenceProof',
lambda temp, cont: temp.replace('%REFLEXIVE', cont[0]).replace('%SYMMETRIC', cont[1]).replace('%TRANSITIVE', cont[2])
)
return self.isReflexive() and self.isSymmetric() and self.isTransitive() return self.isReflexive() and self.isSymmetric() and self.isTransitive()
def isPartialOrder(self): def isPartialOrder(self, verbose=False):
return self.isReflexive() and self.isAntiSymmetric() and self.isTransitive()
def getHassePairs(self): result = self.isReflexive() and self.isAntiSymmetric() and self.isTransitive()
if not self.isPartialOrder():
if result:
hasse= self.getHassePairs(checkIfPartialOrder=False)
min_el = set(a for a,b in hasse if a not in list(zip(*hasse))[1])
printc(f"Minimal elements: $\{{ {', '.join(str(e) for e in min_el)} \}}$ \\\\")
max_el = set(v for k,v in hasse if v not in (x for x,_ in hasse))
printc(f"Maximal elements: $\{{ {', '.join(str(e) for e in max_el)} \}}$" )
if verbose:
isReflexive, reflexivePairs = self.isReflexive(verbose=True)
isAntiSymmetric, antiSymmetricPairs = self.isAntiSymmetric(verbose=True)
isTransitive, transitivePairs = self.isTransitive(verbose=True)
if not isReflexive:
return 'The relation is not a partial order, because it is not reflexive.'
+ ' The following elements should be related:\n\n'
+ f'\\[ {", ".join(pairToString(p) for p in reflexivePairs)} \\]'
if not isAntiSymmetric:
return 'The relation is not a partial order, because it is not antisymmetric.'
+ ' The following relations are symmetric\n\n'
+ f'\\[ {", ".join(f"""{pairToString(p)}{textLatex(" and ")}{pairToString(q)}""" for p,q in antiSymmetricPairs)} \\]'
if not isTransitive:
return 'The relation is not a partial order, because it is not transitive.'
+ ' The following pairs of relations are missing its transitive counterpart\n\n'
+ f'\\[ {", ".join(f"""{pairToString(p)}{textLatex(" and ")}{pairToString(q)}{textLatex(" without ")}{pairToString((p[0], q[1]))}""" for p,q in transitivePairs)} \\]'
rxStr = mathModeListLatex([pairToString(p) for p in reflexivePairs])
trStr = mathModeListLatex([f"""{pairToString(p)}{textLatex(" and ")}{pairToString(q)}{textLatex(" with ")}{pairToString((p[0], q[1]))}""" for p,q in transitivePairs])
return replaceContent(
(rxStr, trStr),
'Relations/PosetProof',
lambda temp, cont: temp.replace('%REFLEXIVE', cont[0]).replace('%TRANSITIVE', cont[1])
)
return result
def getHassePairs(self, checkIfPartialOrder=True):
if checkIfPartialOrder and not self.isPartialOrder():
printerr('This is not a partial order') printerr('This is not a partial order')
return return
nonReflexivePairs = set((x,y) for x,y in self.pairs if x != y)
hassePairs = set() hassePairs = set()
for x1, y1 in self.pairs: for x1, y1 in nonReflexivePairs:
for x2, y2 in self.pairs: for x2, y2 in nonReflexivePairs:
if y1 == x2: if y1 == x2:
hassePairs.add((x1, y2)) hassePairs.add((x1, y2))
return self.pairs - hassePairs return nonReflexivePairs - hassePairs
def latexifyHasseDiagram(self): def latexifyHasseDiagram(self):
hasse = self.getHassePairs() hasse = self.getHassePairs()
min_el = set(a for a,b in hasse if a not in list(zip(*hasse))[1])
keys = set(item for tup in hasse for item in tup) keys = set(item for tup in hasse for item in tup)
y_pos = dict.fromkeys(keys, 0) y_pos = dict.fromkeys(keys, 0)
@ -127,19 +231,13 @@ class Relation:
for y in inv_ypos.keys(): for y in inv_ypos.keys():
for i, n in enumerate(inv_ypos[y]): for i, n in enumerate(inv_ypos[y]):
output.append(f'\\node ({n}) at ({i - len(inv_ypos[y])/2}, {y * HEIGHT_SEPARATOR}) {{${n}$}};') output.append(f'\\node ({n}) at ({i - len(inv_ypos[y])/2}, {y * 0.5 * (len(hasse) ** 0.4)}) {{${n}$}};')
output.append('') output.append('')
for x,y in hasse: for x,y in hasse:
output.append(f'\\draw ({x}) -- ({y});') output.append(f'\\draw ({x}) -- ({y});')
printc(f"Minimal elements: $\{{ {', '.join(str(e) for e in min_el)} \}}$ \\\\")
max_el = set(v for k,v in hasse if v not in (x for x,_ in hasse))
printc(f"Maximal elements: $\{{ {', '.join(str(e) for e in max_el)} \}}$" )
return '\n'.join(output) return '\n'.join(output)
def latexifyGraph(self): def latexifyGraph(self):
@ -150,33 +248,46 @@ class Relation:
graphType = 'directed' graphType = 'directed'
pairs = self.pairs pairs = self.pairs
pass nodes = set()
for x,y in pairs:
nodes.add(x)
nodes.add(y)
edges = "\n".join(pairToString(p) for p in pairs)
processingString = f'toGraph\n\n{graphType}\n\n{ " ".join(nodes) }\n\n{edges}'
return Graph.processFileContent(processingString)
def processFileContent(raw, template): def processFileContent(raw):
outputType, inp = raw.split('\n\n') outputType, inp = raw.split('\n\n')
if inp.startsWith('divisibilityPosetTo'): if inp.startswith('divisibilityPosetTo'):
n = int(inp.split(' ')[1]) n = int(inp.split(' ')[1])
relation = Relation.fromDivisibilityPosetTo(n) relation = Relation.fromDivisibilityPosetTo(n)
else: else:
relation = Relation.fromString(inp) relation = Relation.fromString(inp)
if outputType == 'proveEquivalence': if outputType == 'proveEquivalence':
content = relation.isEquivalenceRelation() content = relation.isEquivalenceRelation(verbose=True)
return content
elif outputType == 'provePoset': elif outputType == 'provePoset':
content = relation.isPartialOrder() content = relation.isPartialOrder(verbose=True)
return content
elif outputType == 'hasseDiagram': elif outputType == 'hasseDiagram':
content = relation.latexifyHasseDiagram() content = relation.latexifyHasseDiagram()
return replaceContent(content, 'Relations/Hasse')
elif outputType == 'graph': elif outputType == 'graph':
content = relation.latexifyGraph() content = relation.latexifyGraph()
return content
content = Relation.fromString(raw).latexifyHasseDiagram()
return template.replace("%CONTENT", content)
if __name__ == '__main__': if __name__ == '__main__':
inp = 'AA BB CC DD AB AC AD BC BD CD' pass
relations = [stringToPair(p) for p in inp.split(' ')] # inp = 'AA BB CC DD AB AC AD BC BD CD'
# print(Relation(relations).isEquivalenceRelation()) # relations = [stringToPair(p) for p in inp.split(' ')]
print(Relation(relations).isPartialOrder()) # # print(Relation(relations).isEquivalenceRelation())
print(Relation.fromDivisibilityPosetTo(30).isPartialOrder()) # print(Relation(relations).isPartialOrder())
# print(Relation.fromDivisibilityPosetTo(30).isPartialOrder())

View File

@ -1,7 +1,7 @@
from sys import argv from sys import argv
from pathlib import Path from pathlib import Path
from common import printerr from common import printerr, replaceContent
try: try:
from tabulate import tabulate from tabulate import tabulate
@ -20,18 +20,21 @@ class OverloadedBool:
self.val = val self.val = val
def __bool__(self): def __bool__(self):
return self.val val = self.val
while(type(val) is OverloadedBool):
val = val.val
return val
def __str__(self): def __str__(self):
return str(self.val) return str(self.val)
def __add__(self, bool2): def __add__(self, bool2):
""" Implies """ """ Implies """
return (not self.val or bool2) return OverloadedBool(not self.val or bool2)
def __sub__(self, bool2): def __sub__(self, bool2):
""" Iff """ """ Iff """
return (not self.val or bool2) and (not bool2 or self.val) return OverloadedBool((not self.val or bool2) and (not bool2 or self.val))
def flattenImpliesIff(exps): def flattenImpliesIff(exps):
return [exp.replace('implies', '+').replace('iff', '-').replace('E', '') for exp in exps] return [exp.replace('implies', '+').replace('iff', '-').replace('E', '') for exp in exps]
@ -51,7 +54,7 @@ def generateTruthTable(exps):
def calculateGridLine(): def calculateGridLine():
line = [] line = []
for exp in exps: for exp in exps:
exec(f'line.append(({exp}).__bool__())') exec(f'line.append(({exp}))')
return line return line
truthtable.append(calculateGridLine()) truthtable.append(calculateGridLine())
@ -95,30 +98,14 @@ def printTruthtable(exps, truthtable):
except: except:
pass pass
def processFileContent(raw):
def processFileContent(raw, template):
exps = parseExpressionList(raw) exps = parseExpressionList(raw)
truthtable = generateTruthTable(exps) truthtable = generateTruthTable(exps)
printTruthtable(exps, generateTruthTable(exps)) printTruthtable(exps, generateTruthTable(exps))
content = latexify(exps, truthtable) content = latexify(exps, truthtable)
return template.replace('%CONTENT', content) return replaceContent(content, 'Truthtable')
if __name__ == '__main__': if __name__ == '__main__':
filename = argv[1] pass
with open(filename) as file:
exps = parseExpressionList(file.read())
truthtable = generateTruthTable(exps)
from tabulate import tabulate
printTruthtable(exps, generateTruthTable(exps))
content = latexify(exps, truthtable)
with open(str(Path(__file__).parent.absolute()) + '/tex_templates/Truthtable.tex') as template:
with open(argv[2], 'w') as destination_file:
destination_file.write(template.read().replace('%CONTENT', content))

View File

@ -1,3 +1,4 @@
from pathlib import Path
clear = '\033[0m' clear = '\033[0m'
colors = { colors = {
@ -14,3 +15,7 @@ def printc(text, color='blue'):
def printerr(text): def printerr(text):
print(f'\033[31;5m[ERROR] {text}{clear}') print(f'\033[31;5m[ERROR] {text}{clear}')
def replaceContent(content, template, replaceF = lambda temp, cont: temp.replace("%CONTENT", cont)):
with open(str(Path(__file__).parent.absolute()) + f'/tex_templates/{template}.tex') as template:
return replaceF(template.read(), content)

View File

@ -15,22 +15,21 @@ def fetchContentType(content):
def processContent(content): def processContent(content):
contentType, content = fetchContentType(content) contentType, content = fetchContentType(content)
with open(str(Path(__file__).parent.absolute()) + f'/tex_templates/{contentType}.tex') as template:
if contentType == 'Hasse': if contentType == 'FSA':
result = Hasse.processFileContent(content, template.read()) result = FSA.processFileContent(content)
elif contentType == 'FSA': elif contentType == 'Graph':
result = FSA.processFileContent(content, template.read()) result = Graph.processFileContent('toGraph\n\n' + content)
elif contentType == 'Graph': elif contentType == 'Matrix':
result = Graph.processFileContent('toGraph\n\n' + content, template.read()) result = Graph.processFileContent('toMatrix\n\n' + content)
elif contentType == 'Matrix': elif contentType == 'Relations':
result = Graph.processFileContent('toMatrix\n\n' + content, template.read()) result = Relations.processFileContent(content)
elif contentType == 'Relations': elif contentType == 'Truthtable':
result = Relations.processFileContent(content, template.read()) result = Truthtable.processFileContent(content)
elif contentType == 'Truthtable': else:
result = Truthtable.processFileContent(content, template.read()) printerr('DIDN\'T RECOGNIZE FILE TYPE')
else: exit(1)
printerr('DIDN\'T RECOGNIZE FILE TYPE')
exit(1)
return result return result
if __name__ == '__main__': if __name__ == '__main__':

View File

@ -0,0 +1,8 @@
\codeFile{%CODEFILE}{python}
Output:
\begin{verbatim}
%OUTPUT
\end{verbatim}

View File

@ -0,0 +1,22 @@
In order for this relation to be an equivalence equation, it has to be reflexive, symmetric and transitive.
\textbf{Reflexive:}
All elements are related to themself
%REFLEXIVE
\textbf{Symmetric:}
All relations has its symmetric counterpart
%SYMMETRIC
\textbf{Transitive:}
All pair of relations where $xRy$ and $yRz$ has its transitive counterpart
%TRANSITIVE
Hence the relation is an equivalence relation

View File

@ -0,0 +1,22 @@
In order for this relation to be a partial order, it has to be reflexive, antisymmetric and transitive.
\textbf{Reflexive:}
All elements are related to themself
%REFLEXIVE
\textbf{Antisymmetric:}
No relation have a symmetric counterpart \\
(Listing the ones that don't have a symmetric counterpart would just be listing the whole set) \\
\textbf{Transitive:}
All pair of relations where $xRy$ and $yRz$ has its transitive counterpart
%TRANSITIVE
Hence the relation is a partial order

View File

@ -0,0 +1,33 @@
\newcommand{\arrow}[2]{\path [-{Latex[scale=1]}] (#1) edge (#2);}
\begin{tikzpicture}
\begin{scope}[every node/.style={shape=circle, fill=white, draw, inner sep=2pt}]
\node (A) at (0,4.0) {$A$};
\node (B) at (-2.82843,2.82843) {$B$};
\node (C) at (-4.0,0.0) {$C$};
\node (D) at (-2.82843,-2.82843) {$D$};
\node (E) at (-0.0,-4.0) {$E$};
\node (F) at (2.82843,-2.82843) {$F$};
\node (G) at (4.0,-0.0) {$G$};
\node (H) at (2.82843,2.82843) {$H$};
\end{scope}
\begin{scope}[every draw/.style={}]
\draw [-{Latex[scale=1]}] (A) to (B);
\draw [-{Latex[scale=1]}] (A) to (C);
\draw [-{Latex[scale=1]}] (C) to (D);
\draw [-{Latex[scale=1]}] (D) to (E);
\draw [-{Latex[scale=1]}, bend left=8] (H) to (A);
\draw [-{Latex[scale=1]}] (F) to (D);
\draw [-{Latex[scale=1]}] (C) to (B);
\draw [-{Latex[scale=1]}] (F) to (G);
\draw [-{Latex[scale=1]}] (D) to (E);
\draw [-{Latex[scale=1]}] (D) to (G);
\draw [-{Latex[scale=1]}, bend left=8] (A) to (H);
\draw [-{Latex[scale=1]}] (F) to (B);
\draw [-{Latex[scale=1]}, bend left=8] (H) to (C);
\draw [-{Latex[scale=1]}, bend left=8] (C) to (H);
\end{scope}
\end{tikzpicture}

View File

@ -0,0 +1,20 @@
\newcommand{\arrow}[2]{\path [-{Latex[scale=1]}] (#1) edge (#2);}
\begin{tikzpicture}
\begin{scope}[every node/.style={shape=circle, fill=white, draw, inner sep=2pt}]
\node (B) at (0,2.5) {$B$};
\node (D) at (-2.37764,0.77254) {$D$};
\node (C) at (-1.46946,-2.02254) {$C$};
\node (A) at (1.46946,-2.02254) {$A$};
\node (E) at (2.37764,0.77254) {$E$};
\end{scope}
\begin{scope}[every draw/.style={}]
\draw (A) -- (C);
\draw (A) -- (E);
\draw (B) -- (D);
\draw (C) -- (E);
\end{scope}
\end{tikzpicture}

View File

@ -1,16 +1,16 @@
\begin{tikzpicture} \begin{tikzpicture}
\tikzset{every node/.style={shape=circle,draw,inner sep=2pt}} \tikzset{every node/.style={shape=circle,draw,inner sep=2pt}}
\node (a) at (-0.5, 0) {$a$}; \node (a) at (-0.5, 0.0) {$a$};
\node (b) at (-1.0, 1) {$b$}; \node (e) at (-1.0, 0.9518269693579393) {$e$};
\node (e) at (0.0, 1) {$e$}; \node (b) at (0.0, 0.9518269693579393) {$b$};
\node (c) at (-1.0, 2) {$c$}; \node (d) at (-1.0, 1.9036539387158786) {$d$};
\node (d) at (0.0, 2) {$d$}; \node (c) at (0.0, 1.9036539387158786) {$c$};
\draw (e) -- (d);
\draw (a) -- (e);
\draw (b) -- (c);
\draw (a) -- (b);
\draw (e) -- (c); \draw (e) -- (c);
\draw (e) -- (d);
\draw (b) -- (c);
\draw (a) -- (e);
\draw (a) -- (b);
\end{tikzpicture} \end{tikzpicture}

View File

@ -0,0 +1,49 @@
\begin{tikzpicture}
\tikzset{every node/.style={shape=circle,draw,inner sep=2pt}}
\node (1) at (-0.5, 0.0) {$1$};
\node (2) at (-4.0, 1.7826024579660036) {$2$};
\node (3) at (-3.0, 1.7826024579660036) {$3$};
\node (5) at (-2.0, 1.7826024579660036) {$5$};
\node (7) at (-1.0, 1.7826024579660036) {$7$};
\node (11) at (0.0, 1.7826024579660036) {$11$};
\node (13) at (1.0, 1.7826024579660036) {$13$};
\node (17) at (2.0, 1.7826024579660036) {$17$};
\node (19) at (3.0, 1.7826024579660036) {$19$};
\node (4) at (-3.0, 3.565204915932007) {$4$};
\node (6) at (-2.0, 3.565204915932007) {$6$};
\node (9) at (-1.0, 3.565204915932007) {$9$};
\node (10) at (0.0, 3.565204915932007) {$10$};
\node (14) at (1.0, 3.565204915932007) {$14$};
\node (15) at (2.0, 3.565204915932007) {$15$};
\node (8) at (-1.5, 5.347807373898011) {$8$};
\node (12) at (-0.5, 5.347807373898011) {$12$};
\node (18) at (0.5, 5.347807373898011) {$18$};
\node (16) at (-0.5, 7.130409831864014) {$16$};
\draw (6) -- (12);
\draw (6) -- (18);
\draw (4) -- (12);
\draw (5) -- (10);
\draw (1) -- (3);
\draw (2) -- (14);
\draw (3) -- (9);
\draw (4) -- (8);
\draw (3) -- (6);
\draw (3) -- (15);
\draw (5) -- (15);
\draw (2) -- (4);
\draw (1) -- (2);
\draw (1) -- (5);
\draw (1) -- (11);
\draw (2) -- (10);
\draw (1) -- (17);
\draw (8) -- (16);
\draw (1) -- (7);
\draw (1) -- (13);
\draw (2) -- (6);
\draw (9) -- (18);
\draw (1) -- (19);
\draw (7) -- (14);
\end{tikzpicture}

View File

@ -0,0 +1,42 @@
In order for this relation to be an equivalence equation, it has to be reflexive, symmetric and transitive.
\textbf{Reflexive:}
All elements are related to themself
\[ AA, DD, CC, EE, BB \]
\textbf{Symmetric:}
All relations has its symmetric counterpart
\begin{gather*}
AE\text{ and }EA \\
AC\text{ and }CA \\
BD\text{ and }DB \\
CE\text{ and }EC
\end{gather*}
\textbf{Transitive:}
All pair of relations where $xRy$ and $yRz$ has its transitive counterpart
\begin{gather*}
DB\text{ and }BD\text{ with }DD \\
AE\text{ and }EA\text{ with }AA \\
AE\text{ and }EC\text{ with }AC \\
AC\text{ and }CE\text{ with }AE \\
AC\text{ and }CA\text{ with }AA \\
BD\text{ and }DB\text{ with }BB \\
CE\text{ and }EA\text{ with }CA \\
CE\text{ and }EC\text{ with }CC \\
EA\text{ and }AE\text{ with }EE \\
EA\text{ and }AC\text{ with }EC \\
EC\text{ and }CE\text{ with }EE \\
EC\text{ and }CA\text{ with }EA \\
CA\text{ and }AE\text{ with }CE \\
CA\text{ and }AC\text{ with }CC
\end{gather*}
Hence the relation is an equivalence relation

View File

@ -0,0 +1,27 @@
In order for this relation to be a partial order, it has to be reflexive, antisymmetric and transitive.
\textbf{Reflexive:}
All elements are related to themself
\[ AA, BB, CC, DD \]
\textbf{Antisymmetric:}
No relation have a symmetric counterpart \\
(Listing the ones that don't have a symmetric counterpart would just be listing the whole set) \\
\textbf{Transitive:}
All pair of relations where $xRy$ and $yRz$ has its transitive counterpart
\begin{gather*}
AB\text{ and }BD\text{ with }AD \\
AB\text{ and }BC\text{ with }AC \\
BC\text{ and }CD\text{ with }BD \\
AC\text{ and }CD\text{ with }AD
\end{gather*}
Hence the relation is a partial order

View File

@ -0,0 +1,19 @@
# Graph
directed
A B C D E F G H
AB
AC
CD
DE
HA
FD
CB
FG
DE
DG
AH
FB
HC
CH

View File

@ -1,4 +1,4 @@
# Relations # Relations
hasseDiagram hasseDiagram
ab ac ad ae bc ed ec aa bb cc dd ee ab ac ad ae bc ed ec

View File

@ -0,0 +1,4 @@
# Relations
hasseDiagram
divisibilityPosetTo 20

View File

@ -0,0 +1,3 @@
# Powerset
A B C D (E F) (A (B C))

View File

@ -0,0 +1,2 @@
# python

View File

@ -1,2 +1,2 @@
# Truthtable # Truthtable
p, q, s, p and q, p implies q, E p iff q, p iff (q and s) p, q, s, p and q, E p iff q, p iff (q and s), E not ((not p and q) or (not p and not q)) or (p and q)

View File

@ -15,3 +15,5 @@ DE
DG DG
AH AH
FB FB
HC
CH

View File

@ -1,14 +1,14 @@
\begin{truthtable} \begin{truthtable}
{c|c|c|c|c|e|c} {c|c|c|c|e|c|e}
{$p$ & $q$ & $s$ & $p \wedge q$ & $p \Rightarrow q$ & $ p \Leftrightarrow q$ & $p \Leftrightarrow (q \wedge s)$} {$p$ & $q$ & $s$ & $p \wedge q$ & $ p \Leftrightarrow q$ & $p \Leftrightarrow (q \wedge s)$ & $ \neg ((\neg p \wedge q) \vee (\neg p \wedge \neg q)) \vee (p \wedge q)$}
\T & \T & \T & \T & \T & \T & \T \\ \T & \T & \T & \T & \T & \T & \T \\
\T & \T & \F & \T & \T & \T & \F \\ \T & \T & \F & \T & \T & \F & \T \\
\T & \F & \T & \F & \F & \F & \F \\ \T & \F & \T & \F & \F & \F & \T \\
\T & \F & \F & \F & \F & \F & \F \\ \T & \F & \F & \F & \F & \F & \T \\
\F & \T & \T & \F & \T & \F & \F \\ \F & \T & \T & \F & \F & \F & \F \\
\F & \T & \F & \F & \T & \F & \T \\ \F & \T & \F & \F & \F & \T & \F \\
\F & \F & \T & \F & \T & \T & \T \\ \F & \F & \T & \F & \T & \T & \F \\
\F & \F & \F & \F & \T & \T & \T \\ \F & \F & \F & \F & \T & \T & \F \\
\end{truthtable} \end{truthtable}

View File

@ -20,6 +20,7 @@
\draw (B) -- (C); \draw (B) -- (C);
\draw (B) -- (F); \draw (B) -- (F);
\draw (C) -- (D); \draw (C) -- (D);
\draw (C) -- (H);
\draw (D) -- (E); \draw (D) -- (E);
\draw (D) -- (F); \draw (D) -- (F);
\draw (D) -- (G); \draw (D) -- (G);

View File

@ -16,10 +16,21 @@
\renewcommand{\theenumiii}{\alph{enumiii})} \renewcommand{\theenumiii}{\alph{enumiii})}
\usepackage{verbatim} \usepackage{verbatim}
\usepackage{listings}
\newcommand{\listFile}[1]{
\lstinputlisting
[ frame=single,
basicstyle=\small,
breaklines
]
{graphics/src/#1.txt}
}
\newcommand{\verbatimDiagram}[1]{ \newcommand{\verbatimDiagram}[1]{
\section{#1} \subsection{#1}
\verbatiminput{graphics/src/#1.txt}
\listFile{#1}
\includeDiagram{graphics/#1.tex} \includeDiagram{graphics/#1.tex}
@ -27,9 +38,9 @@
} }
\newcommand{\verbatimInput}[1]{ \newcommand{\verbatimInput}[1]{
\section{#1} \subsection{#1}
\verbatiminput{graphics/src/#1.txt} \listFile{#1}
\input{graphics/#1.tex} \input{graphics/#1.tex}
@ -43,20 +54,42 @@
\tableofcontents \tableofcontents
\verbatimDiagram{hasse} \newpage{}
\verbatimDiagram{automata} \section{Propositional Logic}
\verbatimInput{truthtable} \verbatimInput{truthtable}
\verbatimDiagram{undirectedGraph} \section{Sets}
\verbatimDiagram{complete6} \section{Relations}
\verbatimDiagram{adjacency} \verbatimInput{proveEquivalence}
\verbatimInput{undirectedGraphToMatrix} \verbatimInput{provePoset}
\verbatimDiagram{directedFromMatrix} \verbatimDiagram{equivalenceDiagram}
\verbatimDiagram{hasse}
\verbatimDiagram{hasseDiagramByDivisibility}
\section{Graph theory}
\verbatimDiagram{undirectedGraph}
\verbatimDiagram{directedGraph}
\verbatimDiagram{complete6}
\verbatimDiagram{adjacency}
\verbatimInput{undirectedGraphToMatrix}
\verbatimDiagram{directedFromMatrix}
\section{Finite state automata}
\verbatimDiagram{automata}
\end{document} \end{document}

View File

@ -1,9 +1,19 @@
\babel@toc {english}{} \babel@toc {english}{}
\contentsline {section}{\numberline {1}hasse}{1}{section.1}% \contentsline {section}{\numberline {1}Propositional Logic}{2}{section.1}%
\contentsline {section}{\numberline {2}automata}{2}{section.2}% \contentsline {subsection}{\numberline {1.1}truthtable}{2}{subsection.1.1}%
\contentsline {section}{\numberline {3}truthtable}{3}{section.3}% \contentsline {section}{\numberline {2}Sets}{3}{section.2}%
\contentsline {section}{\numberline {4}undirectedGraph}{4}{section.4}% \contentsline {section}{\numberline {3}Relations}{3}{section.3}%
\contentsline {section}{\numberline {5}complete6}{5}{section.5}% \contentsline {subsection}{\numberline {3.1}proveEquivalence}{3}{subsection.3.1}%
\contentsline {section}{\numberline {6}adjacency}{6}{section.6}% \contentsline {subsection}{\numberline {3.2}provePoset}{4}{subsection.3.2}%
\contentsline {section}{\numberline {7}undirectedGraphToMatrix}{7}{section.7}% \contentsline {subsection}{\numberline {3.3}equivalenceDiagram}{5}{subsection.3.3}%
\contentsline {section}{\numberline {8}directedFromMatrix}{8}{section.8}% \contentsline {subsection}{\numberline {3.4}hasse}{6}{subsection.3.4}%
\contentsline {subsection}{\numberline {3.5}hasseDiagramByDivisibility}{7}{subsection.3.5}%
\contentsline {section}{\numberline {4}Graph theory}{8}{section.4}%
\contentsline {subsection}{\numberline {4.1}undirectedGraph}{8}{subsection.4.1}%
\contentsline {subsection}{\numberline {4.2}directedGraph}{9}{subsection.4.2}%
\contentsline {subsection}{\numberline {4.3}complete6}{10}{subsection.4.3}%
\contentsline {subsection}{\numberline {4.4}adjacency}{11}{subsection.4.4}%
\contentsline {subsection}{\numberline {4.5}undirectedGraphToMatrix}{12}{subsection.4.5}%
\contentsline {subsection}{\numberline {4.6}directedFromMatrix}{13}{subsection.4.6}%
\contentsline {section}{\numberline {5}Finite state automata}{14}{section.5}%
\contentsline {subsection}{\numberline {5.1}automata}{14}{subsection.5.1}%