Add the rest of the exercises
This commit is contained in:
parent
834c23cf50
commit
94abae2905
62
README.md
62
README.md
|
@ -4,16 +4,20 @@
|
|||
Using styling files from [oysteikt/texmf](https://gitlab.stud.idi.ntnu.no/oysteikt/texmf)
|
||||
|
||||
|
||||
| Num | Exercise PDF | My Solution PDF | Answer Sheet PDF |
|
||||
| --- | ------------------------ | --------------- | ---------------- |
|
||||
| 1 | [wiki.math.ntnu.no][ex1] | [ex1.pdf][so1] | [wiki.math.ntnu.no][as1] |
|
||||
| 2 | [wiki.math.ntnu.no][ex2] | [ex2.pdf][so2] | [wiki.math.ntnu.no][as2] |
|
||||
| 3 | [wiki.math.ntnu.no][ex3] | [ex3.pdf][so3] | [wiki.math.ntnu.no][as3] |
|
||||
| 4 | [wiki.math.ntnu.no][ex4] | [ex4.pdf][so4] | [wiki.math.ntnu.no][as4] |
|
||||
| 5 | [wiki.math.ntnu.no][ex5] | [ex5.pdf][so5] | <!--[wiki.math.ntnu.no][as5]--> |
|
||||
| 6 | [wiki.math.ntnu.no][ex6] | [ex6.pdf][so6] | <!--[wiki.math.ntnu.no][as6]--> |
|
||||
| 7 | [wiki.math.ntnu.no][ex7] | [ex7.pdf][so7] | <!--[wiki.math.ntnu.no][as7]--> |
|
||||
| 8 | [wiki.math.ntnu.no][ex8] | [ex8.pdf][so8] | <!--[wiki.math.ntnu.no][as8]--> |
|
||||
| Num | Exercise PDF | Answer PDF | Solutions PDF |
|
||||
| --- | ------------------------- | ---------------- | ------------------------- |
|
||||
| 1 | [wiki.math.ntnu.no][ex1] | [ex1.pdf][as1] | [wiki.math.ntnu.no][so1] |
|
||||
| 2 | [wiki.math.ntnu.no][ex2] | [ex2.pdf][as2] | [wiki.math.ntnu.no][so2] |
|
||||
| 3 | [wiki.math.ntnu.no][ex3] | [ex3.pdf][as3] | [wiki.math.ntnu.no][so3] |
|
||||
| 4 | [wiki.math.ntnu.no][ex4] | [ex4.pdf][as4] | [wiki.math.ntnu.no][so4] |
|
||||
| 5 | [wiki.math.ntnu.no][ex5] | [ex5.pdf][as5] | [wiki.math.ntnu.no][as5] |
|
||||
| 6 | [wiki.math.ntnu.no][ex6] | [ex6.pdf][as6] | [wiki.math.ntnu.no][as6] |
|
||||
| 7 | [wiki.math.ntnu.no][ex7] | [ex7.pdf][as7] | [wiki.math.ntnu.no][as7] |
|
||||
| 8 | [wiki.math.ntnu.no][ex8] | [ex8.pdf][as8] | [wiki.math.ntnu.no][as8] |
|
||||
| 9 | [wiki.math.ntnu.no][ex9] | [ex9.pdf][as9] | [wiki.math.ntnu.no][as9] |
|
||||
| 10 | [wiki.math.ntnu.no][ex10] | [ex10.pdf][as10] | [wiki.math.ntnu.no][as10] |
|
||||
| 11 | [wiki.math.ntnu.no][ex11] | [ex11.pdf][as11] | N/A <!--[wiki.math.ntnu.no][as11]--> |
|
||||
| 12 | [wiki.math.ntnu.no][ex12] | [ex12.pdf][as12] | N/A <!--[wiki.math.ntnu.no][as12]--> |
|
||||
|
||||
[ex1]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-1-2021-new.pdf "Exercise 1 Questions"
|
||||
[ex2]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-2-2021-new.pdf "Exercise 2 Questions"
|
||||
|
@ -23,17 +27,31 @@ Using styling files from [oysteikt/texmf](https://gitlab.stud.idi.ntnu.no/oystei
|
|||
[ex6]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-6-2021.pdf "Exercise 6 Questions"
|
||||
[ex7]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-7-2021.pdf "Exercise 7 Questions"
|
||||
[ex8]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-8-2021.pdf "Exercise 8 Questions"
|
||||
[ex9]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-9-2021.pdf "Exercise 9 Questions"
|
||||
[ex10]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-10-2021.pdf "Exercise 10 Questions"
|
||||
[ex11]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-11-2021.pdf "Exercise 11 Questions"
|
||||
[ex12]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-12-2021.pdf "Exercise 12 Questions"
|
||||
|
||||
[so1]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise1.pdf "Exercise 1 Solutions"
|
||||
[so2]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise2.pdf "Exercise 2 Solutions"
|
||||
[so3]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise3.pdf "Exercise 3 Solutions"
|
||||
[so4]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise4.pdf "Exercise 4 Solutions"
|
||||
[so5]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise5.pdf "Exercise 5 Solutions"
|
||||
[so6]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise6.pdf "Exercise 6 Solutions"
|
||||
[so7]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise7.pdf "Exercise 7 Solutions"
|
||||
[so8]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise8.pdf "Exercise 8 Solutions"
|
||||
[as1]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise1.pdf "Exercise 1 Answers"
|
||||
[as2]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise2.pdf "Exercise 2 Answers"
|
||||
[as3]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise3.pdf "Exercise 3 Answers"
|
||||
[as4]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise4.pdf "Exercise 4 Answers"
|
||||
[as5]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise5.pdf "Exercise 5 Answers"
|
||||
[as6]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise6.pdf "Exercise 6 Answers"
|
||||
[as7]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise7.pdf "Exercise 7 Answers"
|
||||
[as8]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise8.pdf "Exercise 8 Answers"
|
||||
[as9]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise9.pdf "Exercise 9 Answers"
|
||||
[as10]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise10.pdf "Exercise 10 Answers"
|
||||
[as11]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise11.pdf "Exercise 11 Answers"
|
||||
[as12]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise12.pdf "Exercise 12 Answers"
|
||||
|
||||
[as1]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-1-2021-solutions.pdf "Exercise 1 Answer sheet"
|
||||
[as2]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-2-2021-solutions.pdf "Exercise 2 Answer sheet"
|
||||
[as3]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-3-2021-solutions.pdf "Exercise 3 Answer sheet"
|
||||
[as4]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-4-2021-solutions.pdf "Exercise 4 Answer sheet"
|
||||
[so1]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-1-2021-solutions.pdf "Exercise 1 Solutions"
|
||||
[so2]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-2-2021-solutions.pdf "Exercise 2 Solutions"
|
||||
[so3]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-3-2021-solutions.pdf "Exercise 3 Solutions"
|
||||
[so4]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-4-2021-solutions.pdf "Exercise 4 Solutions"
|
||||
[so5]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-5-2021-solutions.pdf "Exercise 5 Solutions"
|
||||
[so6]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-6-2021-solutions.pdf "Exercise 6 Solutions"
|
||||
[so7]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-7-2021-solutions.pdf "Exercise 7 Solutions"
|
||||
[so8]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-8-2021-solutions.pdf "Exercise 8 Solutions"
|
||||
[so9]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-9-2021-solutions.pdf "Exercise 9 Solutions"
|
||||
[so10]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-10-2021-solutions.pdf "Exercise 10 Solutions"
|
|
@ -0,0 +1,14 @@
|
|||
\newcommand{\point}[2]{
|
||||
\node [label=above:$#1$] (#1) at #2 {};
|
||||
}
|
||||
|
||||
\begin{tikzpicture}[]
|
||||
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
|
||||
\point{a}{(0,0)}
|
||||
\point{b}{(1,0)}
|
||||
\point{c}{(2,0)}
|
||||
\end{scope}
|
||||
|
||||
\draw (a) -- (b) -- (c);
|
||||
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,36 @@
|
|||
\newcommand{\point}[3]{
|
||||
\node [label=#3:$#1$] (#1) at #2 {};
|
||||
}
|
||||
|
||||
\begin{tikzpicture}[]
|
||||
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
|
||||
% a
|
||||
\point{d}{(0,1)}{left}
|
||||
\point{h}{(0,0)}{below}
|
||||
\point{e}{(1,1)}{right}
|
||||
% i
|
||||
\point{b}{(3,2)}{above}
|
||||
\point{f}{(3,1)}{left}
|
||||
\point{j}{(3,0)}{below}
|
||||
\point{c}{(4,2)}{above}
|
||||
% g
|
||||
\point{k}{(4,0)}{below}
|
||||
\end{scope}
|
||||
|
||||
\begin{scope}[every node/.style={fill=red, shape=circle, inner sep=2pt}]
|
||||
\point{a}{(0,2)}{above}
|
||||
\point{i}{(1,0)}{below}
|
||||
\point{g}{(4,1)}{right}
|
||||
\end{scope}
|
||||
|
||||
\draw (a) -- (d) -- (h);
|
||||
\draw (e) -- (i);
|
||||
\draw (b) -- (f) -- (j);
|
||||
\draw (c) -- (g) -- (k);
|
||||
\draw (a) -- (b) -- (c);
|
||||
\draw (a) -- (e);
|
||||
\draw (d) -- (e);
|
||||
\draw (f) -- (g);
|
||||
\draw (h) -- (i) -- (j) -- (k);
|
||||
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,43 @@
|
|||
\newcommand{\point}[3]{
|
||||
\node [label=#3:$#1$] (#1) at #2 {};
|
||||
}
|
||||
|
||||
\newcommand{\arrow}[2]{\path [-{Latex[scale=1]}] (#1) edge (#2);}
|
||||
|
||||
\begin{tikzpicture}
|
||||
|
||||
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
|
||||
\point{a}{(0,2)}{above}
|
||||
\point{d}{(0,1)}{left}
|
||||
\point{h}{(0,0)}{below}
|
||||
\point{b}{(2,2)}{above}
|
||||
\point{e}{(1,1)}{above left}
|
||||
\point{i}{(1,0)}{below}
|
||||
\point{f}{(3,1)}{right}
|
||||
\point{j}{(3,0)}{below}
|
||||
\point{c}{(4,2)}{above}
|
||||
\point{g}{(4,1)}{right}
|
||||
\point{k}{(4,0)}{below}
|
||||
\end{scope}
|
||||
|
||||
\arrow{a}{d}
|
||||
\arrow{d}{h}
|
||||
\arrow{h}{i}
|
||||
\arrow{i}{j}
|
||||
\arrow{j}{k}
|
||||
\arrow{k}{g}
|
||||
\arrow{g}{c}
|
||||
\arrow{c}{b}
|
||||
\arrow{b}{g}
|
||||
\arrow{g}{j}
|
||||
\arrow{j}{f}
|
||||
\arrow{f}{b}
|
||||
\arrow{b}{e}
|
||||
\arrow{e}{f}
|
||||
\arrow{f}{i}
|
||||
\arrow{i}{e}
|
||||
\arrow{e}{d}
|
||||
\arrow{d}{b}
|
||||
\arrow{b}{a}
|
||||
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,42 @@
|
|||
\newcommand{\point}[3]{
|
||||
\node [label=#3:$#1$] (#1) at #2 {};
|
||||
}
|
||||
|
||||
\newcommand{\arrow}[2]{\path [-{Latex[scale=1]}] (#1) edge (#2);}
|
||||
|
||||
\begin{tikzpicture}
|
||||
|
||||
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
|
||||
\point{a}{(0,2)}{above}
|
||||
\point{d}{(0,1)}{left}
|
||||
\point{h}{(0,0)}{below}
|
||||
\point{b}{(2,2)}{above}
|
||||
\point{e}{(1,1)}{above left}
|
||||
\point{i}{(1,0)}{below}
|
||||
\point{f}{(3,1)}{right}
|
||||
\point{j}{(3,0)}{below}
|
||||
\point{c}{(4,2)}{above}
|
||||
\point{g}{(4,1)}{right}
|
||||
\point{k}{(4,0)}{below}
|
||||
\end{scope}
|
||||
|
||||
\arrow{d}{a}
|
||||
\arrow{a}{b}
|
||||
\arrow{b}{d}
|
||||
\arrow{d}{h}
|
||||
\arrow{h}{i}
|
||||
\arrow{i}{j}
|
||||
\arrow{j}{k}
|
||||
\arrow{k}{g}
|
||||
\arrow{g}{c}
|
||||
\arrow{c}{b}
|
||||
\arrow{b}{g}
|
||||
\arrow{g}{j}
|
||||
\arrow{j}{f}
|
||||
\arrow{f}{b}
|
||||
\arrow{b}{e}
|
||||
\arrow{e}{f}
|
||||
\arrow{f}{i}
|
||||
\arrow{i}{e}
|
||||
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,618 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg8"
|
||||
inkscape:version="1.0.2 (e86c870879, 2021-01-15, custom)"
|
||||
sodipodi:docname="ex6_b.svg">
|
||||
<defs
|
||||
id="defs2">
|
||||
<rect
|
||||
x="101.26584"
|
||||
y="163.31129"
|
||||
width="8.515411"
|
||||
height="6.2048371"
|
||||
id="rect899" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="1.979899"
|
||||
inkscape:cx="369.66027"
|
||||
inkscape:cy="738.15548"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
inkscape:document-rotation="0"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1920"
|
||||
inkscape:window-height="1040"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="40"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata5">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Layer 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<image
|
||||
width="92.074997"
|
||||
height="75.935417"
|
||||
preserveAspectRatio="none"
|
||||
xlink:href="
|
||||
eJzs3Xlw1Pd9+P/n3qdW0upGx+pEt9ABwiAM5rYxBowxvh070zRt2okz03b6RzttOpnOtN80aTrJ
|
||||
JBOnaR3HSRwbmysctgEB5pYQICGB7vuWVrta7aE9f3/4t1tjsFlhiUO8HzPM2Ojz2X2vVrz03vf7
|
||||
9X69JIFAIIAgCIIQFqvVyuXLl/nLv/xLvvvd7/Lqq6+i1WrDulc6x2MTBEGYN6xWK9euXePYsWNY
|
||||
rVZqa2s5c+YMk5OT+P3+294vAq4gCEKYpqamaG9v5+zZs9jtdhoaGrh06RJ2u10EXEEQhNmk0WhI
|
||||
Tk6muLgYjUZDVlYWCxcuRK1Wh3W/CLiCIAhhioiIIDs7m+XLl6PX6ykpKaGiogK9Xo9MJrvt/fK7
|
||||
MEZBEIR5QaFQEBERQWxsLAqFgqioKIxGIwqFIqz7xQxXEAQhTD6fD6fTic1mw+fzYbfbmZqawufz
|
||||
EU7Clwi4giAIYXI6nQwNDdHc3IzT6aS7u5uOjg6mp6fDCrhiSUEQBCFMZrOZixcv8sEHH2A2mzl+
|
||||
/DhGo5G0tDTi4uKQSr96DitmuIIgCGHS6/VkZmaydOlS9Ho9hYWFlJaWotVqbxtsQcxwBUEQwmY0
|
||||
GikvL0cqlfLRRx+xatUqNmzYIE6aCYIg3G9EwBUEQbhLRMAVBEEIk8Viob6+nkOHDmGxWDhz5gzH
|
||||
jx/HarXi8/lue78IuIIgCGGy2+10d3dTV1eH3W6nubmZq1ev4nA4RC0FQRCE2aTT6cjIyGDx4sXo
|
||||
dDry8/MpKSkJO0tBBFxBEIQwBdPCKisrQ2lhixYtQqfTibQwQRCE2SSXy9FqtURHRyOXy4mIiCAy
|
||||
MhK5PLxQKma4giAIYfJ6vdjtdiwWC16vF5vNhtVqxev1iloKgiAIs8nhcNDf309DQwNOp5P29vZQ
|
||||
XYVwNs3EkoIgCEKYbpUWlpSURE5ODmq1+rY1ccUMVxAEIUwGg4Hc3FxWrlxJREQEZWVloQ00sWkm
|
||||
CIIwi6KioiguLsbn87F3716WLVvGqlWrRC0FQRCE+40IuIIgCHeJWFIQBEEIk9ls5sqVK+zbtw+b
|
||||
zTbj+8UMVxAEIUxOp5P+/n4aGxuZnp6e8f0i4AqCIIRJr9eTk5PDihUr0Gq1eDwePB4Pfr9fHHwQ
|
||||
BEGYTXq9HpPJRHl5OTKZjJMnT/LJJ5+I8oyCIAizTSaTodFoiIiIQCKRYDabGRsbw+PxhHW/CLiC
|
||||
IAhh8ng82Gw2xsbG8Pv9LFiwgJSUFJRKJRKJ5Lb3iywFQRCEMDmdTgYGBmhqasLv91NVVcWaNWvE
|
||||
wQdBEITZZrVauXr1Kh999BFTU1Mzvl8EXEEQhDBFRkZSUFDAunXr0Gq1OBwO7HY7Pp9PZCkIgiDM
|
||||
JoPBQH5+Po899hgqlYq6ujrOnTuHzWYT5RkFQRDmitvt5ne/+x2Tk5Pk5uai1WpvW55RBFxBEIQ7
|
||||
oFar+d73vscLL7xASkpKWG12RMAVBEEI0/j4OBcvXmT37t1MTU2Rnp5OdnY2arVapIUJgiDMpunp
|
||||
aUZHR+no6MDj8aBSqVCr1WEVHwexaSYIghC24KZZMPfW5XLhcrlELQVBEITZptFoSElJobi4GJlM
|
||||
RnV1NQcPHmRiYkLUUhAEQZhNMpkMlUqFTqdDIpFgt9ux2+1hpYSBCLiCIAhhc7vdWK1WhoaG8Pv9
|
||||
pKWlkZGRgUqlEk0kBUEQZpPdbqezs5Pa2lo8Hg+VlZWh2rjhEDNcQRCEME1NTdHR0cG5c+dwOp0z
|
||||
vl8EXEEQhDBFRUVRUlLCpk2b0Ol0TE5OYrVa8Xq9IktBEARhNkVERJCdnc2yZctQKBTU1tZy5swZ
|
||||
UUtBEARhLnm9Xo4ePUpERATl5eXodDpRS0EQBGEuqFQqXnjhBV588UWSkpJELQVBEITZNDo6Sk1N
|
||||
Dbt27cJms7FgwQJSU1NFix1BmC98Ph82m42uri4sFgtarZaioqIZneEXZofb7cZisTA4OIjX60Wh
|
||||
UKBUKsN+H0TAFYT7lNvtxu12Y7PZaG9vZ9euXTQ1NZGcnMzf/M3fkJCQgEwmQyqVolarUSgUt11D
|
||||
FL6eyMhICgsL2bhxI9evX8dutzM1NRU6+HC7Wa4IuIJwn2pra+PSpUvU19czNDTE+fPn6e/vJzo6
|
||||
Go1GQ2RkJFKpFJ1Ox6pVq8jLyyMmJuZeD3te02q1JCcnk5eXh0Qi4ciRI0RHR7NlyxaioqJuu44r
|
||||
Aq4g3KcGBgaor6+noaGB5ORkysrKyM3NRalUolAoqK+vp6+vD51OF1pLFAF3bkmlUhQKRaj+rdfr
|
||||
DTsHF0TAFYT7mkqlYsGCBaxateqm46N2u5329nYsFgsWiwWv13uPRvnwcLvdmM1m+vv78fv9ZGZm
|
||||
snDhQjQajailIAgPsqSkJJYuXQrAY489hk6nu+HrKpUKn8/HlStXxObZXTI1NUVnZycXLlzA4/FQ
|
||||
VlZGZWVl2LUURMAVhPtUTk4O6enpwGd1WL/osccew263MzY2FlYOqPD12e12uru7uXTpEtPT0zO+
|
||||
X7xLgnCfCuZ2Op3OUDnAL3K5XHg8HiwWC1arFafTecvgLMyO6OhoysvLMZvN9PT0MDExwfj4OAqF
|
||||
ArlcLrIUBOFBEwgE8Pl8+P1+zGYzLS0t1NTUhGZUn+8s0NLSQk9PDxcuXCApKQmDwUBWVta9Gvq8
|
||||
p9frSU9Pp6KiArlczoULF0hPT2fjxo1ERkaKo72C8KDxer2MjY1htVppbW2lurqaP/7xj0ilUjwe
|
||||
D8PDwzdcL5PJsFgsmEwmsrKyRMC9S3w+HzU1NSQnJ7N8+XL0er0IuILwoJmamuLNN99kz549tLS0
|
||||
IJfLKS4u5uWXX2ZgYIAf/OAHN1xvNBp544032Lp1K9nZ2fdo1A8XiUSCWq3me9/7Hq+88gpRUVHi
|
||||
aK8gPGja2to4cOAAx44dw2AwsHPnThYtWkR8fDwFBQVMTU0REREBwIEDB7h48SIAcrk8dOpMmDvD
|
||||
w8OcPXuWP/7xj1gsFuRyOQqFIqxgCyLgCsJ9ZWhoiNOnT+PxeHjkkUdYu3YtFRUVKBQKNBoNPp8v
|
||||
NIvt6uqiqakJiUSCTCYTAfcu8Pl8OJ1OrFYrfr8/9H0XAVcQHkButxuXy0VhYSHLly+ntLSUxMTE
|
||||
0NcDgQBqtRqr1Qp8lour0WjQaDSijsJdEBUVxaJFi5iYmOD69etMTk5isVhQKpVhBV7x61AQ7jMe
|
||||
j4fW1lZaW1sZGRm54Ws+n4+RkRF++ctfUlNTQ0JCAs888wzl5eVERkbeoxE/PNRqNQkJCaFPGYcP
|
||||
H2bPnj2YzeYbske+jAi4gnCfCQbc5ubmGzISHA4HTU1NvP/+++zdu5e2tjYiIyNZsmQJJpPpppNo
|
||||
wuyTSqXI5fJQScZgeUaxpCAIDyCtVsuCBQu4fv06Q0NDNDc3k5qaCoDVauXChQvs37+f6elppFIp
|
||||
Wq2WhIQEDAYDCoXiHo9+/puenmZ0dJTu7m58Ph85OTkUFBSg1WpFLQVBeNAkJCRQVVXF6OgoHo+H
|
||||
S5cuMTU1hc/nw+Vy0dTURGdnJ1u2bOHy5cuhEo3C3TE1NUV7ezvnzp3D7XZTVFREaWmpqKUgCA+i
|
||||
1NRUtm3bBkBtbS3d3d00NTUxMTFBSkoK0dHRrFu3jr/4i7/g448/xu12YzAYRNC9S4LHrK9fv47b
|
||||
7Z7x/SLgCsJ9RC6XYzQa2bhxIxUVFXR2dtLQ0MC1a9dYu3YtxcXFaDQa0tLS2Lx5M16vl8TERFG8
|
||||
5i4xGo1UVFQwOTlJV1cXY2NjDA8Pk5ycjFwuv+0vPkkg3Mq5giDcdWazmY6ODrq7uykvLycjI+Ne
|
||||
D+mhZ7VauXTpEn/2Z39Gfn4+zz77LE8++SSRkZGi44MgPMiMRiNGo5HFixff66EIX+Dz+bh27RoN
|
||||
DQ2sXr06dALwq4iAKwiCcAfUajWvvfYaL7/8MgkJCSJLQRAEYTYNDg5y6tQpfv/732M2mzEYDGGV
|
||||
ZQwSAVcQBCFMgUAAv98f6h8nkUjCao8eJAKuIAhCmKKjoyktLcVms9HY2IjZbGZsbIykpKSwOj6I
|
||||
5D1BEIQwqdVq4uLiQr3mDh48yAcffBB2LQUxwxWE+5jVaqWnp4erV68ik8nIzMwkMzOT48ePk5ub
|
||||
S0ZGRtinnISvL1gKM5hzazAYiIqKEmu4gvCg8nq9jIyMYLFY6Ovro6GhgerqauRyOeXl5VRUVPDu
|
||||
u++yfPlyVq5cycKFC8M+yy98PU6nk+HhYdra2vD5fOTm5lJYWChqKQjCgyjYgffChQtcu3aNtrY2
|
||||
WltbqampQS6X09/fT0dHB0eOHGF0dBSv14tKpcJkMomauHdBsJbC+fPncbvd5ObmUlRUJGopCMKD
|
||||
aGJigrq6Ot577z3OnTvHwMAAPp8vtCt++fJlGhoacLvdnDp1CofDgVwuZ+PGjaSmpqLX6+/xK5jf
|
||||
pqenGRsbo7OzE4/HM+P7Zd///ve/P/vDEgThTjQ1NfHOO+9w4sQJBgcHmZ6exu/3h77u9/tDmzN+
|
||||
vx+bzcbQ0BAqlQqDwUBERARKpfJeDX/eUygU6HQ6dDodNTU1ZGVlkZ6eTkREBBKJ5LZZCmKGKwj3
|
||||
CZfLxcjISKjw+PT09G3vmZycpKGhAZVKhVQqRalUUlhYeBdG+3DSaDQkJSWRm5uLVCrl/PnzpKWl
|
||||
ER0dTVRU1G3XccUquyDcJ3p6emhpacFisdwwq70dp9PJp59+ypkzZ+ju7p7DEQqBQIBgvS+/309v
|
||||
by9dXV1MT08TTh0wMcMVhPvE+++/z1tvvUVHR8eMAq5wb6hUKr71rW/xyiuvEBUVFdZpMxFwBeE+
|
||||
4fF4blqzFe4vAwMDVFdX884772A2m1GpVKjV6rBT8sSSgiDME93d3Vy8eJH6+vo76kYg3F5wnVyj
|
||||
0YRdP+GG++dgTIIg3AO9vb1cuXKFxsbGO0pZEm4vOjqaiooKtm3bhk6nY2RkhKGhIdxud1hruCLg
|
||||
CsI8YTKZqKiooKSkRHTwnSMqlQqj0UhqaiqBQIB9+/bx7rvvMj4+HlYtBRFwBeE+sXjxYtasWUNy
|
||||
cvIdnRiLi4sjMzMTk8kkepzNkWA5xuCfxMREUlJSws59Fu+KINxDgUCA6elpWltbcblcREVFodFo
|
||||
kEqlYc2Y4LPGk8nJyeTk5JCSkiJOm80hh8PBwMAA165dw+v1kp+fT3FxsailIAj3O7/fH/oHvHfv
|
||||
XoaHh+np6cHhcISdqaBQKIiLi2PFihUsWbKE5OTkOR71wy1YS+HChQu43W6ysrLIzc1Fo9GEdb8I
|
||||
uIJwj7jdbrq7uzly5AhvvfUW/f39eDwe/H5/WBswALGxsSxbtoydO3eyZMkSEhIS5njUDzev14vV
|
||||
amVwcDDsTyCfJwKuINxFbrcbq9XKyMgI4+PjnD59mt/85jf09/czPT2NVqslISEBrVbL1NQUZrOZ
|
||||
ycnJL328uLg4ysvLSU9PR6/XixKNc8xoNFJZWYnb7aa1tZW+vj66urrIzMxEqVTe9vsvAq4gzLFA
|
||||
IIDL5cLtdjM2Nsa1a9c4duwYw8PDtLe309LSgl6vR61Wk52dzZo1a4iPj6epqYnz58/T2NiITCZD
|
||||
o9GgUCjw+XxMTU3h9/sxm800NjZSUVFBUlJSWK26hTunVquJj48nIyMDiUTChQsXMJlMxMXFER0d
|
||||
LQKuINwrwaUBr9dLe3s7vb29tLe3U1dXx+7du7FarUgkEnQ6HY888ggGg4GSkhI2b94cWt9taGhA
|
||||
JpNhNBrJz88nPj6eyclJzp07h81mo6+vjyNHjrBkyRJycnKIi4u71y97Xgs2kQz+MZvNobrE4RAB
|
||||
VxDmSLCO7eTkJLt27eLDDz+kqakpVABFLpejUqlITU3lX//1X8nLy0Oj0WC1WvnJT37Crl27aGlp
|
||||
QavVUlxczN///d9TVVVFS0sL3/jGN2hpaQmropgwewKBQOh9VSqVvP7667z66qthZ4aIgCsIc2T/
|
||||
/v189NFH9PX10dHRQX9/Pz6fL9SbbOfOnVRWVqLVasnOzkar1SKTyZBIJKEZVEJCAlVVVbz++uuU
|
||||
lpaiVqvJzMzkxz/+MT//+c+prq6+1y/zodLf388nn3zC//zP/zA+Po5MJgu9Z+EQAVcQZonL5aKj
|
||||
o4NTp04BcPToUc6cOcPY2Bherxefz4derycjI4OnnnqKrVu3UlRUhEQiCW249Pf3c+rUKerr67FY
|
||||
LOj1elJTU1m0aBExMTFIpVL0ej1VVVUcOHBAFBu/yxQKBZGRkSQlJdHe3j7j+0XAFYQ7ZLfbsVgs
|
||||
TExMAGCz2Th9+jS/+MUvALBYLFitVgKBAEajkcjISFJTU6msrOT5558nMzPzpl5YPT097N69m9ra
|
||||
WsxmMwaDAYVCgUqlCp0++/wGmlQqxe12Mzg4yPDwMHFxcWLjbA4Faym43W4uXbrEwMAAvb29pKen
|
||||
o1QqRccHQZgr7e3tHDt2jE8++QT4LOVraGiIjo6OG65Tq9WsXbuWRx99lLy8POLj48nOzkatVt/0
|
||||
mE6nk5GREaxWa9gbMVNTU/zpT39CpVIhl8tZsmTJ139xwi0plUqioqJITEzE7/eze/duAL797W+T
|
||||
kJBw2yPVIuAKwgwMDQ1x/vx5ent7aWlpoaGhgfr6euCzDRW3241areapp54iMTERhUKBUqlkyZIl
|
||||
5Ofn3/B3t5sNZWZm8uijj7JixYpbBucgj8dDV1cXPT09WCyWWX29wo2CfcuCNRUyMzPJzc39yvfn
|
||||
80TAFYQvCAQCOJ1Ouru7GRkZueFrPT09HD16lLa2NkZGRjCbzZjNZnQ6XSgfU6PR8Mwzz5CamopS
|
||||
qUQmkxEfH090dPRXttPu7Ozk+vXrTExM4PP5SElJobS0lLKyMlQq1U3XZ2ZmsnDhQhwOBzabDYfD
|
||||
IcoyzjG73U5PTw9XrlzB6/VSUFDAokWLRC0FQQhXIBDA4XDgdDpDR2vHx8eprq7m8uXLN1w7NjZG
|
||||
fX09k5OTyGQyFAoFSUlJJCQksGbNGoqLi1EqlaxcuZLY2NgZlUm8fPkyp06dYnh4GI1GQ2pqKllZ
|
||||
WaSkpNzy+sWLF9PT08PAwAB2u/1rfQ+E8Njtdjo7O6mpqcHtdmMymcjMzBS1FAQhXIFAgJ6eHlpb
|
||||
WxkZGcHv9zM8PMzBgwc5d+7cTdfLZDLy8/PJzs4mNjYWqVTKggULePLJJ1m8ePEdj+PKlSucOnWK
|
||||
8fFxSkpKyMvLIykp6UuvX7x4MaOjo5w4cYLe3t47fl4hfD6fD6fTidVqvaNWSCLgCvNesARisPV4
|
||||
ZmYmnZ2dTE5OhtK1jh8/zqlTp2hvbycQCODxeBgfHwc+a6uSlZVFREQEcrkchULB2rVrWb58Oenp
|
||||
6aG0rpiYmBmPze/343a7aWtrY2BggOnpadRqNStWrGDVqlXk5OSE/Vjj4+P09PTQ19dHYmKiqIk7
|
||||
B4K1FDweD01NTXR1ddHW1kZOTk6oVf1XEe+IMK94vV7sdjtutzs0AwkEAoyPj/Ppp59iNpt58cUX
|
||||
2b17N62traFSiG1tbXR2djIxMYFCoUCv16PRaNBoNCiVSnbs2BH66CiTyVi4cCHp6ekYjcavNV6/
|
||||
38/k5CTvvvsutbW1TE1NoVKpiI2NJT4+fkYpXr29vVy+fJn09HRiYmJEwJ0DwY4PwWWe2tpa0tPT
|
||||
Q5uhIuAK88LnSxYGT2LdqoSh1WqlsbGRvr4+nE5n6O9HR0c5cuQI4+PjRERE8N5779Hc3IzT6bwh
|
||||
WyBYrausrIzIyEjgs1Sg5557joULF4a9VheO4Ll8q9XKoUOHaGpqwu12hwqQz5Tb7Q6tRYdb3lGY
|
||||
meDRXp/PF9pcnUn9YhFwhQeCx+MJ7cArlUocDsct81Tb2tr47//+bz766CNGR0dv+Vjf/e53Q4+j
|
||||
1+tvmAnGxcWxbNky/uEf/oGsrKw5eCX/x+/3Mz09zeTkZOgfsEwmQ6vVhvXx9ItKS0t56qmn2LBh
|
||||
Q9hpSsLM+Hw+pqencTgcKBQKXnnlFV599dWvzD75PBFwhQfC6dOnuX79OhKJhMrKSn75y1/S2tp6
|
||||
03UOhyPsfNS1a9fy9NNPk52dHfo7hUJBVFTUV25WzRar1cqRI0f48Y9/THt7Ox6Ph0WLFvHaa6/x
|
||||
+OOPs2DBghk93pkzZ/D5fNjtdp599ll0Ot0cjfzh1dfXx+HDh3nzzTcZGxub8f0i4Ar3jNlspru7
|
||||
m7a2NsrLyxkcHKS2tvaW116+fJne3l4kEgkNDQ18/PHHDAwM3HRd8CNfIBAgPj6e3NxcysvLb/mY
|
||||
lZWVLF++/KbAJpVK76iJ40x5PB4GBga4ePEiXq+XpUuXsmXLFtavX09aWlpYs1STycTmzZtDBbE7
|
||||
Ozvp6ekJ+5SaMDMajYbExERyc3MZHByc8f0i4Aph8fl8jI+PMzo6Snp6OhMTE/j9fjQaDW63m4mJ
|
||||
iRmXCuzr6+PSpUucPXuWrVu30tzczAcffHDLaz+f1H/58mWcTifx8fFotVo6OjpISUkhMjLyhuWB
|
||||
rKwsVq5cybZt2275mFqtFr1ef9cLwPj9fpxOJ11dXXR3d4eC4/Lly9m0aVOoe0A4FagyMjLYsmUL
|
||||
HR0dDA8Ph6qMCXMjWEvB6/VSU1NDd3c3HR0dZGdni44Pws2CmynBf5RSqTSsHlpOp5MTJ05w4MAB
|
||||
/vZv/5aTJ0/icrnIzs5maGiITz/9lL6+vhmNxW63MzExwejoKAMDA0xOTtLf349UKr1hg+yLgcfp
|
||||
dBIbG8uWLVvIzs7mBz/4AS+++CKLFy8mOjo6dF1ERATx8fFfenDgXvF6vfT09PD++++zf/9+4LP3
|
||||
ITIyEqPROKP1V41GQ2xsLDqdTmQl3AVKpRKDwUBsbGyoloJEIuE73/kOCQkJIuAKN/L5fExOTlJd
|
||||
XY1CoWDZsmUcPnyYwcHBr5yhut1url69Sn19PRqNhpaWFrxeb6gDQUtLC2azeUZj8fv9eL1ePB4P
|
||||
HR0d+Hw+kpKS2LFjB6dOnUKhUJCfn09ycvJNP8h6vZ6Kigri4+NxOp2sXr2a9PT0G9YtpVLpfVm+
|
||||
MBAIhI6IDgwMEBUVxfbt21m2bBkGg+FeD08Ik0wmo7CwUBzt/aLghkRUVBTx8fHzqtFeMHG+paUF
|
||||
v99PVlYWra2tWCyWW56r9/l8WCwWDh48iFKpZGJigj179tDX14fL5frK55mYmMBsNvPxxx+Hyg4G
|
||||
lxQUCgUJCQkoFAoGBgYwmUzY7XaGhoYoKSkJnYSKi4vDaDR+6XuQmprKjh07iI6ORi6Xs2jRIkwm
|
||||
003XKxQKYmJi0Gg0PP3006F+Xvf7LM/pdDIwMEBtbS3d3d1MT08THR3N+vXryc/PD3u3W7g3pqam
|
||||
6OjoCB3tDdZS0Ol0IuAG1xY//fRTvF4vhYWFD1zPp2DfJLlcjkwmw+1243Q6Q0sCwcT5gwcP4vP5
|
||||
WL9+PQcPHqSnpweHw3HLx3M4HNTX1yOXyxkcHKSuro6JiYlQfy2/34/P50OpVKLVakOtoWUyGXFx
|
||||
cXg8nhsCg1qtJjc3l6ysLDQaDRcvXmTlypUMDw9z5coVnn32Wc6fP08gEKCgoICsrKwv3ZQyGo1U
|
||||
VFSEDhikpqYSGxv7leuZBQUFX/O7fPfYbDaam5s5cuQI/f39REREYDKZKCgoIC4u7mvPyD0eD5OT
|
||||
k4yNjaFSqUR62Cyz2+10d3dTV1eH2+0mOTmZtLS0WxYXupV5HXBtNhsnT55kz549REREEBERQWVl
|
||||
5b0e1pf64voqwPT0NDU1NURERKDX6xkdHaWtrS308T+YOH/gwAG8Xi82m439+/fT1dWFw+EIrYEG
|
||||
HzsQCNzwm7i7uzv030lJSeTm5uJ0OkObUjk5OVitVs6fP49Op2P58uXI5fKbAmBeXh45OTloNBrS
|
||||
09NZvXo1Q0NDZGVlsXPnTlJSUggEAhQXF5OTk3PbLID5WNM1EAgwNTVFW1sbp06dYnJykvz8fB5/
|
||||
/HGioqJmJTPCZrPR3t5OTU0NarWa5OTkWRi5EBQ8rOL1em9oKPn5PYevMq8D7vj4OLt27aKuro6i
|
||||
oqJ7PZzbCgbM1tbW0Md7h8PB22+/TWxsLEajke7ubmpqakKz12Aa1MTEBIFAgNHR0VDGQEREBAsW
|
||||
LCAmJia0QeV0OsnKyrrlTGrhwoUsW7YMm82GzWYjIyODyspKRkZGQuUFd+7cecuAGzwGK5VKycjI
|
||||
wGAwkJaWRmFhIbGxsaxevRog7LWu+WhiYoLu7m7a29txu91otVrKysp4/fXXiY+Pn5WA63K5GBoa
|
||||
or29nbKyslkYtfB5RqORxYsX43a7qauro729nevXr1NQUIBarX64A67H42FoaIhAIIBWq53VY5lf
|
||||
9nwOhwO73X7DLFUikWAwGG5Y57Hb7Tgcjhs2qux2O729vbz33nuhpGqPx8Ply5dD45+cnMRsNqNU
|
||||
Km8ImlFRUaH/Dp7vN5lMPProo5SUlDAwMMD169cZHR3l6aefvuXmTExMDGlpaUxPT4fWFpOTk0OV
|
||||
7NVqNVlZWUil0q/8wfr8+f/guO6ksMt8093dzenTpzlx4gRer5ekpCRSU1NJTU2dtedQq9UkJCSQ
|
||||
mZkZdidZIXxKpZLIyEgSExORSCTU1dWRmZlJWlqaSAsLysnJobCwcMYnd8IRCATwer34/X4sFgvN
|
||||
zc00NzffsH6qVCpZvHgxhYWFoVlMR0cH165duyF52uFw0Nvby+7du7FYLLd88+RyOVlZWRQUFJCQ
|
||||
kPCVYzOZTKxYsYLi4mIGBwe5fv06Y2NjbNu2bUa74QaDgaVLl4Z9vXCj4KeQ/v5+6uvraWhoIC4u
|
||||
joqKCkpKSmb1uYKdCG71KUT4+j6fWRMIBG6ZtvhVHoqAu3z5ctasWUNeXt6s/xAGAgGsVisOh4O2
|
||||
tjZ27drFhx9+yPDwcOgavV7PG2+8EWoICPDJJ5/w7rvvUlNTc9NjSiQSjEbjLYOiRqPh8ccf5/nn
|
||||
n//SE1S3kpmZSWZm5h28QuHr8vv92Gw2JicncTqdyOVyTCYTL7zwAk8Wgs0+AAAgAElEQVQ99dSs
|
||||
PtfY2Bg1NTXo9XpMJtOcTDIeZl6vl6mpKcbGxpBKpezcuVPUUviiXbt20d/fz/T0NGvXrp3Vx/b5
|
||||
fLz11lucOHGCjo4OxsbGbspHdTgcvPXWWxw4cCA0ax0fH//Ss9iRkZF85zvfYcuWLTf9gpBKpURH
|
||||
RxMbGzurr0OYOy6Xi127drFr165b/oKdTampqWzYsIFvf/vbN9SIEGZHX18f+/fv5xe/+IWopfBl
|
||||
gh1Sz507x4ULF24ZxCorK6mqqkKlUs14FtzX10djYyOdnZ23/Lrf76e/v/+Gs//BXU2pVEpeXh5l
|
||||
ZWWYTCYAdDod69evp6ys7EvHIj4uPhh6e3uprq5mz549XLlyBb/fT2lpKTt27Ji1gKjValm/fj02
|
||||
m42mpiY6Ozu5dOkSMTExomX6LNPr9WRmZrJ06dJQt+aZmLcBd3BwkKtXr2K1WsnMzMTv93Px4kV6
|
||||
enpCR/DMZjOdnZ1IJBK2bt2KWq2mpKQErVYb1o7x5OQkzc3NDA0NfeWhgaAvHp/VaDQkJyezceNG
|
||||
nnzySYqLi4HPgqler78rBVSEuTUwMMDBgwepra3F5/NRVFTEE088wfbt22ctZUuhUJCamkpKSgoN
|
||||
DQ1cunQJg8FAfn4+aWlps/IcwmeCWQo+n4/Tp0/T3t5Oc3MzeXl5D3fHh9OnT/Pzn/88VMVfKpWi
|
||||
0+moqKhg8+bNKJVKzp49S0NDA36/n8OHD2O32/nHf/xHUlNTwypt19XVxY9+9CPOnTsXascyEwkJ
|
||||
CWzevJnnnnuOvLy8UMFrYX4IZq1MTEzgcDgoKCjgqaee4tlnnyUlJWXWjh3b7XaOHj3K8ePHaW1t
|
||||
DRXHEUVsZp9cLker1RIVFYXf72fv3r1IpVL++q//msTExIc34AZnr1NTU6EiK48++ihbtmyhuLg4
|
||||
dGoqOjoan8/HuXPnGBwcxOVyhf2DGtwoM5vNd9SeWqVSkZiYSFJSkkjhmYdOnz4dauUTzItOSEgg
|
||||
OTl5Vo8ge71eBgcHGR4eRq1WU1payrPPPitmt3NMLpdTXl7O0qVL0ev1D/fRXq/XGwqe6enpVFVV
|
||||
sWHDBsrKyjAajUgkEhQKBRqNhpqaGrxe74xnBcGZRPDUyUxJpVJUKhUqlUosH8wTgUAAt9tNTU0N
|
||||
+/fv5+TJk4yPj5OZmUlJSQmZmZlhHwOdCbfbjdvtxufz3TZPWrhzNpuNlpYWTp8+zfT0NPn5+ZSU
|
||||
lIRdS2FeH/lRKpUsWLCAVatWsXHjRiorK4mPj0epVKJQKIiMjCQtLQ2Hw4HNZsPlctHb24vVasXt
|
||||
dt/yMYPH+cbHxxkYGLihWaEgwGfHsQ8ePMixY8dobW3F7XZTUlJCZWXlnKTmyWQyYmJiQhOJvr4+
|
||||
mpubmZycnPXnetgFc+Xr6+txu90kJCSwYMGCsOsXz+uAGxkZydq1a3nqqaeoqqq6ZZm/YItruVyO
|
||||
xWLh2LFjtLe3MzU19aWP6/V6aWpqCp2H9/l8c/1ShAdA8ICD3W7n1KlToSaVKpWKvLw8CgsL56Q2
|
||||
r0qloqSkhKKiIvR6fShLYWJiYtaf62EnkUiQy+Wh9Xev1xv6hBvOp9x5u6QAn1Vn37ZtG2VlZbc8
|
||||
WiqXyzEYDDz99NP09/fT1dVFZ2cnZrP5K2vDBmsW9PT0MD09LTqkCsD/raWeO3cOi8WCz+fDYDBQ
|
||||
WFhIWlranKVoyeVyEhISiI+PJyEhAY1GQ1FRkdiEnQPR0dGUl5fj8Xg4e/Yszc3NNDY2UlJSgkaj
|
||||
ue0sd17NcIPH7gYHB0MnQWJjY9Hr9aETXp8X/K3k8Xjwer2huqTZ2dlf+Y9DJpNRVFTEypUrMRgM
|
||||
d7T+qtPpiImJwWAwPLTFXOaLQCDA9PQ0fX19VFdX8+abb9LX14dOp2PRokXs2LGDysrKOasn4XK5
|
||||
uHz5MvX19dhsNrKysli8eHGopoYwexQKBREREaH3sr6+ntraWqampsJaWpxXM9zgJtaxY8eora3F
|
||||
5XJ95ezT7/czNTXF0aNHuXLlChqNhqqqKtLT0780ayD4kWLhwoWYzWZiY2OZmJj40jXfW1EoFOTk
|
||||
5LB06VJyc3NFzdIHWPCX/PDwMCdPnuTDDz/k6NGjqFQqlixZwqZNm9i0aRPp6elzslkGn22YXb9+
|
||||
nZaWFux2O+np6Xe8kSt8Nb/fj8fjCcUWjUYTdt4+zMMZrs1m49e//jX79+/Hbrd/5fVer5eJiQl+
|
||||
9atf8dFHH4V1eOHz1Go1JpOJyMjIW86gb0UikRAfH8/atWt5/vnnqaqqEqeBHlDBwkUWi4Xa2lp+
|
||||
+9vfsm/fPmQyGSkpKTz99NO8+OKL5Obmzlmw/SKr1UpjYyPV1dU31PMQZkewqcHAwAASiYRt27bx
|
||||
wgsvEBsbG1aq37wKuHdbbm4u//7v/8769etJSkoKa2lAo9Hw7W9/mxdffPGB6lQg3CwQCDA2Nsbx
|
||||
48f54Q9/yPnz54HPSlL+0z/9E88888xtK7rNlmDVqpSUFDZt2sQbb7xBbm7uXXnuh0l/fz/79u3j
|
||||
Bz/4gailcLdpNBqysrJ48cUXqayspL29ndraWurq6rDZbDddn5mZyXPPPccTTzxBdna26F/1gOvs
|
||||
7OTkyZO8//77NDY24vV6qays5IUXXmDVqlUkJSXdlSaWOp2OTZs24XK5qK+vp6mpiZMnT4bawAuz
|
||||
JzIyksLCQjZs2MCf/vSnGd8/rwPu1NQUFy9eJCoqCrlcfsMPn8vlor+/n7NnzzI5OYnJZKKsrGzG
|
||||
NQykUilVVVVUVlYyMDBARkYGcXFxt+xgW1RUxDe+8Q2Sk5PnvBi6MPcGBwepqanh+PHjuFwuDAYD
|
||||
BQUFvPbaa3e1bXnw1GRsbCzT09Ncv36dyMhISktLRUnOWRYdHU1ZWRler5djx45x/fp1GhoaKC4u
|
||||
Rq1WPzxHe4Pda202G16vF4VCwdTUFL/85S9DzRUzMjJC1w8PD3P69Gn+8z//E7PZzJYtW/jzP/9z
|
||||
kpOTZ7TeJpFIQjNVlUrF9u3bWbVqFV6v96Zr9Xo9qampKBQKkZnwAAueJvt8jVupVIpWqyUyMvKG
|
||||
7ht3g91u5+OPPw7lkH++h50wu2QyGWq1Gr1ej8/nC3W/XrBgwcNVS2FycpLGxkZ+85vf0NHRwdKl
|
||||
SykvL+eTTz7h0KFDXL58+YY0GZvNxuDgIOPj47z00kts3rw5VMbxToOhUqkkNjaW6OjoW/7AS6VS
|
||||
FAqFOHb5gPN4PJw+fZpDhw5RV1eHRCIhMTGRrVu3snXr1rs+Hp/Px8jICKOjo2g0GhYvXszzzz9P
|
||||
enr6XR/Lw0Qul1NZWRlKD32oaikE24oEUzRMJhMbNmxArVZTV1fH4OAgTqeTQCCAzWYjJiaG3Nxc
|
||||
MjMzQ6URg+eh7zQgSqXSUFAV5qfx8XHq6+vZv38/p0+fZmxsjIyMDNauXXtDic27LXjiKdj+xeVy
|
||||
iROQc8BqtXLt2jWqq6txuVzk5eVRVFQUdnPUeRNwlUoliYmJPProo3R0dLBw4UKKiopCnRGsVitG
|
||||
oxG/38/o6Cg5OTlUVFSgUqkoLi4mOjr6Hr8C4X5nNptDwba6upqhoSGMRiPLli1j69atVFRU3PNO
|
||||
HMGz/o2NjVRUVMxqg0oBnE4nAwMDNDU14Xa7iY2NJT4+PuxJ1rwJuGq1mpSUFIxGIy6Xi5iYGGJj
|
||||
Y0lLS8Pj8eB0OomMjMTv92M2m0lPTxdpWUJYgmu2V69e5dChQxw8eJC+vj6SkpJYvnw527dvZ8WK
|
||||
FffFUdpgwL127ZooXjMH5HI5Go2GqKgoZDJZqEpbsEX6Q9UmPbhx8eSTTyKTyUKZAGVlZQQCgdCU
|
||||
3+fziY/9Qti8Xi+XLl1i7969HDp0iJ6eHpKTk1m9ejVPPvkkq1atum9S/HQ6Henp6SxatOiub949
|
||||
DKKioigtLcXtdlNdXU1TUxNXrlyhoqICrVb7cAVciUSCTCa76QctnO4NgvBFPp+Pqakpurq6+P3v
|
||||
f8/x48cZHh4mPj6edevWhUp+3k8nBY1GIxUVFWzatGnWWvgI/ye4TxQZGUkgEKCxsZErV66Ql5f3
|
||||
cKWFCcJsCdY8ttlsXLt2jT179oRmtrGxsaxcuZJNmzaxePFikpKS7vVwb6DT6UhLSxPVwuaIz+dj
|
||||
enoah8MBfJaXazQaw865FgFXED4nWEHO6XTS0dHBwYMH+eEPf0ggEEAikZCUlMS2bdtYsWLFfbnR
|
||||
Ghx/8I9IQZxdLpeL0dHRUIfuTZs2sX379rCXlETAFYQv8Hq9dHd38+tf/5r33nuPQCCAUqkMtUS6
|
||||
nw+tBAvqBDuRiNZNs2twcJBDhw7xs5/9DIvFMuP7RcAVhM8J9qx6++23OXLkCGNjYyiVSr75zW+S
|
||||
nZ1NWloaxcXF9+3R7OHhYU6cOIHRaGTLli3k5OTc6yHNK8E18u3bt/P+++/P+H4RcAXh/2c2m2ls
|
||||
bOTQoUPs37+f3t5e4LONkjVr1lBVVUV0dPR9fTTb5/PhdDqx2Wx31Ela+GpRUVEUFRUxPT3N/v37
|
||||
qa+v5+LFi5SVlYV1+EEEXOGhFwgEcLlcNDY2snfvXn73u99hsVjQarWoVKrQrrRer79vZ7ZBcXFx
|
||||
VFVV8dxzz2Eyme71cOYdqVSKUqlErVbj9Xr56KOP0Gq1oQLzIuAKwm34fD7Onj3L3r17Q8sIcXFx
|
||||
PPnkkyxfvhy5XE5eXt5dKyL+dSiVSiIjI4mPjxedROaYQqFgxYoVbNiwgcjIyIfraK8g3Amz2cyV
|
||||
K1fYt28fn376Kd3d3fh8PrRaLUVFRaxfvx6JRILRaHwgDssEc9Hlcvl9u+zxILNYLFy9epWPPvoI
|
||||
p9NJTk4OBQUFaDQaEXAF4asEC9Hs27eP48ePMzQ0RFRUFAsXLsRkMpGVlTUnbc2FB5fL5WJ4eJjW
|
||||
1tZQ49mZ/DIWAVd46ATXbBsaGjhw4AAHDx5kYGCABQsWUFFRwdKlS4mOjiYrK+teD/W2vF4vTqcz
|
||||
lAYmzC2FQkFUVBRJSUnIZDJcLhdOp/PhrKUgCOEIBAJcunSJffv2cejQIbq6ujCZTDz22GNs2rSJ
|
||||
VatWIZVKH4g10JGREWpra+np6cHhcNw3NR3mq2CWgsvl4tChQzQ0NFBXV0dlZWVY3WLEIo/w0PD7
|
||||
/VitVurr63n33Xc5cuQIw8PDJCUlsWbNGjZt2sTSpUuJiorCYDDclX5kX9f4+DhXr16lv79/xl2n
|
||||
hZkLdnzQ6XQEAgFaWlpoamoKtU2/HTHDFeY1v98f+tjtcrno6Ojggw8+4OOPP2ZwcJC4uDhWrVoV
|
||||
qo2QmJh4r4c8I3q9nuTkZKKioh6ITb0HXfBnKdgkNjExkQULFqBUKsM6Ri0CrjBvBevYWiwWmpub
|
||||
MZvN1NXV8dOf/hSfz8eCBQtYtmwZL7/8MuXl5Q9ksZeMjAy2bNlCY2Mj3d3d93o4857T6WRwcJDr
|
||||
16/j9/tDnT5ELQXhoefz+TCbzVy4cIH/+I//oLW1NVQwWqPRsH79el5//fVQ5w9BuJ2RkRGOHj3K
|
||||
z372M6xW64zvFwFXmLd6e3uprq7mt7/9LQ0NDaEOCFKplNdff51t27aFcigFIRyxsbEsW7YMi8XC
|
||||
b3/72xnfLzbNhHknEAjQ2dlJdXU1e/fu5dNPP2VychKpVEpSUhLbt2/n2WefZcmSJQ98V4TBwUFO
|
||||
nz5Ne3s7U1NT93o4815ERAR5eXk89thjKJVKLl68yNmzZ7HZbGGl5YkZrjCveDwebDYbR48e5YMP
|
||||
PuDs2bPI5XJiYmLQ6XQsWbKEf/mXfyE5OTnsTqv3s+vXr/P2229z9uxZLBbLPW9iOd8Fu4PL5XJ8
|
||||
Ph/V1dVERkaycOFC0fFBePiMjIywb98+du/ezeXLlwkEAhQUFPDyyy9jMplISEggPT39vq74NRPT
|
||||
09OMj49jt9tFW/S7TKFQsHr1ajZv3kxUVJQ42is8PI4dO0Z3dzc9PT2cPXuWq1evolAoKCkp4ckn
|
||||
n2TdunXEx8ejUqlCKTzzoRtCsB1QIBAgKyuL5cuXs2TJEpEiNkcmJia4fPky+/btw263k5mZycKF
|
||||
C0UtBWH+C/Yda2trY9++fVy9epXR0VEGBgZQKBQUFhayfv16nnjiCdLS0ublKazIyEiys7Pp7e0l
|
||||
NjaW+Ph4YmNjRaeHOTI9PY3ZbKa3txefz4fBYCAqKkr0NBPmN7/fj91up6WlhXfeeYePP/6Yrq4u
|
||||
3G43arWaRx55hI0bN7J+/Xry8vLu9XDnTEJCAsuWLaOrqwu73c7g4CDDw8NieWGOqFQqYmNjycjI
|
||||
4Pz58zgcDux2e6gW7u0+NT34i1jCQ8npdFJfX88HH3zAH/7wBzo6OnC5XOj1ekpLS9m8efO8D7bw
|
||||
2VFTpVKJXC6nt7eXS5cu0dDQILo9zJHIyEgKCgpYu3YtKpWKS5cuceHCBaampkSWgjC/OBwOzGYz
|
||||
AwMDTExM8PHHH7N//37MZjNpaWlERkaSkpLCunXreOyxx8jIyHgg6iF8Hf39/VRXV9Pc3IxUKiUh
|
||||
IYG4uDixpDBHPt/xIRAI0NXVRVtbG4sXL0an0932fhFwhQeCy+Wit7eXixcvcuLECaampqivr6er
|
||||
q4uoqCjWrVtHXl4eycnJlJSUYDKZ5uWa7RdNTk7S0dHB2NgYhYWFVFZWUl5ePu9/0dwrXq8Xu92O
|
||||
xWIhEAiQmppKRkYGKpVK1FIQHmx+vz+0Az8wMMD58+fZs2cPu3fvBj6bbcTHx7N06VKee+45Kioq
|
||||
HviDDF9HRkYGlZWVlJWVzYuUt/uRw+Ggr6+Pq1ev4vf7WblyJevWrRO1FIQH3/T0NE6nE4/Hw/Hj
|
||||
x3nvvfc4ceIE8FkrGYPBQGVlJT/5yU+Ii4t76I/out1uHA4HTqcTrVY7L9Le7jejo6OcOHGCX/3q
|
||||
V6KWgjC/1NXVsX//fpqamujv76enpydU89VoNLJ9+3Zee+01FixYIHp4AbW1tSiVSnw+H1u3bg1r
|
||||
TVGYmfj4eFavXo3X6+XNN9+c8f0i4Ar3pfPnz7N371727t1La2srgUCAqKgoSktLKSkpwWg08vjj
|
||||
j/PII4/Mm0MMX5dSqUSr1aLRaMT3Y47o9Xqys7OZmprif//3fzl79iwmk4mqqip0Ot1tNytFwBXu
|
||||
C16vF6vVisViAeCdd97ho48+orOzk0AggE6no6CggM2bN/Pqq68il8vR6/UP/az284qLi3niiSdY
|
||||
u3btA9Ee6EH0+V/uXq+XU6dOERcXR1FRERqNRgRc4cFgs9nYu3cv77//PgDXrl1jeHgYr9cLQEVF
|
||||
Bdu3b+eJJ54gISEhrCTzh41arSYiIgK9Xi++N3eBQqFg48aNPPPMM8TExIijvcL9bXx8nNbWVs6e
|
||||
Pcvk5CQXLlzgwoULANjtdtLT0yktLSU5OZmCggLKy8tJSUlBJpOJgHILEokEqVQqZv1zaGxsjLq6
|
||||
Onbv3s3U1BQmk4nMzMzQSbPbEQFXuCfGxsaor6/n2LFjHD58GJfLxejoKG63m/z8fJRKJWVlZaxa
|
||||
tYrMzEyMRiNGo/GhyK29U6Ojo3R0dNDV1UVKSkrY5/uF8Hk8HiYnJxkdHcXv96PT6YiIiAj7oIl4
|
||||
R4S7Jpjm5Xa7aWho4MiRIxw+fJimpia0Wi0KhYKFCxfy0ksvYTAYyMzMJC8vj/j4eDGjDUN/fz9X
|
||||
r14lOzubhIQEEXDngEajISkpiby8PC5cuIDNZsNqtaJUKsP65CXeEeGuGRwc5MqVK/T19dHQ0MC5
|
||||
c+dobm4mKiqKRx99lMTERFJSUti5c2eoTbk4oircTwwGA3l5eTgcDt59910uXrxIVlYWa9asCWum
|
||||
KwKu8KWCpei6urpCm1dBqampJCQk3Pawgd1u5/r167hcLq5cucKxY8dobm7GarXicrlITk7mkUce
|
||||
YefOnWRmZqLRaIiJiRF5tXcgeNJMHO2dO8GODwqFAr/fz8DAAH19fbjdbgKBwG3vFwFXuIHP58Pp
|
||||
dGK32xkbG6OlpYXDhw/jcDhuuG7t2rWUlZURHx+PTqcL5X66XC4mJydDP3zDw8O8++67jI+P09XV
|
||||
RUtLCzabDbVaTVJSEqWlpezYsYOlS5cSHx9/L17yvBEZGUliYqL4Ps6hYAunsbExgFABcrVaLWop
|
||||
CDPj9/txOp20tbXR3t5OR0cHV69eZdeuXTcFXKvVysDAACaTiZycHNLT05FKpfT19XHlypXQjHhg
|
||||
YIA//OEPjI+P4/P50Gq15OXlYTKZyM7OpqKigscff1x0KBAeCHa7nZ6eHq5cuYLP5+ORRx5h5cqV
|
||||
opaCMHNut5vBwUH27t3Lhx9+SEtLC36/H7fbfdO1hw4d4pNPPiEuLo4dO3bw1FNPIZfLOX78OP/1
|
||||
X/+F0+kEPgvi09PTREZGotVqSUlJ4fnnn2fTpk2kpaUhk8nE5o7wwBgfH+fMmTO88847opaC8PW0
|
||||
tLTw3nvvsWfPHrq6ukJ1C27F6/Xi9XoZGhpi9+7dnD17FolEwtjYGBMTE/j9/hvyQp999llWrVqF
|
||||
yWQiJSUlrPVfQbjfJCYmsn79emQyGT/96U/x+Xz4fL7QEprIUhDCZrVaaW5uprOz86YlhC/j8Xjo
|
||||
6uqiq6vrhr9XKpUUFxezdOlSJBIJW7dupby8nJiYmDkYuSDcHTqdjvT0dMrKypDJZJw8eZKkpCTW
|
||||
rFmDXq+/7ac1EXCFWaNQKIiIiCA+Ph6DwcD27dv55je/iUQiQafTiZ1zYV7xer1cvHiRtLQ0lixZ
|
||||
EtY6rgi4wqyJjY1lxYoVfOtb38JgMJCYmIjRaBTVvIR5SalUsmXLFl566SViYmLCyhkXiY4CAGfO
|
||||
nOHAgQM0NTXdcQNCu91Od3c3Fy5cQKPR3FBkRgTd2ffJJ5+wd+9eent7b8qTFubG6Ogop06d4u23
|
||||
38Zms7FgwQJSUlJELQVhZq5fv05tbe3X+sfrdDrp6uri2LFjoQ4MiYmJNDQ0kJKSIroyzLJgvrTX
|
||||
6w0r6V74+nw+Hy6XC5vNht/vR6PRoNVqRS0FYWY+387mTv/xejwexsbGqK2tRS6XEwgEKC8v5/e/
|
||||
/z3Lly+nqKjohoMSIh3s68nIyGDhwoXU1NQwOjp6r4fzUAimNpaUlHD+/HksFgtmsznsWgqy73//
|
||||
+9+/O0MV7mcOhwObzcbIyEioI+mdCAQCTE9PMzg4yOTkJCMjI+zatYuJiQkGBwcZGBhAKpViMBjE
|
||||
bPdriouLY2pqitraWoaGhsjLy6O0tJScnJx7PbR5S6lUotPpUCgUHDx4EI/HQ0REBKmpqWEtK4gp
|
||||
hgBASUkJY2NjXLt2jZ6eHnw+34zuNxqNJCcnExsbi91up62tjbq6OlpbW0PJ4vX19cTGxtLZ2Ul5
|
||||
eTlxcXHIZDL0ej0LFy58qDvu3gmpVBqaVYn18bvj87nlgUAAs9nM6Oho2J8MRcAVAIiOjiY+Pp6I
|
||||
iIgZFY2RSqVERESwaNEiqqqqyM/PZ2RkhP3799Pe3g5AUlISExMT9Pb2MjQ0hMvlorGxEb1ej1Kp
|
||||
JDExkaeeeor09HSUSiXx8fGiyHgYzGYzY2NjuFwusYZ7l7jdbqxWK0NDQwQCAXJzcykqKgq7S7II
|
||||
uMLXolQqycnJYd26dTzxxBMUFhYyMjKCVCqlra0tdN358+fp7OxkamqK9vZ2Wlpa8Hq9yOVykpKS
|
||||
8Pv9ZGRkEBsby7p160L1cYNVw0TwvVlrayuNjY1YLBb8fv+9Hs5DwW6309XVxcWLF/F4PJSXl/PI
|
||||
I4+IWgrC3REREcGGDRvYunUr+fn5SCQSkpOT+au/+qsbZl0//vGPOXz4MAMDAwChws3BVLKf/vSn
|
||||
SCQSCgsLSUxMJDY2lpiYGKKjo8Va75f49NNP+fjjjxkcHJzxEpBwZ8xmMzU1NezatQubzTbj+0XA
|
||||
FYDPMgzcbnfoXHhwfVAmkxEIBPB4PEgkEmQyGR6PJ/Q1jUaDUqm8qX7tF9NknnvuOdauXcv09DQA
|
||||
p0+f5tChQ5w9exa/3x9aA2tra+Pv/u7vUCqVrFy5ku3bt1NUVBR6bJlMhkKhEDNeYMeOHahUKt58
|
||||
802am5vx+Xy43W48Hg9yuVx8j+ZAUlISjz/+OGq1mh/96Ee43W7cbneoPKOopSCEpba2lqNHj9LS
|
||||
0oLH4wmlvhQUFGCxWDhx4gQRERGUlpZy4MAB8vPzycnJCR1rjI6O/srHN5lMmEym0P9HRUWRkJBA
|
||||
eXk5o6OjHDlyhIGBAex2O3V1dcBns2Cz2YzJZEIqlRIbG0t+fj5VVVUimADp6elkZ2djMBiQSqW0
|
||||
tLRw8uRJjEYjlZWVolX6HAimhRUWFiKVSjl69CgxMTE88cQTGAwGUUtB+Gput5vu7m727t3Lvn37
|
||||
6OjowGg0UlVVxfbt21m9ejWDg4PodDpiY2PZvHkzTqeTVatWUVVVRVpaWmitdSYWLlxIeno6Gzdu
|
||||
pLOzE7/fT1NTU+jrvb29dHR00NHREVrDzcjIYPXq1ajValQqFQkJCSQkJMz2t+SBNTQ0REtLC+3t
|
||||
7ZSXl9/r4cx7Pp+PpqYmrly5wsqVK4mIiLjtPSLgPuTMZjP/7//9P06cOEFPTw8qlYrHH3+cF154
|
||||
gaVLl2IwGNBqtbzxxhvI5XKMRiPf//73MRgMGAwGVCrVHT3v55cj9Ho9//zP/3xDhbJ/+7d/48iR
|
||||
Izck9Le0tDAyMsKxY8eIj4/ntdde45VXXvna34P5ory8nG3btvHEE0+I2e1doFQq2blzJy+99FIo
|
||||
xfF2RMB9SHk8Hi5dusQf/vAHTp06xeDgIMnJyTz22GNs27aNoqIi9Ho9UqkUpVJJQkICEokEuVxO
|
||||
cnJyqHD4nX60D94nk8lQq9UkJyffsPHzyiuvsHz5cnp7ezl16hRXr14NLTHYbDaGh4d55513uHr1
|
||||
auie0tLS0Kz7YaTT6YiJicFoNIrmm3NkeHiYc+fO8cc//pHJyUliY2OJ///aO9OYuM40bV/USi1Q
|
||||
7FCA2XcwxmBsDHZjOzbECXF7GTudxEl3q6PWKJqR+tdII82ov6ChO+oAACAASURBVJ7WaDRS/kwr
|
||||
05oZT88onVZn9xLjBWLHKzsY7NjGNvtS7FAsta/fD391FDpfYnAwm88lWTLFqar3UHWe877Pez/3
|
||||
ExGBQqEQZWEi38bXRuf27ducO3eO8+fPMzg4SExMDDt27KCiooL8/HzCwsKEtje+DTIfS6ka8G3E
|
||||
/eVrbtmyhYyMDMbGxggLCyMpKYmZmRmcTqfg29vS0iJofQF6e3uZmJggPj6euLg4YmNjCQsLW7Kx
|
||||
rnZkMhlKpVK0wXyGeL1e3G634F+hVCrx9/dfsHZdDLjPCTabDZPJxMzMDFNTU5w5c4YLFy7Q19dH
|
||||
UFAQO3bs4OWXX6aoqIjw8PAV9zkIDw8nPDycyMhItFot+fn52Gw2LBYLg4ODnDx5koGBAUwmE+Pj
|
||||
48KNZGBggODgYIqKiigqKiI9PR2lUklwcPC6D0Rms5mpqSmMRiM6nU7sevwM8BmQFxQU0NDQwMTE
|
||||
BGNjY8TExCxoxSd6KTwnDA0N0djYyLlz52hsbOT8+fPcv38fjUZDRUUFf/VXf0VxcTFRUVGr6kKV
|
||||
y+VEREQI3VGTk5PZsGEDWq2WpKQkIiIiePDgAR6Ph9nZWQYHB+no6BBKLoeHh5mYmCAmJgaNRrPS
|
||||
p7PkdHZ2cv36dYaHh5FIJPj7+xMUFER0dPSK3zTXI0qlErVajUwmo7KyEqvVilarJT4+XvRSEHmc
|
||||
qzUYDFy9epWqqipqa2txuVzMzMywYcMGiouLee2119i4ceOa8DLwlQL71BJdXV1YLBZsNhsej0eo
|
||||
ZPOVETc2NpKQkIDFYkGv1wuv40ubPO2m32qkt7eX5uZmYQYmbpw9O7xeL16vF7PZzNzc3IItMsWA
|
||||
u46xWq2MjIxw/fp1zp8/T319PQMDA0I5bWlpKa+++ir5+fkEBweviVblvllcdHQ0Ho8HnU6H1+sV
|
||||
vvBjY2NcuXKF+/fvMzExweTkJBMTE5jNZkG2I5FIeOONN0hLSyM4OJiQkBBh1rLWUKvV6PV6dDqd
|
||||
kE6YmZlZVd4KLpcLs9mMxWJBrVaj0+lWekhPjd1uZ2pqisHBQTweD1lZWeTl5aHRaEQD8ucZX8vz
|
||||
+vp6zp49S0NDA+Pj4wQEBBAQEMDOnTs5ePAge/fuRaFQrKo0wkLxFUOUl5cLj42PjxMUFERWVhZd
|
||||
XV08fPiQ1tZWmpubcTgcuFwuJBIJarWalJQUNmzYQEFBAfHx8UK1kEwmWzN/k6ioKLZv347BYBCq
|
||||
+FYTLpeL2dlZurq6MBgMJCUlkZubu9LDempMJhM9PT00NTXhdDrJzc0lPz9f9FJ4HvnmrMZoNNLS
|
||||
0sKf//xnrly5AkBERASRkZFERUXxi1/8gj179izpez6J5agOCw8P5/DhwwDcv3+fixcvYjKZsNvt
|
||||
jI6OMjU1hcfj4eOPPwYgOTmZn//852zfvp2goCDkcjlarRa9Xi+kG1ZzVVtaWhpvvPEG/f39jIyM
|
||||
rPRwvoWvC8j58+e5e/cuFRUVazrgzszMcOfOHS5cuIDZbBZSC2Kb9OcQp9MpWPWdP3+ezz//nLq6
|
||||
OtxuN3l5ebz00ku88sorKBQKYmJiluQ9vV6vUL8PjyVkCoUCm82G2+1GIpGgUqlWRBeakJDAsWPH
|
||||
KC0tZWhoiA8//JBz584Jv/etAk6cOMHHH3+MTCYjODiYTZs28Ytf/IINGzYgk8kWPHtZCVwu1w/u
|
||||
1PEs6ejo4NSpU3zwwQfExsau9HB+MHq9nv3796PVavmXf/kXbDYbVqt1wdIwMeCuE9xuN+3t7Zw+
|
||||
fRqbzUZTUxNff/01ZrOZvLw8Dh06RHl5OXl5eUv6vmazmYaGBlpbW3G73aSmppKfn091dTXd3d1E
|
||||
RETw+uuvExoauuyyLLVajVqtJiYmhqSkJORyOZs2bRJ+39jYSF1dHX19ffOeYzAYmJubQ6/Xk5mZ
|
||||
ybFjx1atRWRXVxdnz57l1q1bTE9Pr7qbg9lsZnh4mP7+/nWhifb16UtJSQHgwoULaLVaDh48SHBw
|
||||
sOilsN7xzTC7urqorKzkvffew2Qy4XA40Gg0ZGRkcODAAV5++WUyMzOX7H37+/sZHx9naGiIyspK
|
||||
Ll26hMvlorCwELPZTE1NDXV1dajVasrLy9HpdCuqgw0KCmLv3r3z0ijnzp1Do9HQ2dnJ6OgoY2Nj
|
||||
mEwmwY9ArVZTXFxMTEyMEHC1Wi2xsbHodLpVsck2MzNDR0cHY2Nj2O12LBYLBoOBBw8ekJGRsSo2
|
||||
qORyOeHh4aSmphIeHr7Sw1kyPB4Pvb29dHV1LdgEfuW/MSJPhdfrxePx4HK5GB8f5z/+4z/4+OOP
|
||||
mZycxOv14ufnR3JyMm+++SYHDx4kOjp6SZb1vkqbkydPUllZSU9PD3Nzc8zNzeH1eqmtrWVubo7X
|
||||
XnuNiIgILl26tOJLXd/M9C8D5J49eygoKMBisfDpp59y5swZ2tragMfnaTKZuHHjBo8ePRJeJzs7
|
||||
m7/+678WfCZ8j6/UDDgnJ4d33nkHp9PJpUuXMBgMXLhwAZvNxjvvvENhYaFw7Ddb1i8nOp2OnTt3
|
||||
8stf/pKCgoJlfe+lxnfdeTweFAoFb7zxBsePHycyMnJBN2Ax4K5R+vv7aWho4OrVq1itVhobGzEa
|
||||
jUJw27lzJ6+88gr79u0jMjJyyWaXExMTvP/++5w7dw63201FRQWpqanCRaxQKAgJCSEnJ4f09HQK
|
||||
CgrQ6/WrUnKm0Wjw9/fH5XJRUVFBeno6Y2NjeL1eRkdHqa6upqWlBYPBADwOrDabjX//93/n5MmT
|
||||
KJVKdDodGRkZvPzyy4SEhCz7Ofj7+xMaGopGo0EqleJ2u5mYmKC2tvZb2uOjR49SUFCAVqtd1jH6
|
||||
VCHBwcGrLuWxWEZHR7l58yZ//vOfmZ6eFmSFC13tiAF3jeFyuejv7+fatWtUV1dTU1ODx+PBaDQS
|
||||
GRlJQUEBCoWCkpISSkpKSExMRKVS/WCJk9PppKenh6+++oozZ84gk8koLCxk7969pKWlCV84Pz8/
|
||||
5HI5Op2OqKgo4uPjCQwMXJVmKjKZTJCApaSkoNfrsdvteL1eQUKXmJiIy+Wirq6O8fFxxsbGaGho
|
||||
QKlUIpVKCQwM5MGDB1gsFqFwRKlUUlxcvKgL8WkZHR2lsbGR3t5eLBaL0DV5aGgIk8k0r/hBIpFg
|
||||
t9vZsmULOp3uB38m09PTdHZ20t3djZ+fH0VFRej1euGcHz16RFtbG93d3fOM6tcyPtmgr6pMLpcv
|
||||
SkK4ts/+OWJ6eprZ2VlmZmZobm7mwoUL1NbWYjAYkMlkhIeHU1JSwuuvv45arWbDhg1ER0cv2WzG
|
||||
6XTy9ddf8+GHH3Lnzh2OHDnCrl272LJly/e6U62GHOKT8PPzE/TJ8HjZGB4ejkajobCwEJvNBjwu
|
||||
o7VarXi9Xqanp5mbm2NkZISJiQmGh4eF4KbRaJDJZEK5pw+1Wi3YWi4F4+PjNDU1cebMGe7duzev
|
||||
5YvNZhPG7ePixYt4vV7kcjm5ubkEBgYueuVhtVqZm5tjenpaqGC8efOmMLvOzs4Wzvny5ctcuXKF
|
||||
7u7uJd+sXSl8JeVbt26lrq6O0dFRhoaGBF9oURa2hvHlS+GxprSpqYnu7m4ePHjA119/zcjICDKZ
|
||||
jMDAQPbu3cvRo0d54YUXFuVetFA8Hg+Dg4M0NjbicDiIi4sjPT19XW2C+PDz80Oj0ZCVlUVWVhYO
|
||||
hwObzcbg4KAggauvr6e1tZWhoSHGx8cF316PxyPU2/9lKic1NZWCgoLvDD4LybH6UkYej4e6ujpO
|
||||
njzJpUuXGB0dfWIjyY6ODjweD16vF4VCQVZW1hM7dXwTj8fD6OgoLS0tNDY2MjIywu3bt7l79y5S
|
||||
qRS1Wk1CQoIwi21paeHBgwdCy6b1gEajIT4+nvz8fGQyGTU1NURHR4sqhfXA8PAwLS0t2O12amtr
|
||||
qa+vp6enB6vVilKpJDc3l/T0dAIDAzlw4AAlJSUolcpnuimi0WgoLi4mLS1t2XOBK4VMJqO0tBSH
|
||||
wyH0d4uLiyMpKUnI78JjXe/AwACtra1cvnz5WzOejIwMenp66O7u/v++T1ZWFomJid9rsuPxeJib
|
||||
m6Ouro7PPvuM69evMzExseCuvQaDgevXr7Nt2zYSEhIWFXB7enq4fv260ItOqVSi1+s5fPgwfn5+
|
||||
BAUFCdV9JpMJs9mMWq0mKyuL/Pz8JZvZryZcLteiNNBiwF1l+Ga1o6Oj1NTU8PHHH2MymRgYGGBy
|
||||
clLwQYiPj6ewsJDS0lKUSiUpKSnLsmkTGBjIwYMHyc3NXRPpgqVAIpEQGhoq/Ox2u9mxYwcpKSnz
|
||||
lvEWi4XW1tZ5JbYWi4Xx8XEsFgt2u53x8XGam5v/v+9TXl5OUVHR9wZBp9PJ2NgYH3zwAfX19QwP
|
||||
DwtFJwvBZrNhNBqxWq2Lbq3e3t7OjRs3aGhoYG5ujoSEBPbu3UtJSYlwTH19PRMTE4yMjGCxWAgN
|
||||
DSU+Pp6UlJR10X3ZZrMxPj5OT08PbrebjRs3kp+fL3oprDV8HVd9lSs3b97k1KlTVFdXY7FYkEql
|
||||
xMbGsmXLFtLS0khMTGTjxo1s3br1mY7LJ4Mxm81YrVZUKhWFhYXEx8evS7vDhSCVSr/VFBMe5zdj
|
||||
Y2Pn5bMNBgP19fUYDAZhBjwwMIDb7cZut+Pn54dSqcRsNuNwOOjv7//eG5nL5WJycpKLFy8yPT29
|
||||
LJI7t9uNzWajq6uLR48eMTs7S1paGmVlZbz00kvzpF5hYWGCG11fX58gofJ1g17rmEwmuru7hdRa
|
||||
ZmYmubm5opfCWuCbX0DfTKivr4/Z2Vn++Mc/cuHCBUFTGxISQkFBAcePH6e0tHTZZpc+Y+++vj4M
|
||||
BoOQA/T9W43VVyuFSqUiPz9/XgPHO3fuoNVq+frrr7FarQCCjeTw8DAymYzo6Gja29upqanh5s2b
|
||||
wnOfVYD65ue3kM/QbrfT19fHyMgIHo+HxMREXnzxRX7yk5+Qmpo679i8vDyUSiVtbW2Mj49jNBp5
|
||||
8OABt2/fJjs7e81Xm5nNZjo7O6mtrRU2UEUvhTWCb+Zgs9no6Ojg0qVLfPjhh0Ixg0wmIyAgAD8/
|
||||
P1588UWOHDnCjh07lnVm6Xa7GR8f56OPPuL8+fN4vV5mZmawWq1r1tJwOUlJSeFv//ZvsVgswhLe
|
||||
6XTS2dnJF198gUql4ujRo/z617+mu7t7XnrAbrcLP8vlchwOhzAjnpubW3RKwIcv4JvNZpxO5xM1
|
||||
2hMTE/zv//4vFy9eRK1WU1FRwc9//vN5Gt9vIpVKCQgIQKVSkZSUxI9//GPeeuutdbHBGhUVRXl5
|
||||
ORqNht/+9reCH65PJvgkxKtlBRkbG+PmzZs0NzfT29tLR0cH7e3twu+zs7N54403CAgIIDs7m8zM
|
||||
zEVtciwFEokEnU5HSUkJAwMDfPXVV/zXf/0Xx48fFzpEiHw3arX6W00t3W43UVFRhISEIJfL2bhx
|
||||
I7/61a+Ympqa10jz9u3bdHV14XQ6SU9P5/bt2wQEBLB161ZOnDjB5OTkUwXd2dlZvvjiC2GDNSMj
|
||||
43uPdzqdDA0NMTExQVxcHBEREcTExHxnoA4LC+P1118HHs+mIyIiiI6OXhdKBaVSSVhYGPHx8Xi9
|
||||
Xr744gsUCgWvvvoqoaGhokphteF2u3n06BETExM8evSIc+fOceXKFaanpwW3qoyMDNRqNVu3buXt
|
||||
t98mKCjoB3XI/SH4WqOXlZUxMDBAZWUlp06dYuPGjeTk5IgB9ymQSqVERkYSEREhPHbkyJFvHVdb
|
||||
W8u9e/ew2+3k5eWRnJxMYGAgRUVFfPrppxiNxqcKuC6Xi7GxMSYnJ4U0x0KIjo4mNTWV2NjY7/0u
|
||||
KhQK9Ho9ISEhmEymRY9vreDxeBgfH2dkZERQsDwJMeA+Y3wfgtPpFOwTT5w4wbVr1xgcHBQ2S3yN
|
||||
DrOzs/nNb34jGGIHBwevCqcqXwWZv7+/oEW1Wq1YLBahYgse31DcbjdyuXxVVpetJp70mebn55Od
|
||||
nS10h83KysLj8TA8PIxKpUImk+FyuRb9vsHBwfz0pz+loqJCcL1aCDt27GDXrl3s2rXrez/b4eFh
|
||||
fve733H16lUSEhLYvn37ose4WvF4PDidTux2O3K5nLfeeovjx48TFRUleimsFqxWK6dOneKrr77C
|
||||
ZrNx69YthoeHMZvNSCQS8vPz2bVrF7m5uYSEhJCRkSHkblfLMkypVLJ7927+4R/+gd///vdcvnyZ
|
||||
9vZ2YmNj2bVrF8XFxUilUu7du0dNTQ2HDx8mKytrpYe9plEqlUIlmEQiQaFQ4PF4kEql/PrXv+YP
|
||||
f/gDN2/eZHZ2dlGv6ytJ1mq1i/LYaGlpwWazoVar2bNnz3d+N30qBbPZ/FQ3hNXMyMgIV69e5YMP
|
||||
PmB6epqAgIBFOcfJqquryc7OXjJDapHHTE9P09vbK+gyv/zySxoaGoSWIzExMRQVFRETE0N2djbb
|
||||
tm0jOTlZ8CFYbZtRUqmUuLg4ysvLmZ6epra2ljt37nD37l2mpqbo7u5GKpUKwv7du3ev9JDXPBKJ
|
||||
ZF5Qk0gkeL1eAgIC2LFjB9PT0ygUCmpqahacz42Li2PXrl3CTX0xN/ShoSH8/f0xGAxPXD673W7B
|
||||
vOgvlQxrGZlMhlarJTQ0FKlUKqzuFroClV24cAGdTicG3CXAbrdjNBqZnp5mYGCA5uZmzp49i8vl
|
||||
YmBgAJPJRHR0NKGhoRQVFbFjxw4yMjIIDQ0lMjJyVRcSSCQStFotycnJHD16VLjgjEYjk5OT3Llz
|
||||
Bz8/P6Ft9Gp0B1sP+FI7ERER7NmzBz8/PxwOB83NzRiNxm8VQfj5+eHv709cXBwymYzNmzfz4x//
|
||||
mPT09EVXCvp8FCwWy3ceMzU1JUgbMzIyKCoqIiMjY8VTYkuFVqslJSWF4uJiampqMBgM9Pf3k5iY
|
||||
iFwuf3Kb9I6OjkUvSUQe48vnAILDVENDAy0tLfT29tLZ2UlLS4tQ4pmSksKrr76KTqcjMzOTrKys
|
||||
NXejU6lU5ObmYrfbyczMZGZmZt7vZTIZQUFBREdHr9AInx8SEhKEoGu322ltbcVoNCKRSJBKpYKz
|
||||
VWxsLD/72c8ICAggKSmJgoICYYa2UGQymXC8r5zVN7P75nVw584dzp07R09PD4WFhSQmJhIZGflM
|
||||
zn8l8HUQyc7ORiqVUltbS3R0NCEhIYSEhDw54JaWln6nnk7k+/H5js7NzQk+pE1NTcJsw+PxEBIS
|
||||
QklJCcHBwcLsUKfTCV6sa5WsrCySk5PnyZh8yGSy57YKbbnR6/UUFxdTV1dHR0cHbrebhIQEsrKy
|
||||
BDvE6Ohojh49ilarxd/fH7VavahUQkBAANu3b2dsbAyj0cjXX39NfX09mzdvRqPRMDIywvXr13G7
|
||||
3TQ1NfHll18yNDS0KrsILzW+m9tCke3fv3/NzbJWCl85Zl9fHxaLhZ6eHj766CMmJycFBcLo6Ch2
|
||||
u53Q0FDCw8OJjIzk9ddfR6/Xo9PpBMu+1bIZ9rRoNBoxqK4CrFYrExMTmEwmXC4XQUFB5Ofnc+zY
|
||||
MbRa7by2QAqF4qmW9gEBAezevZuBgQGuXr1KY2MjKpUKs9lMcHAwHR0d/PGPf8TlcjE6Oiq4qq2H
|
||||
Ut6/xGq1MjIywqNHj3C73WzatIktW7ag1WoX5qWQk5OzDMNcm/gCrM1mw+Px4HA4mJ6e5uzZs4yM
|
||||
jDA8PMyVK1eYnZ1FIpHg7++PQqEgLS2NzZs3k5GRQUhICLt3717zJY0iqxODwcC1a9fo6OjAZDIR
|
||||
ExNDXFwc27dvX7I9AZVKRXp6OmlpabS1tdHX18etW7eESsiBgQHa29uF1Y7vZuzzBV5P/KWXQkpK
|
||||
iqCbXwjr66+xRPj8AqxWKwaDgcHBQcFUZnR0lBMnTggu9z4iIiKIjY0lIiKCbdu2sX///jXfv0lk
|
||||
9dPX10dlZSV37tzBbrc/sSjhhxARETFP6tfR0SH8f8uWLd86fj0aHPliwt27d7Hb7YI5j+il8AOY
|
||||
m5vDarUyODhIVVUV586dEwyefT4HAQEB85YRP/rRj6ioqGDbtm2Cs7+IyHKiUqkIDAwUNNxLTUlJ
|
||||
Cbm5ud/qJPFd6HS6deeZHBUVxb59+9BoNPzjP/4jMzMzGI1GlErlwgofnmfHp2+6538z33Tx4kWa
|
||||
m5vp7u6mq6uLzs5OzGazUIigUCjYt28f5eXlQjuRuLg4UlNTxXy4yLLhq+rzfX9zcnLYv3+/0PVj
|
||||
qVnK9kBrFYVCQVBQEHq9Ho/Hw9mzZ4XuvWFhYU/2UrDb7Wt6t/yH4MvRNjU1YTQahcc/+eQT6urq
|
||||
GB4eFh5Tq9VER0eTk5ODQqHgyJEjHDhw4Ln924msPPfv36etrU1QxCQkJLBlyxY2bdq00kN7brBY
|
||||
LFgslgX7/cpmZmaeu6Dhq4Wem5tjbGyMf/7nf6atrU34vdlsxuPxoNFoBAH/hg0bKC8v5+/+7u+A
|
||||
xwH4mw0CRUSWm5MnT/LBBx8wMDCAXC4X/BVEnh0+S1WTyYRcLuf48eMcP36csLAw0Z7xu3jw4AHV
|
||||
1dXcuHEDu90uzBJ8eDwe8vPz2bt3L4WFhcDjAKvX6wV7xLUu6xJZ+1gsFqELx6FDh4TWRyLPjqGh
|
||||
IS5dusT777/P5OQkKpUKjUazYC2ubD30GXoSzc3NdHV1MTU1BUB3dzdNTU3cvXtXMGP29SbymXn4
|
||||
6sB9XqFSqVQQkouIrBRutxuj0Uh1dTVtbW2YTCYUCgXJyckkJSUtS1+75xmfH25CQgKPHj1CKpUK
|
||||
VX0LYV0FXJ+KoKenZ15zv3PnztHc3MzQ0BDwWIUwMzODRCIhPj4eqVTK3r172b9/PyqVCj8/P3Q6
|
||||
HWFhYQQFBa3U6YiIfAu3283U1BSffvopd+/eRSaTkZqaKnTgXYz7l8jiCQgIIC0tjZKSEq5du0Zf
|
||||
Xx9dXV2kpqaiUCieXNq7lk1GfM3pnE6nEGxNJhOfffbZPI3g7du36e/vx2w2CzPU4OBgcnJyOHr0
|
||||
KDKZjKysLDZu3PjU1TgiIsuBTx9+//59xsbGyMjI4KWXXiInJ2dVmx+tF1QqFVFRUaSmpiKRSAQv
|
||||
hYiICEJDQ58ccJdpnM8Em81Gd3c3d+/exWg04na7MZvNnDx5ku7u7nnHRUREUFBQQFJSkjCDzczM
|
||||
pKKiAqlUOs97VERkrRAZGcnWrVtJTExccLWTyNKhUqlQqVQL3tNZkwF3aGhIaG1x584dbty4wfDw
|
||||
MF6vF5fLRXd3N2q1mg0bNgiORmlpaRQXF7Np0yYkEglyuZzg4GBCQkLEGa3ImsBut2MwGLh9+zZW
|
||||
qxWPx4NcLkej0Sy4iaHID8NisWAwGLh//z4ej4e8vDy2bdu2cC+FZRjjU+P1evF4PMzOzs5zHqqv
|
||||
r+fOnTv09PTQ09PDw4cPsdls+PLRarWawsJCdu3ahVqtxs/Pj9jYWDIyMkhKShIVBiJrCl+6bHh4
|
||||
mIaGBs6ePcvMzAwajYbAwEBxZbaMmEwmenp6aGpqwuFwkJCQQHJyMgvdC1v1AdftdtPX18fk5KQg
|
||||
LK6uruby5ct0dnYCj0sIY2Nj53mw7tu3j7feegudTifOYEXWNF6vF7PZzKNHj6iuruazzz4DHrdg
|
||||
j42NRaPRiJOIZcJX8u/zUlgsqyrg+nKw09PTOBwO4ed//dd/pa6uTnAjMplMeDwewsPDCQgIICcn
|
||||
h1deeYX9+/cLr6XRaAgICFipUxERWTIcDgcPHjzgxIkTVFVVCY8fO3aMN954Q2jNJPLsiY6O5uWX
|
||||
XyY0NJS///u/F1KbsbGxQqOB72NFA65vqeTrxWQymbh16xZVVVX09fXh9XpxOp00NzczNjY2T++W
|
||||
np7Orl272L59OxERESQlJYk+BiLrDt81YjabmZqaYm5uTmizExISQnBwsFjxuIzI5XICAgIICwvD
|
||||
4/FQWVmJUqnkzTffJCws7Ik3vhUNuBaLhebmZkZHR4VyudbWVr788kv6+/vnHZucnExeXp6Qk01L
|
||||
S6O0tJRt27aJd3eRdYvJZKKzs5OamhpGRkYEhU1paSlpaWnPXVn+asNnaLXgwodnPB4Bn4H3zMyM
|
||||
MKMdGhri97//PU1NTULXUZfLhdfrJTAwcJ7MpaysjF/96ldEREQIbS3kcrlY+SWyrhkbG+PatWuc
|
||||
OHGC8fFxdDodmzZt4je/+Q2pqaliwF1mfFr/qakppFIpP/nJT3jzzTcJDg5eUNBdtmhlNptpb2/n
|
||||
3XffFRoP2mw2Hj58yPT0NE6nU9gUS05OZv/+/bz88svC8/V6/bw2Ib5/IiLrGa/Xi8PhwG63ExAQ
|
||||
QHl5Oe+88w5JSUkolUrxGlhmDAYDVVVV/Pd//zdTU1MoFIpFfQ7PNODa7XZ6e3tpaWmhp6eHgYEB
|
||||
bt68idVqBR7Pei0WCzk5OWRmZgrNLPV6PXl5efM6JigUCvz9/cVAK/Lc0NnZyfXr17l+/ToWiwWd
|
||||
Toder2fjxo1CI0jxWlhe1Go1sbGxbNy4EYPBgEQiWbmUgsPhoK+vT1AZWK1W7t27x6VLl+js7MRi
|
||||
sTA2Nobb7SYsLIy4uDiUSiWlpaVs376dxMRE4HH1RnBwsODMJSLyPOF0OhkaGuLGjRtUVVXR2tqK
|
||||
UqkkLS2NtLS0594EfCXxeSns2LGDK1eu0NXVxcOHD8nIyFhQc9gfFHB9KQCr1SrkZysrK2lvbxeC
|
||||
7sjICN3d3ZhMJpRKpSDVysvL49ChQ4SEhJCamkp8fLzYaFFEhMcrw5qaGs6fP09tbS0TExMkJydT
|
||||
VlZGcXHxSg/vucbf35/w8HASExPx8/Ojrq6OmJgY9Ho9YWFhz95Lwe12U1tbS3t7O1NTU1y6dImu
|
||||
ri7m5uaEUludTsfWrVvJz88XnpeTk8PevXvR6XSij4GIyDdwOBx0dHTw4MEDRkdHkclkhIaGsnHj
|
||||
RlJTU1d6eCL/D59iJDg4eMHxa1EB1+VyYTQaGRgYYGZmRqgEO3XqFM3NzZhMJkZGRtBoNKSkpAjW
|
||||
hnq9nqKiIkpLS4XXCgoKIjIyUnTnEhH5Bkajkbt379LVOc4mPwAACpxJREFU1cX09DRyuZzY2Fhy
|
||||
c3PR6/Wi5naFMZvN9PX10dbWhsvlYvPmzWzdunVpvRTMZjMWi4WZmRm6u7upqamht7dX8Dpoampi
|
||||
eHhY6EWfn59Pfn4+CQkJwGMrxJSUlHktlkVEROYzMzPD3bt3uXjxInfv3sXhcBAXF8e2bdt44YUX
|
||||
5pWui6wMvoB769YtHA4HsbGxxMfHL/hG+J0B95ua2IGBAbq6uujt7aW9vV3YBPumO1FsbCz5+fkE
|
||||
BASwc+dOiouLSU9P/+FnKCKyjvHtgzidTh4+fMiXX37JqVOn6O3tJSoqiq1bt/LKK69QVlYmlqqv
|
||||
Ar5Z9ed2u3G5XIIf90IUVN8ZcM1mM6OjozgcDi5dusSFCxdoamrC6XTidrsJDQ2dt8lVUlLCL3/5
|
||||
S2JiYtBqtaIgW0RkgTgcDgYHB/n00085ffo0AwMD6HQ6du7cyZEjR3jhhRdEr9tVQkREBKWlpahU
|
||||
Kh4+fCh4KSiVygWlR4WA60sPWK1WvF4vt2/f5sMPP8RgMNDX18fg4CCTk5NIpVLi4+PZs2cPBw8e
|
||||
FF4oMjKS9PR00blIRGQReDwejEYjv/vd7/jyyy8ZHBxEJpNRXl7O4cOHBa9VkdWBTCZDrVaj0+lw
|
||||
u92cO3cOf39/fvrTnxIeHr5wlYLL5WJqaooLFy4wOztLe3s7Z8+eZXR0FJfLBTxupBgXF0dZWRmH
|
||||
Dh2irKzs2Z6diMg6x9cyp6amhu7ubux2O8HBwaSnp5OZmUlUVNRKD1HkO/Dz8yMgIIDAwMAFWwzI
|
||||
rFYrMzMzGI1Gurq6+O1vf8vAwAAejwev10tQUJDQ716lUlFcXMzx48fZtm3bMz4dEZH1jdvtZnZ2
|
||||
lsHBQex2O16vV9B5LuYiFlk+fPUGo6OjSKVSjhw5wvHjxxdcjCK7c+cOH374IXV1ddhsNgwGA06n
|
||||
E3hcVfGzn/2M4uJi9Ho9EomEoKAg9Hq92M5DROQHMjMzw8WLF3n33Xfp6enB6XSyefNm3n77bfbu
|
||||
3SuUuousHoaGhqisrOQ///M/mZiYQCqVLurGKPvTn/7E1atX6enpERy99uzZQ35+PkFBQezYsYPk
|
||||
5GShc4LPpUvUzoqIPB0ul4vR0VGqqqo4deqU0CJq586dHDhwgNLSUlFzu0rRarWkpqZSUlJCZWXl
|
||||
oo20pLOzs/+nt7cXm82Gv78/+fn5HDt2jIqKCvLz80lMTCQkJASVSoVCoUAul4ubYiIiT4nVamV4
|
||||
eJhr165x+vRp6uvrsdvt5OXlcfjwYcrKykhKSkKlUomryFWIVCoV1Ag3btwgNDSUyMhIgoOD5zVI
|
||||
+C5kg4ODyOVygoKCiI6O5u2336a0tJQNGzagUCiW6TRERNY/DoeD4eFh6uvr+eijjwQf6LCwMF57
|
||||
7TX27dtHUlKSKAFbxSiVSkJCQoiNjQWgsbGRDRs2EB8fj0KheLJKQa/X86Mf/YisrCzCwsI4cOCA
|
||||
UJIrIiKydPT29vLVV1/x2WefUV9fj9lsRiqVolar2blzJykpKaJ+fY3g6/QQFRVFTEzMgi0KZOHh
|
||||
4RQVFbFz506USqV4dxURWWJcLhd9fX1cu3aNy5cvc+/ePZRKJenp6URFRQmqBHFfZPVjMpno7u6m
|
||||
oaEBh8NBbm4uBQUFaDSahQVcrVZLXFycWIYrIvIMsFqtjI6Ocu3aNaqrq2lpacFut5OZmUlZWRlZ
|
||||
WVmo1WrCwsJEGdgawGw209/fz+3bt3E4HPNmuAtB/IRFRJ4hU1NTNDQ08MUXX9DQ0IDZbCY1NZUX
|
||||
X3yRQ4cOkZOTs9JDFFkEPstZh8MhtD9yOBwL7kYjBlwRkWfIwMAAn3zyCTdv3sRoNBITE0NBQQGv
|
||||
v/46cXFxKz08kUUSHh7Ozp07UalU3L59m+HhYQYHB0lJSVlQHlfUd4mILDEej4eZmRkmJyeZmppi
|
||||
ZmYGm82GRCJBq9USFBSEVqsVTffXIFKpVNjrcrlcVFVVcebMGYxGI263+4nPF2e4IiJLiNfrxWaz
|
||||
cebMGYaGhuju7qa/vx+n0yl42+7cuVPcnF4H+FQK0dHRC65PEAOuiMgSY7FY+J//+R+ampqwWCz4
|
||||
+fkREhJCcXExR44coaKiYqWHKPKU2O12JicnGRgYwM/PjwMHDvDqq68u+AYqBlwRkWeMSqXi8OHD
|
||||
HD16lMLCwpUejsgPYHBwkDNnzvDee+8xNTW16OdLjh07RkpKyjMYmojI84XFYqGhoYF/+qd/oqur
|
||||
S2iRc/z4cQ4ePEh2drbobbvGCQoKYtOmTVRUVDxVBw7pu++++398OQgREZHFYbVaGRkZoaWlhba2
|
||||
Nq5cucInn3zC+Pg4cXFx7N69myNHjrB582bCwsLE62yNI5PJUCqV+Pn5cfXqVQIDAwkLCyM0NBSZ
|
||||
TPZkWVhcXJzoSiQi8hTY7XaGhoZobGzk9OnTjIyMMDo6ytDQECEhIezatYtDhw5RWFiITqcTg+06
|
||||
QKFQoNPpiIyMxOv10tLSQkJCAikpKSiVyid7KYgGNSIiT8fg4CDXr18XvBFmZ2cFE/FDhw5x6NAh
|
||||
tmzZQkhIiFi2uw6RSCTExMQsrmuv+EUQEVkcbreb7u5url69SlVVFU1NTfj5+ZGfn09MTAxqtZqj
|
||||
R4+Sk5NDUFCQaGe6jpidneXRo0fcvHkTh8NBXl4ehYWFaLXaBdlpiioFEZFF8JfeCA0NDUxMTJCQ
|
||||
kMDu3bspKSlBoVCQn5+PTqcT/RHWGVarlcHBQe7du4fT6SQ8PJzIyMgFp4vEb4OIyALx+dnW1tZS
|
||||
WVlJS0sL4+PjBAYGEhkZybZt23jllVdWepgizxBf1xvfjdRms2G1WkUvBRGRpWZiYoLGxkbef/99
|
||||
mpub8Xq9bNiwAb1eT1JSEjqdbqWHKPKMCQsLo7i4GH9/fxobGxkcHKS/vx+1Wi2oF74PMeCKiDwB
|
||||
j8fD9PQ0Fy9e5PPPP6e1tRWPx8OmTZvYt28fe/fuRa1WExMTs9JDFXnGSCQS5HI5CoUCl8vF5cuX
|
||||
CQoKIjIykvDw8CerFJZpnCIiawav1ws8DrQ+C74zZ85w8uRJGhsbmZubE9IHZWVlbNq0aYVHLLJc
|
||||
eL1ePB4PHo8HPz8/4uPjSUpKwt/fX/RSEBF5Grxer6CxnZycxGq18oc//IHW1lYAUlNTOXDgABUV
|
||||
FWRkZKzwaEWWE9+m6aNHj/B6vbz44oscPHhQ9FIQEfkhDA4O8t5773H69Gk8Hg8TExPY7XZycnL4
|
||||
m7/5G8rKyoiOjl7pYYosMwaDgdOnT/Nv//ZvWCyWRT9fDLgiIt/Ap7P805/+xKVLlxgZGRFc/nfu
|
||||
3MmhQ4coLS0lPDxclHw9h4SFhbF9+3YmJyf56KOPFv18UZEtIvL/mJiYoLW1lZMnT1JdXU1PTw8O
|
||||
hwOPx8P27ds5cOAAL7zwAnFxcQvO2YmsL7RaLcnJyRQVFaFQKLh16xYNDQ3Mzc3h8Xie+HzxFi3y
|
||||
3OP1epmbm+PevXtUVVXx+eefMzQ0hEajITIyEqVSyWuvvcauXbtITExEpVKt9JBFVgi5XE5AQACh
|
||||
oaF4vV7a2tpISUkhMzMTlUolqhRERJ6Ex+Ohra2NyspKqqqq6OzsJCwsjPLycrZu3YpMJmPfvn3E
|
||||
xMSIRk8iAlKplOTkZNLS0hb8vfi/M/6898D6UToAAAAASUVORK5CYII=
|
||||
"
|
||||
id="image843"
|
||||
x="41.652977"
|
||||
y="150.26443"
|
||||
style="opacity:0.33246322" />
|
||||
<circle
|
||||
style="opacity:1;fill:#000000;fill-rule:evenodd;stroke-width:1.165;stroke-linecap:round"
|
||||
id="path849"
|
||||
cx="104.14818"
|
||||
cy="173.08696"
|
||||
r="2.1439371" />
|
||||
<circle
|
||||
style="fill:#000000;fill-rule:evenodd;stroke-width:1.165;stroke-linecap:round"
|
||||
id="path849-3"
|
||||
cx="107.28627"
|
||||
cy="208.00011"
|
||||
r="2.1439371" />
|
||||
<circle
|
||||
style="fill:#000000;fill-rule:evenodd;stroke-width:1.165;stroke-linecap:round"
|
||||
id="path849-3-6"
|
||||
cx="78.637512"
|
||||
cy="199.65303"
|
||||
r="2.1439371" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 80.29042,199.10253 c 8.147222,-2.97716 19.060655,-11.96107 23.26785,-24.38034"
|
||||
id="path893"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
d="m 106.63258,206.74252 c -1.33862,-5.5145 -0.58865,-13.09594 -0.35784,-18.4834 0.22174,-5.17585 -0.0726,-11.58807 -1.48986,-13.59537"
|
||||
id="path895"
|
||||
sodipodi:nodetypes="csc" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text897"
|
||||
style="font-size:4.93889px;line-height:1.25;font-family:'Myriad Pro';-inkscape-font-specification:'Myriad Pro';letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect899);" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:10.1591px;line-height:1.25;font-family:'Myriad Pro';-inkscape-font-specification:'Myriad Pro';letter-spacing:0px;word-spacing:0px;stroke-width:0.544238"
|
||||
x="101.26399"
|
||||
y="168.81955"
|
||||
id="text905"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan903"
|
||||
x="101.26399"
|
||||
y="168.81955"
|
||||
style="stroke-width:0.544238">a</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:10.1591px;line-height:1.25;font-family:'Myriad Pro';-inkscape-font-specification:'Myriad Pro';letter-spacing:0px;word-spacing:0px;stroke-width:0.544238"
|
||||
x="111.28193"
|
||||
y="211.37102"
|
||||
id="text905-3"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan903-5"
|
||||
x="111.28193"
|
||||
y="211.37102"
|
||||
style="stroke-width:0.544238">d</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:10.1591px;line-height:1.25;font-family:'Myriad Pro';-inkscape-font-specification:'Myriad Pro';letter-spacing:0px;word-spacing:0px;stroke-width:0.544238"
|
||||
x="77.399193"
|
||||
y="210.4151"
|
||||
id="text905-3-6"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan903-5-2"
|
||||
x="77.399193"
|
||||
y="210.4151"
|
||||
style="stroke-width:0.544238">c</tspan></text>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 41 KiB |
|
@ -0,0 +1,116 @@
|
|||
\documentclass[12pt]{article}
|
||||
\usepackage{ntnu}
|
||||
\usepackage{ntnu-math}
|
||||
|
||||
\author{Øystein Tveit}
|
||||
\title{MA0301 Exercise 10}
|
||||
|
||||
\usepackage{amsthm}
|
||||
\usepackage{mathabx}
|
||||
|
||||
\usetikzlibrary{arrows.meta}
|
||||
|
||||
\begin{document}
|
||||
\ntnuTitle{}
|
||||
\break{}
|
||||
|
||||
Because there are no exercise where there are multiple edges between two vertices, I will use strings of vertex names to represent a walk.
|
||||
|
||||
\begin{excs}
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
|
||||
\subexc{}
|
||||
\[ bcbcd \]
|
||||
|
||||
\subexc{}
|
||||
\[ bacbed \]
|
||||
|
||||
\subexc{}
|
||||
\[ bcd \]
|
||||
|
||||
\subexc{}
|
||||
\[ bcb \]
|
||||
|
||||
\subexc{}
|
||||
\[ befgedcb \]
|
||||
|
||||
\subexc{}
|
||||
\[ bacb \]
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
|
||||
\begin{figure}[H]
|
||||
\center
|
||||
\scalebox{2}{
|
||||
\input{diagrams/ex2.tex}
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
\exc{}
|
||||
|
||||
By using trial and error, starting with the nodes that had a higher degree, I managed to bring it down to three nodes.
|
||||
|
||||
\includeDiagram[scale=2, width=12cm]{diagrams/ex3.tex}
|
||||
|
||||
The red vertices represent the guards
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
The graphs are not isomorphic because the shortest cycle between the vertices with a degree of 3 has a different length.
|
||||
|
||||
\subexc{}
|
||||
The graphs are isomorphic
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
|
||||
\includeDiagram[scale=2, width=12cm]{diagrams/ex5_a.tex}
|
||||
|
||||
\[ adhijkgcbgjfbefiedba \]
|
||||
|
||||
\subexc{}
|
||||
Because $deg(e) = deg(f) = 3$ is now odd, they have to be the starting vertex and ending vertex.
|
||||
|
||||
\includeDiagram[scale=2, width=12cm]{diagrams/ex5_b.tex}
|
||||
|
||||
\[ dabdhijkgcbgjfbefie \]
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
$G_1$ is not an induced subgraph if it's missing an edge $e_1$ between $v_1, v_2 \in G_1$ where $e_1 \in G$
|
||||
|
||||
\subexc{}
|
||||
\includeDiagram[scale=0.8, width=6cm, pdf=true]{diagrams/ex6_b.pdf}
|
||||
|
||||
$G_1$ contains the vertices $c$ and $d$ while it is missing the edge $cd$ even though $cd$ was present in $G$. Therefore, it is not an induced subgraph
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
|
||||
\begin{align*}
|
||||
\sum_{deg(v) \in V} = 2 |E| \\
|
||||
3|V| \leq 2 |E| \\
|
||||
|V| \leq \frac{2 |E|}{3} \\
|
||||
|V| \leq \frac{2 \cdot 17}{3} \\
|
||||
|V| \leq \frac{34}{3} \\
|
||||
|V| \leq 11.33 \\
|
||||
\end{align*}
|
||||
|
||||
The max amount of vertices in $G$ has to be $11$
|
||||
|
||||
\end{excs}
|
||||
\end{document}
|
|
@ -0,0 +1,24 @@
|
|||
\newcommand{\point}[3]{
|
||||
\node [label=#3:$#1$] (#1) at #2 {};
|
||||
}
|
||||
|
||||
\begin{tikzpicture}[]
|
||||
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
|
||||
\point{a}{(0,1)}{left}
|
||||
\point{b}{(1,2)}{above}
|
||||
\point{c}{(2,1)}{above right}
|
||||
\point{d}{(1,0)}{below}
|
||||
|
||||
\point{e}{(4,1)}{above left}
|
||||
\point{f}{(5,2)}{above}
|
||||
\point{g}{(6,1)}{right}
|
||||
\point{h}{(5,0)}{below}
|
||||
\end{scope}
|
||||
|
||||
\draw (a) -- (b) -- (c) -- (d) -- (a);
|
||||
\draw (e) -- (f) -- (g) -- (h) -- (e);
|
||||
\draw (b) -- (f);
|
||||
\draw (c) -- (e);
|
||||
\draw (d) -- (h);
|
||||
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,27 @@
|
|||
\newcommand{\point}[3]{
|
||||
\node [label=#3:$#1$] (#1) at #2 {};
|
||||
}
|
||||
|
||||
\begin{tikzpicture}[]
|
||||
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
|
||||
\point{a}{(0,1)}{left}
|
||||
\point{b}{(1,2)}{above}
|
||||
\point{c}{(2,1)}{above right}
|
||||
\point{d}{(1,0)}{below}
|
||||
|
||||
\point{e}{(4,1)}{above left}
|
||||
\point{f}{(5,2)}{above}
|
||||
\point{g}{(6,1)}{right}
|
||||
\point{h}{(5,0)}{below}
|
||||
\end{scope}
|
||||
|
||||
|
||||
\draw (a) -- (b);
|
||||
\draw (e) -- (f);
|
||||
\draw (c) -- (d);
|
||||
\draw (h) -- (e);
|
||||
\draw (b) -- (c);
|
||||
\draw (f) -- (g);
|
||||
\draw (c) -- (e);
|
||||
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,211 @@
|
|||
\documentclass[12pt]{article}
|
||||
\usepackage{ntnu}
|
||||
\usepackage{ntnu-math}
|
||||
\usepackage{ntnu-code}
|
||||
|
||||
\author{Øystein Tveit}
|
||||
\title{MA0301 Exercise 11}
|
||||
|
||||
\begin{document}
|
||||
\ntnuTitle{}
|
||||
\break{}
|
||||
|
||||
\begin{excs}
|
||||
|
||||
\exc{}
|
||||
|
||||
\[n^{n-2} = 4^{4-2} = 4^{2} = 16\]
|
||||
|
||||
\exc{}
|
||||
|
||||
To solve this exercise, I chose to implement the algorithm in python
|
||||
|
||||
In order to keep track of the nodes, I have given them the following labels
|
||||
|
||||
\includeDiagram[width=13cm, scale=1.6]{diagrams/ex2_1.tex}
|
||||
|
||||
\break
|
||||
|
||||
\codeFile{scripts/Kruskal.py}{python}
|
||||
|
||||
Output:
|
||||
\begin{verbatim}
|
||||
[('a', 'b'), ('e', 'f'), ('c', 'd'), ('h', 'e'), ('b', 'c'), ('f', 'g'),
|
||||
('c', 'e')]
|
||||
\end{verbatim}
|
||||
|
||||
When we connect the nodes, we get the minimal spanning tree:
|
||||
|
||||
\includeDiagram[width=13cm, scale=1.6]{diagrams/ex2_2.tex}
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
By counting the vertices, edges and regions, we can see that
|
||||
|
||||
\begin{align*}
|
||||
|V| &= 17 \\
|
||||
|E| &= 34 \\
|
||||
|R| &= 19
|
||||
\end{align*}
|
||||
|
||||
By applying Eulers theorem, we can confirm that this is a possible graph
|
||||
|
||||
\begin{align*}
|
||||
V + R - E &= 2 \\
|
||||
17 + 19 - 34 &= 2 \\
|
||||
36 - 34 &= 2 \\
|
||||
2 &= 2
|
||||
\end{align*}
|
||||
|
||||
\subexc{}
|
||||
By counting the vertices, edges and regions, we can see that
|
||||
|
||||
\begin{align*}
|
||||
|V| &= 10 \\
|
||||
|E| &= 24 \\
|
||||
|R| &= 16
|
||||
\end{align*}
|
||||
|
||||
By applying Eulers theorem, we can confirm that this is a possible graph
|
||||
|
||||
\begin{align*}
|
||||
V + R - E &= 2 \\
|
||||
10 + 16 - 24 &= 2 \\
|
||||
26 - 24 &= 2 \\
|
||||
2 &= 2
|
||||
\end{align*}
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
|
||||
Every edge touches 2 regions. And every is connected to at least 5 edges. Therefore the amount of edges will be
|
||||
|
||||
\[ E \geq \frac{53 \cdot 5}{2} = 132.5 \]
|
||||
|
||||
Since the amount of edges has to be an integer, we can round it up to $E \geq 133$
|
||||
|
||||
Now we can use Eulers theorem for planar graphs to determine the amount of vertices
|
||||
|
||||
\begin{align*}
|
||||
V + R - E &= 2 \\
|
||||
V &= 2 - R + E \\
|
||||
V &\geq 2 - 53 + 133 \\
|
||||
V &\geq 82
|
||||
\end{align*}
|
||||
|
||||
Therefore $|V| \geq 82$
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
|
||||
By flipping the matrix once vertically and once horizontally, the matrix will equal the other matrix.
|
||||
|
||||
Because flipping a matrix is a bijective function, composing two of them will also make a bijective function.
|
||||
|
||||
After checking that the last matrix is a valid undirected graph, it is safe to conclude that the graphs are isomorphic
|
||||
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
0 & 0 & 1 \\
|
||||
0 & 0 & 1 \\
|
||||
1 & 1 & 0
|
||||
\end{bmatrix}
|
||||
\cong
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
1 & 0 & 0 \\
|
||||
0 & 1 & 1
|
||||
\end{bmatrix}
|
||||
\cong
|
||||
\begin{bmatrix}
|
||||
0 & 1 & 1 \\
|
||||
1 & 0 & 0 \\
|
||||
1 & 0 & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
\subexc{}
|
||||
By the same reasoning as \textbf{a)}, we have the following
|
||||
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
0 & 1 & 0 & 1 \\
|
||||
1 & 0 & 1 & 1 \\
|
||||
0 & 1 & 0 & 1 \\
|
||||
1 & 1 & 1 & 0
|
||||
\end{bmatrix}
|
||||
\cong
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 1 & 0 \\
|
||||
1 & 1 & 0 & 1 \\
|
||||
1 & 0 & 1 & 0 \\
|
||||
0 & 1 & 1 & 1
|
||||
\end{bmatrix}
|
||||
\cong
|
||||
\begin{bmatrix}
|
||||
0 & 1 & 1 & 1 \\
|
||||
1 & 0 & 1 & 0 \\
|
||||
1 & 1 & 0 & 1 \\
|
||||
1 & 0 & 1 & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
\[ uv = ababbab \]
|
||||
\[ |uv| = 7 \]
|
||||
|
||||
\subexc{}
|
||||
\[ vu = bababab \]
|
||||
\[ |vu| = 7 \]
|
||||
|
||||
\subexc{}
|
||||
\[ v^2 = babbab \]
|
||||
\[ |v^2| = 6 \]
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
\[ KL = \{ ab^2, abb^2, a^2b^2, aaba, ababa, a^2aba \} \]
|
||||
|
||||
\subexc{}
|
||||
|
||||
\[ LL = \{ b^2b^2, b^2aba, abab^2, abaaba \} \]
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
\[ L^* = \{b^2\}^* \]
|
||||
|
||||
\subexc{}
|
||||
\[ L^* = \{a,b\}^* \]
|
||||
|
||||
\subexc{}
|
||||
\[ L^* = \{a,b,c^3\}^* \]
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
$w$ does not belong to $r$ because $w$ is does neither fit $a^*$ nor $(b \vee c)^*$
|
||||
|
||||
\subexc{}
|
||||
$w$ does belong to $r$ because $w$ is exactly $(a \cdot 1) (b \vee c \cdot 2)$
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\end{excs}
|
||||
\end{document}
|
|
@ -0,0 +1,40 @@
|
|||
def kruskal(vs, es):
|
||||
f = []
|
||||
sets = [set(v) for v in vs]
|
||||
|
||||
find_set = lambda v: [x for x in sets if v in x][0]
|
||||
|
||||
def merge_sets_that_contains(u, v):
|
||||
setv = find_set(v)
|
||||
newsets = [x for x in sets if v not in x]
|
||||
newsets = [setv.union(x) if u in x else x for x in newsets]
|
||||
return newsets
|
||||
|
||||
sorted_es = [e for e,w in sorted(es, key=lambda e: e[1])]
|
||||
|
||||
for (u, v) in sorted_es:
|
||||
if find_set(u) != find_set(v):
|
||||
f += [(u, v)]
|
||||
sets = merge_sets_that_contains(u,v)
|
||||
|
||||
return f
|
||||
|
||||
if __name__ == '__main__':
|
||||
vs = [chr(i) for i in range(ord('a'), ord('h') + 1)]
|
||||
es = [
|
||||
(('a', 'b'), 1),
|
||||
(('b', 'c'), 5),
|
||||
(('c', 'd'), 3),
|
||||
(('d', 'a'), 7),
|
||||
|
||||
(('e', 'f'), 2),
|
||||
(('f', 'g'), 6),
|
||||
(('g', 'h'), 8),
|
||||
(('h', 'e'), 4),
|
||||
|
||||
(('b', 'f'), 10),
|
||||
(('c', 'e'), 9),
|
||||
(('d', 'h'), 11)
|
||||
]
|
||||
|
||||
print(kruskal(vs,es))
|
|
@ -0,0 +1,21 @@
|
|||
% https://www3.nd.edu/~kogge/courses/cse30151-fa17/Public/other/tikz_tutorial.pdf
|
||||
|
||||
\begin{tikzpicture}
|
||||
\tikzset{
|
||||
->, % makes the edges directed
|
||||
>=Stealth, % makes the arrow heads bold
|
||||
node distance=3cm, % specifies the minimum distance between two nodes. Change if necessary.
|
||||
every state/.style={thick, fill=white}, % sets the properties for each ’state’ node
|
||||
initial text=$ $, % sets the text that appears on the start arrow
|
||||
}
|
||||
|
||||
\node[state, initial] (s0) {$s_0$};
|
||||
\node[state, below of=s0] (s1) {$s_1$};
|
||||
\node[state, accepting, right of=s0] (s2) {$s_2$};
|
||||
|
||||
\draw (s0) edge[right] node{b} (s1)
|
||||
(s0) edge[above] node{a} (s2)
|
||||
(s1) edge[loop below] node{a, b} (s1)
|
||||
(s2) edge[bend left, right] node{a} (s1)
|
||||
(s2) edge[loop above] node{b} (s2);
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,26 @@
|
|||
|
||||
\begin{tikzpicture}
|
||||
\tikzset{
|
||||
->, % makes the edges directed
|
||||
>=Stealth, % makes the arrow heads bold
|
||||
node distance=5cm, % specifies the minimum distance between two nodes. Change if necessary.
|
||||
every state/.style={thick, fill=white}, % sets the properties for each ’state’ node
|
||||
initial text=$ $, % sets the text that appears on the start arrow
|
||||
}
|
||||
|
||||
\node[state] (s0) {$s_0$};
|
||||
\node[state, right of=s0] (s2) {$s_2$};
|
||||
\node[state, below of=s0] (s3) {$s_3$};
|
||||
\node[state, right of=s3] (s1) {$s_1$};
|
||||
|
||||
\draw (s0) edge[loop above, above] node{a,0} (s0)
|
||||
(s0) edge[right] node{b,1} (s3)
|
||||
(s0) edge[above] node{c,1} (s2)
|
||||
(s1) edge[below, loop below] node{(a,0), (b,0)} (s1)
|
||||
(s1) edge[below] node{c,1} (s3)
|
||||
(s2) edge[right] node{(a,1), (b,1)} (s1)
|
||||
(s2) edge[below right, bend left] node{c,0} (s3)
|
||||
(s3) edge[above left, bend left] node{a,1} (s2)
|
||||
(s3) edge[below, loop below] node{b,0} (s3)
|
||||
(s3) edge[left, bend left] node{c,1} (s0);
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,110 @@
|
|||
\documentclass[12pt]{article}
|
||||
\usepackage{ntnu}
|
||||
\usepackage{ntnu-math}
|
||||
|
||||
\author{Øystein Tveit}
|
||||
\title{MA0301 Exercise 12}
|
||||
|
||||
\usetikzlibrary{automata, positioning, arrows.meta}
|
||||
|
||||
\begin{document}
|
||||
\ntnuTitle{}
|
||||
\break{}
|
||||
|
||||
\begin{excs}
|
||||
|
||||
\exc{}
|
||||
|
||||
\[ r = \{a,b\}^* a \{a,b\}^* a \{a,b\}^* a \{a,b\}^* \]
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
\[ \{ab\} \{ab\}^* \]
|
||||
|
||||
\subexc{}
|
||||
\[ a (a | \lambda) b (b | \lambda)\]
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
|
||||
\[ M = (Q, \Sigma, \delta, s, F) \]
|
||||
|
||||
\begin{align*}
|
||||
Q &= \{ s_0, s_1, s_2 \} \\
|
||||
\Sigma &= \{a, b\} \\
|
||||
\delta &= \begin{Bmatrix}
|
||||
s_0 \xrightarrow{b} s_1, \\
|
||||
s_0 \xrightarrow{a} s_2, \\
|
||||
s_1 \xrightarrow{a,b} s_1, \\
|
||||
s_2 \xrightarrow{a} s_1, \\
|
||||
s_2 \xrightarrow{b} s_2
|
||||
\end{Bmatrix} \\
|
||||
s &= s_0 \\
|
||||
F &= \{ s_2 \}
|
||||
\end{align*}
|
||||
|
||||
\includeDiagram[scale=1.6, width=10cm]{diagrams/ex3.tex}
|
||||
|
||||
\exc{}
|
||||
|
||||
The words $L$ can be described by the regular expression $r$ where
|
||||
|
||||
\[ r = a^* b b^* a \{a,b\}^* \]
|
||||
|
||||
\exc{}
|
||||
|
||||
The words in $L$ can be described by the regular expression $r$ where
|
||||
|
||||
\[ r = (a^* b)^3 \{ (a^* b)^4 \} \]
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
\begin{align*}
|
||||
s_0 &\xrightarrow{a, 0} s_0 \\
|
||||
s_0 &\xrightarrow{a, 0} s_0 \\
|
||||
s_0 &\xrightarrow{b, 1} s_3 \\
|
||||
s_3 &\xrightarrow{b, 0} s_3 \\
|
||||
s_3 &\xrightarrow{c, 1} s_0 \\
|
||||
s_0 &\xrightarrow{c, 1} s_2
|
||||
\end{align*}
|
||||
|
||||
The output would be $001011$
|
||||
|
||||
\subexc{}
|
||||
\includeDiagram[scale=1.2, width=13cm]{diagrams/ex6_b.tex}
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
Suppose we have $a \in A, b \in B$
|
||||
|
||||
\begin{align*}
|
||||
AB^* &= \{a, ab, ab^2, ab^3, \ldots \} \\
|
||||
&= \{a\} \cup \{ab, ab^2, ab^3, \ldots \} \\
|
||||
&= A \cup \{ab, ab^2, ab^3, \ldots \} \\
|
||||
&\Rightarrow A \subseteq AB^*
|
||||
\end{align*}
|
||||
\qed
|
||||
|
||||
\subexc{}
|
||||
Since $A \subseteq B$, we can rewrite $B$ as $A \cup \overline{A}$ where $\overline{A} = \{b \mid b \in B, b \notin A \}$
|
||||
|
||||
\begin{align*}
|
||||
B^* &= (A \cup \overline{A})^* \\
|
||||
&= A^* \cap \overline{A}^* \cap B_1, \qquad B_1 = \{(B^*\ a\ B^*\ a_1\ B^*) \vee (B^*\ a_1\ B^*\ a\ B^*) \mid a \in A, a_1 \in \overline{A}\} \\
|
||||
&\Rightarrow A^* \subseteq B^*
|
||||
\end{align*}
|
||||
\qed
|
||||
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
|
||||
|
||||
\end{excs}
|
||||
\end{document}
|
|
@ -0,0 +1,29 @@
|
|||
|
||||
\def\cone{(90:2cm) circle (2.5cm)}
|
||||
\def\ctwo{(180:2cm) circle (2.5cm)}
|
||||
\def\cthree{(270:2cm) circle (2.5cm)}
|
||||
\def\cfour{(360:2cm) circle (2.5cm)}
|
||||
\def\universe{(-5, -5) rectangle (5,5)}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
|
||||
\fill[cyan] \universe;
|
||||
\begin{scope}
|
||||
\clip \ctwo;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \cthree;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \cfour;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
|
||||
\draw \cone node[text=black,above] {$c_1$};
|
||||
\draw \ctwo node [text=black,left] {$c_2$};
|
||||
\draw \cthree node [text=black,below] {$c_3$};
|
||||
\draw \cfour node [text=black,right] {$c_4$};
|
||||
\draw \universe;
|
||||
\draw (0, 5) node [text=black,above] {$N$};
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,30 @@
|
|||
|
||||
\def\cone{(90:2cm) circle (2.5cm)}
|
||||
\def\ctwo{(180:2cm) circle (2.5cm)}
|
||||
\def\cthree{(270:2cm) circle (2.5cm)}
|
||||
\def\cfour{(360:2cm) circle (2.5cm)}
|
||||
\def\universe{(-5, -5) rectangle (5,5)}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
|
||||
\fill[white] \universe;
|
||||
\fill[red] \cone;
|
||||
\begin{scope}
|
||||
\clip \ctwo;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \cthree;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \cfour;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
|
||||
\draw \cone node[text=black,above] {$c_1$};
|
||||
\draw \ctwo node [text=black,left] {$c_2$};
|
||||
\draw \cthree node [text=black,below] {$c_3$};
|
||||
\draw \cfour node [text=black,right] {$c_4$};
|
||||
\draw \universe;
|
||||
\draw (0, 5) node [text=black,above] {$N$};
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,33 @@
|
|||
|
||||
\def\cone{(90:2cm) circle (2.5cm)}
|
||||
\def\ctwo{(180:2cm) circle (2.5cm)}
|
||||
\def\cthree{(270:2cm) circle (2.5cm)}
|
||||
\def\cfour{(360:2cm) circle (2.5cm)}
|
||||
\def\universe{(-5, -5) rectangle (5,5)}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
|
||||
\fill[ForestGreen] \universe;
|
||||
\begin{scope}
|
||||
\clip \cone;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \ctwo;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \cthree;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \cfour;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
|
||||
\draw \cone node[text=black,above] {$c_1$};
|
||||
\draw \ctwo node [text=black,left] {$c_2$};
|
||||
\draw \cthree node [text=black,below] {$c_3$};
|
||||
\draw \cfour node [text=black,right] {$c_4$};
|
||||
\draw \universe;
|
||||
\draw (0, 5) node [text=black,above] {$N(\overline{c}_1\overline{c}_2\overline{c}_3\overline{c}_4)$};
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,33 @@
|
|||
|
||||
\def\cone{(90:2cm) circle (2.5cm)}
|
||||
\def\ctwo{(180:2cm) circle (2.5cm)}
|
||||
\def\cthree{(270:2cm) circle (2.5cm)}
|
||||
\def\cfour{(360:2cm) circle (2.5cm)}
|
||||
\def\universe{(-5, -5) rectangle (5,5)}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
|
||||
\fill[ForestGreen] \universe;
|
||||
\begin{scope}
|
||||
\clip \cone;
|
||||
\fill[red] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \ctwo;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \cthree;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
\begin{scope}
|
||||
\clip \cfour;
|
||||
\fill[white] \universe;
|
||||
\end{scope}
|
||||
|
||||
\draw \cone node[text=black,above] {$c_1$};
|
||||
\draw \ctwo node [text=black,left] {$c_2$};
|
||||
\draw \cthree node [text=black,below] {$c_3$};
|
||||
\draw \cfour node [text=black,right] {$c_4$};
|
||||
\draw \universe;
|
||||
\draw (0, 5) node [text=black,above] {$N$};
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,227 @@
|
|||
\documentclass[12pt]{article}
|
||||
\usepackage{ntnu}
|
||||
\usepackage{ntnu-math}
|
||||
|
||||
\author{Øystein Tveit}
|
||||
\title{MA0301 Exercise 9}
|
||||
|
||||
\usepackage{amsthm}
|
||||
\usepackage{mathabx}
|
||||
|
||||
\begin{document}
|
||||
\ntnuTitle{}
|
||||
\break{}
|
||||
|
||||
\begin{excs}
|
||||
|
||||
\exc{}
|
||||
\begin{align*}
|
||||
p \rightarrow (q \vee r) &\equiv \neg p \vee (q \vee r) \\
|
||||
&\equiv \neg p \vee q \vee r \\
|
||||
&\equiv \neg (p \vee \neg q) \vee r \\
|
||||
&\equiv (p \vee \neg q) \rightarrow r \\
|
||||
\end{align*}
|
||||
|
||||
\exc{}
|
||||
|
||||
R does not define a partial orderering, because it is not transitive.
|
||||
|
||||
$aRb$ and $bRc$, however $\neg aRc$
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
\begin{gather*}
|
||||
xyz + xy\overline{z}+\overline{x}y \\
|
||||
xy + \overline{x}y \\
|
||||
y
|
||||
\end{gather*}
|
||||
|
||||
\subexc{}
|
||||
\begin{gather*}
|
||||
y + \overline{x}z + x\overline{y} \\
|
||||
y + \overline{x}z + x \\
|
||||
y + z + x \\
|
||||
x + y + z
|
||||
\end{gather*}
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
|
||||
Step 1:
|
||||
|
||||
\begin{align*}
|
||||
\sum^1_{n=1}\frac{1}{(2n-1)(2n+1)} &= \frac{1}{2\cdot1 + 1} \\
|
||||
\frac{1}{(2\cdot1-1)(2\cdot1+1)} &= \frac{1}{3} \\
|
||||
\frac{1}{(1)(3)} &= \frac{1}{3} \\
|
||||
\frac{1}{3} &= \frac{1}{3} \\
|
||||
\end{align*}
|
||||
|
||||
Step 2:
|
||||
|
||||
Assume
|
||||
|
||||
\[ \sum^k_{n=1} \frac{1}{(2n-1)(2n+1)} = \frac{k}{2k+1} \]
|
||||
|
||||
then
|
||||
|
||||
\begin{align*}
|
||||
\sum^{k+1}_{n=1} \frac{1}{(2n-1)(2n+1)} &= \frac{k}{2k+1} \\[2ex]
|
||||
&= \frac{1}{(2\cdot1 - 1)(2\cdot1+1)} + \frac{1}{(2\cdot2 - 1)(2\cdot2+1)} + \ldots \\[2ex]
|
||||
&\qquad + \frac{1}{(2\cdot k - 1)(2\cdot k+1)} + \frac{1}{(2\cdot(k+1) - 1)(2\cdot(k+1)+1)} \\[2ex]
|
||||
&= \frac{k}{2k+1} + \frac{1}{(2\cdot(k+1) - 1)(2\cdot(k+1)+1)} \\[2ex]
|
||||
&= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)} \\[2ex]
|
||||
&= \frac{k(2k1)(2k+3) + (2k+1)}{(2k+1)^2(2k+3)} \\[2ex]
|
||||
&= \frac{k(2k+3) + 1}{(2k+1)(2k+3)} \\[2ex]
|
||||
&= \frac{2k^2+3k + 1}{(2k+1)(2k+3)} \\[2ex]
|
||||
&= \frac{(2k+1)(k+1)}{(2k+1)(2k+3)} \\[2ex]
|
||||
&= \frac{(k+1)}{(2k+3)} \\[2ex]
|
||||
&= \frac{k+1}{2(k+1)+1}
|
||||
\end{align*}
|
||||
|
||||
\exc{}
|
||||
|
||||
\textbf{Injective:}
|
||||
|
||||
Suppose $a,b \in \R$
|
||||
|
||||
\begin{align*}
|
||||
f(a) &= f(b) \\
|
||||
2a-3 &= 2b-3 \\
|
||||
2a &= 2b \\
|
||||
a &= b \\
|
||||
\end{align*}
|
||||
|
||||
thus
|
||||
|
||||
\[ f(a) = f(b) \Leftrightarrow a = b \]
|
||||
|
||||
which means that $f$ is injective \\
|
||||
|
||||
\textbf{Surjective:}
|
||||
|
||||
Suppose $a \in \R$
|
||||
|
||||
\begin{align*}
|
||||
a &= 2x-3 \\
|
||||
x &= \frac{a+3}{2} \\
|
||||
a &\in \R
|
||||
\end{align*}
|
||||
|
||||
therefore $f$ is surjective \\
|
||||
|
||||
\textbf{Inverse:}
|
||||
|
||||
\begin{align*}
|
||||
y &= 2x-3 \\[2ex]
|
||||
x &= \frac{y+3}{2} \\[2ex]
|
||||
f^{-1}(y) &= \frac{y+3}{2}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\exc{}
|
||||
|
||||
\begin{gather*}
|
||||
(\overline{X \cap Y \cap Z}) \\
|
||||
\{ x \mid x \in \overline{X \cap Y \cap Z} \} \\
|
||||
\{ x \mid x \notin X \cap Y \cap Z \} \\
|
||||
\{ x \mid x \notin X \wedge x \notin Y \wedge x \notin Z \} \\
|
||||
\{ x \mid x \in \overline{X} \vee x \in \overline{Y} \vee x \in \overline{Z} \} \\
|
||||
\{ x \mid x \in \overline{X} \cup \overline{Y} \cup \overline{Z} \} \\
|
||||
\overline{X} \cup \overline{Y} \cup \overline{Z}
|
||||
\end{gather*}
|
||||
|
||||
\exc{}
|
||||
|
||||
Assuming 'dozen' is to be interpreted as 12
|
||||
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
|
||||
\[ \nPr{31}{12} = 67\ 596\ 957\ 267\ 840\ 000 \]
|
||||
|
||||
\subexc{}
|
||||
|
||||
\[ 31^{12} = 787\ 662\ 783\ 788\ 549\ 761 \]
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\exc{}
|
||||
\begin{subexcs}
|
||||
\subexc{}
|
||||
If we imagine a row of numbers going from 1 to 40, we can rephrase the question as how many ways we can split
|
||||
the numbers into $5$ chunks. Imagine a chunk as inserting $4$ delimiters like this:
|
||||
|
||||
\[ 1\ 2\ 3\ |\ 4\ 5\ 6\ 7\ |\ 8\ 9\ 10\ |\ 11\ \ldots\ 39\ |\ 40 \]
|
||||
|
||||
In this case, we split the amount of numbers so that $x_1 = 3, x_2 = 4, x_3 = 3, x_4 = 29, x_5 = 1$
|
||||
|
||||
By doing $\nCr{n}{r}$ where n is the number of numbers and delimiters, and r is the number of delimiters,
|
||||
we will get all combinations of $x_1 + x_2 + x_3 + x_4 + x_5 = 40$A
|
||||
|
||||
In order to make it $x_1 + x_2 + x_3 + x_4 + x_5 \leq 40$, we will add a fifth delimiter, indicating the last block of unused numbers.
|
||||
|
||||
$x_1 + x_2 + x_3 + x_4 + x_5 < 40 \Rightarrow x_1 + x_2 + x_3 + x_4 + x_5 \leq 39$
|
||||
|
||||
This leaves us with $\nCr{39 + 5}{5} = 1086008$ different combinations.
|
||||
|
||||
\subexc{}
|
||||
|
||||
In this case, we modify the problem by adjusting the inequality of $x_i$ like the following
|
||||
|
||||
\begin{align*}
|
||||
x_1 + x_2 + x_3 + x_4 + x_5 &< 40 \qquad &&x_i \geq -3 \\
|
||||
y_1 - 3 + y_2 - 3 + y_3 - 3 + y_4 - 3 + y_5 - 3 &< 40 &&(y_i - 3 = x) \\
|
||||
y_1 + y_2 + y_3 + y_4 + y_5 &< 40 + 5 \cdot 3 \\
|
||||
y_1 + y_2 + y_3 + y_4 + y_5 &< 55
|
||||
\end{align*}
|
||||
|
||||
\[ (y_i - 3 = x) \Rightarrow (y_i - 3 \geq - 3) \Leftrightarrow (y_i \geq 0) \]
|
||||
|
||||
With this information, we use the same way of solving as in \textbf{a)}
|
||||
|
||||
\[\nCr{54 + 5}{5} = 5006386 \]
|
||||
|
||||
\end{subexcs}
|
||||
|
||||
\break{}
|
||||
|
||||
\exc{}
|
||||
|
||||
This is a Venn diagram of the set containing the elements that satisfy $\overline{c}_1$, $\overline{c}_2$ and $\overline{c}_3$.
|
||||
|
||||
\includeDiagram[width=11cm, caption={$N(\overline{c}_2\overline{c}_3\overline{c}_4$)}]{diagrams/ex9_1.tex}
|
||||
|
||||
The following diagrams show the terms of the RHS.
|
||||
|
||||
\includeDiagram[width=11cm, caption={$N(c_1\overline{c}_2\overline{c}_3\overline{c}_4)$}]{diagrams/ex9_2.tex}
|
||||
|
||||
\includeDiagram[width=11cm, caption={$N(\overline{c_1}\overline{c}_2\overline{c}_3\overline{c}_4)$}]{diagrams/ex9_3.tex}
|
||||
|
||||
When we lay these two diagrams on top of each other, we can see that $N(c_1\overline{c}_2\overline{c}_3\overline{c}_4) + N(\overline{c}_1\overline{c}_2\overline{c}_3\overline{c}_4)$ is equal to $N(\overline{c}_2\overline{c}_3\overline{c}_4)$
|
||||
|
||||
\includeDiagram[width=11cm, caption={$N(c_1\overline{c}_2\overline{c}_3\overline{c}_4) + N(\overline{c}_1\overline{c}_2\overline{c}_3\overline{c}_4)$}]{diagrams/ex9_4.tex}
|
||||
|
||||
\exc{}
|
||||
|
||||
let
|
||||
|
||||
$c_1 = 2 \mid n $ \\
|
||||
$c_2 = 3 \mid n $ \\
|
||||
$c_3 = 5 \mid n $ \\
|
||||
$c_4 = 7 \mid n $
|
||||
|
||||
\begin{align*}
|
||||
N(\overline{c}_1\overline{c}_2\overline{c}_3c_4) &= N(c_4) - \left( N(c_1c_7) + N(c_2c_7) + N(c_3c_7) \right) \\
|
||||
&\quad + \left( N(c_1c_2c_4) + N(c_1c_3c_4) + N(c_2c_3c_4) \right) \\
|
||||
&\quad - N(c_1c_2c_3c_4) \\[2ex]
|
||||
&= \left\lfloor \frac{2000}{7} \right\rfloor - \left( \left\lfloor \frac{2000}{2 \cdot 7} \right\rfloor + \left\lfloor \frac{2000}{3 \cdot 7} \right\rfloor + \left\lfloor \frac{2000}{5 \cdot 7} \right\rfloor \right) \\[2ex]
|
||||
&\quad + \left( \left\lfloor \frac{2000}{2 \cdot 3 \cdot 7} \right\rfloor + \left\lfloor \frac{2000}{2 \cdot 5 \cdot 7} \right\rfloor + \left\lfloor \frac{2000}{3 \cdot 5 \cdot 7} \right\rfloor \right) \\[2ex]
|
||||
&\quad - \left\lfloor \frac{2000}{2 \cdot 3 \cdot 5 \cdot 7} \right\rfloor \\[2ex]
|
||||
&= 76
|
||||
\end{align*}
|
||||
|
||||
|
||||
\end{excs}
|
||||
\end{document}
|
|
@ -0,0 +1,8 @@
|
|||
main :: IO ()
|
||||
main = print
|
||||
$ length
|
||||
$ [a | a <- [0..2000],
|
||||
a `mod` 2 /= 0,
|
||||
a `mod` 3 /= 0,
|
||||
a `mod` 5 /= 0,
|
||||
a `mod` 7 == 0]
|
Loading…
Reference in New Issue