Add the rest of the exercises

This commit is contained in:
Oystein Kristoffer Tveit 2021-05-03 01:06:04 +02:00
parent 834c23cf50
commit 94abae2905
20 changed files with 1728 additions and 22 deletions

View File

@ -4,16 +4,20 @@
Using styling files from [oysteikt/texmf](https://gitlab.stud.idi.ntnu.no/oysteikt/texmf)
| Num | Exercise PDF | My Solution PDF | Answer Sheet PDF |
| --- | ------------------------ | --------------- | ---------------- |
| 1 | [wiki.math.ntnu.no][ex1] | [ex1.pdf][so1] | [wiki.math.ntnu.no][as1] |
| 2 | [wiki.math.ntnu.no][ex2] | [ex2.pdf][so2] | [wiki.math.ntnu.no][as2] |
| 3 | [wiki.math.ntnu.no][ex3] | [ex3.pdf][so3] | [wiki.math.ntnu.no][as3] |
| 4 | [wiki.math.ntnu.no][ex4] | [ex4.pdf][so4] | [wiki.math.ntnu.no][as4] |
| 5 | [wiki.math.ntnu.no][ex5] | [ex5.pdf][so5] | <!--[wiki.math.ntnu.no][as5]--> |
| 6 | [wiki.math.ntnu.no][ex6] | [ex6.pdf][so6] | <!--[wiki.math.ntnu.no][as6]--> |
| 7 | [wiki.math.ntnu.no][ex7] | [ex7.pdf][so7] | <!--[wiki.math.ntnu.no][as7]--> |
| 8 | [wiki.math.ntnu.no][ex8] | [ex8.pdf][so8] | <!--[wiki.math.ntnu.no][as8]--> |
| Num | Exercise PDF | Answer PDF | Solutions PDF |
| --- | ------------------------- | ---------------- | ------------------------- |
| 1 | [wiki.math.ntnu.no][ex1] | [ex1.pdf][as1] | [wiki.math.ntnu.no][so1] |
| 2 | [wiki.math.ntnu.no][ex2] | [ex2.pdf][as2] | [wiki.math.ntnu.no][so2] |
| 3 | [wiki.math.ntnu.no][ex3] | [ex3.pdf][as3] | [wiki.math.ntnu.no][so3] |
| 4 | [wiki.math.ntnu.no][ex4] | [ex4.pdf][as4] | [wiki.math.ntnu.no][so4] |
| 5 | [wiki.math.ntnu.no][ex5] | [ex5.pdf][as5] | [wiki.math.ntnu.no][as5] |
| 6 | [wiki.math.ntnu.no][ex6] | [ex6.pdf][as6] | [wiki.math.ntnu.no][as6] |
| 7 | [wiki.math.ntnu.no][ex7] | [ex7.pdf][as7] | [wiki.math.ntnu.no][as7] |
| 8 | [wiki.math.ntnu.no][ex8] | [ex8.pdf][as8] | [wiki.math.ntnu.no][as8] |
| 9 | [wiki.math.ntnu.no][ex9] | [ex9.pdf][as9] | [wiki.math.ntnu.no][as9] |
| 10 | [wiki.math.ntnu.no][ex10] | [ex10.pdf][as10] | [wiki.math.ntnu.no][as10] |
| 11 | [wiki.math.ntnu.no][ex11] | [ex11.pdf][as11] | N/A <!--[wiki.math.ntnu.no][as11]--> |
| 12 | [wiki.math.ntnu.no][ex12] | [ex12.pdf][as12] | N/A <!--[wiki.math.ntnu.no][as12]--> |
[ex1]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-1-2021-new.pdf "Exercise 1 Questions"
[ex2]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-2-2021-new.pdf "Exercise 2 Questions"
@ -23,17 +27,31 @@ Using styling files from [oysteikt/texmf](https://gitlab.stud.idi.ntnu.no/oystei
[ex6]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-6-2021.pdf "Exercise 6 Questions"
[ex7]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-7-2021.pdf "Exercise 7 Questions"
[ex8]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-8-2021.pdf "Exercise 8 Questions"
[ex9]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-9-2021.pdf "Exercise 9 Questions"
[ex10]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-10-2021.pdf "Exercise 10 Questions"
[ex11]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-11-2021.pdf "Exercise 11 Questions"
[ex12]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-12-2021.pdf "Exercise 12 Questions"
[so1]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise1.pdf "Exercise 1 Solutions"
[so2]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise2.pdf "Exercise 2 Solutions"
[so3]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise3.pdf "Exercise 3 Solutions"
[so4]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise4.pdf "Exercise 4 Solutions"
[so5]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise5.pdf "Exercise 5 Solutions"
[so6]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise6.pdf "Exercise 6 Solutions"
[so7]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise7.pdf "Exercise 7 Solutions"
[so8]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise8.pdf "Exercise 8 Solutions"
[as1]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise1.pdf "Exercise 1 Answers"
[as2]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise2.pdf "Exercise 2 Answers"
[as3]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise3.pdf "Exercise 3 Answers"
[as4]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise4.pdf "Exercise 4 Answers"
[as5]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise5.pdf "Exercise 5 Answers"
[as6]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise6.pdf "Exercise 6 Answers"
[as7]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise7.pdf "Exercise 7 Answers"
[as8]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise8.pdf "Exercise 8 Answers"
[as9]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise9.pdf "Exercise 9 Answers"
[as10]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise10.pdf "Exercise 10 Answers"
[as11]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise11.pdf "Exercise 11 Answers"
[as12]: http://oysteikt.pages.stud.idi.ntnu.no/v21-ma0301/exercise12.pdf "Exercise 12 Answers"
[as1]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-1-2021-solutions.pdf "Exercise 1 Answer sheet"
[as2]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-2-2021-solutions.pdf "Exercise 2 Answer sheet"
[as3]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-3-2021-solutions.pdf "Exercise 3 Answer sheet"
[as4]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-4-2021-solutions.pdf "Exercise 4 Answer sheet"
[so1]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-1-2021-solutions.pdf "Exercise 1 Solutions"
[so2]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-2-2021-solutions.pdf "Exercise 2 Solutions"
[so3]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-3-2021-solutions.pdf "Exercise 3 Solutions"
[so4]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-4-2021-solutions.pdf "Exercise 4 Solutions"
[so5]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-5-2021-solutions.pdf "Exercise 5 Solutions"
[so6]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-6-2021-solutions.pdf "Exercise 6 Solutions"
[so7]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-7-2021-solutions.pdf "Exercise 7 Solutions"
[so8]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-8-2021-solutions.pdf "Exercise 8 Solutions"
[so9]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-9-2021-solutions.pdf "Exercise 9 Solutions"
[so10]: https://wiki.math.ntnu.no/_media/ma0301/2021v/set-10-2021-solutions.pdf "Exercise 10 Solutions"

View File

@ -0,0 +1,14 @@
\newcommand{\point}[2]{
\node [label=above:$#1$] (#1) at #2 {};
}
\begin{tikzpicture}[]
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
\point{a}{(0,0)}
\point{b}{(1,0)}
\point{c}{(2,0)}
\end{scope}
\draw (a) -- (b) -- (c);
\end{tikzpicture}

View File

@ -0,0 +1,36 @@
\newcommand{\point}[3]{
\node [label=#3:$#1$] (#1) at #2 {};
}
\begin{tikzpicture}[]
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
% a
\point{d}{(0,1)}{left}
\point{h}{(0,0)}{below}
\point{e}{(1,1)}{right}
% i
\point{b}{(3,2)}{above}
\point{f}{(3,1)}{left}
\point{j}{(3,0)}{below}
\point{c}{(4,2)}{above}
% g
\point{k}{(4,0)}{below}
\end{scope}
\begin{scope}[every node/.style={fill=red, shape=circle, inner sep=2pt}]
\point{a}{(0,2)}{above}
\point{i}{(1,0)}{below}
\point{g}{(4,1)}{right}
\end{scope}
\draw (a) -- (d) -- (h);
\draw (e) -- (i);
\draw (b) -- (f) -- (j);
\draw (c) -- (g) -- (k);
\draw (a) -- (b) -- (c);
\draw (a) -- (e);
\draw (d) -- (e);
\draw (f) -- (g);
\draw (h) -- (i) -- (j) -- (k);
\end{tikzpicture}

View File

@ -0,0 +1,43 @@
\newcommand{\point}[3]{
\node [label=#3:$#1$] (#1) at #2 {};
}
\newcommand{\arrow}[2]{\path [-{Latex[scale=1]}] (#1) edge (#2);}
\begin{tikzpicture}
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
\point{a}{(0,2)}{above}
\point{d}{(0,1)}{left}
\point{h}{(0,0)}{below}
\point{b}{(2,2)}{above}
\point{e}{(1,1)}{above left}
\point{i}{(1,0)}{below}
\point{f}{(3,1)}{right}
\point{j}{(3,0)}{below}
\point{c}{(4,2)}{above}
\point{g}{(4,1)}{right}
\point{k}{(4,0)}{below}
\end{scope}
\arrow{a}{d}
\arrow{d}{h}
\arrow{h}{i}
\arrow{i}{j}
\arrow{j}{k}
\arrow{k}{g}
\arrow{g}{c}
\arrow{c}{b}
\arrow{b}{g}
\arrow{g}{j}
\arrow{j}{f}
\arrow{f}{b}
\arrow{b}{e}
\arrow{e}{f}
\arrow{f}{i}
\arrow{i}{e}
\arrow{e}{d}
\arrow{d}{b}
\arrow{b}{a}
\end{tikzpicture}

View File

@ -0,0 +1,42 @@
\newcommand{\point}[3]{
\node [label=#3:$#1$] (#1) at #2 {};
}
\newcommand{\arrow}[2]{\path [-{Latex[scale=1]}] (#1) edge (#2);}
\begin{tikzpicture}
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
\point{a}{(0,2)}{above}
\point{d}{(0,1)}{left}
\point{h}{(0,0)}{below}
\point{b}{(2,2)}{above}
\point{e}{(1,1)}{above left}
\point{i}{(1,0)}{below}
\point{f}{(3,1)}{right}
\point{j}{(3,0)}{below}
\point{c}{(4,2)}{above}
\point{g}{(4,1)}{right}
\point{k}{(4,0)}{below}
\end{scope}
\arrow{d}{a}
\arrow{a}{b}
\arrow{b}{d}
\arrow{d}{h}
\arrow{h}{i}
\arrow{i}{j}
\arrow{j}{k}
\arrow{k}{g}
\arrow{g}{c}
\arrow{c}{b}
\arrow{b}{g}
\arrow{g}{j}
\arrow{j}{f}
\arrow{f}{b}
\arrow{b}{e}
\arrow{e}{f}
\arrow{f}{i}
\arrow{i}{e}
\end{tikzpicture}

View File

@ -0,0 +1,618 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="210mm"
height="297mm"
viewBox="0 0 210 297"
version="1.1"
id="svg8"
inkscape:version="1.0.2 (e86c870879, 2021-01-15, custom)"
sodipodi:docname="ex6_b.svg">
<defs
id="defs2">
<rect
x="101.26584"
y="163.31129"
width="8.515411"
height="6.2048371"
id="rect899" />
</defs>
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="1.979899"
inkscape:cx="369.66027"
inkscape:cy="738.15548"
inkscape:document-units="mm"
inkscape:current-layer="layer1"
inkscape:document-rotation="0"
showgrid="false"
inkscape:window-width="1920"
inkscape:window-height="1040"
inkscape:window-x="0"
inkscape:window-y="40"
inkscape:window-maximized="1" />
<metadata
id="metadata5">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Layer 1"
inkscape:groupmode="layer"
id="layer1">
<image
width="92.074997"
height="75.935417"
preserveAspectRatio="none"
xlink:href="
eJzs3Xlw1Pd9+P/n3qdW0upGx+pEt9ABwiAM5rYxBowxvh070zRt2okz03b6RzttOpnOtN80aTrJ
JBOnaR3HSRwbmysctgEB5pYQICGB7vuWVrta7aE9f3/4t1tjsFlhiUO8HzPM2Ojz2X2vVrz03vf7
9X69JIFAIIAgCIIQFqvVyuXLl/nLv/xLvvvd7/Lqq6+i1WrDulc6x2MTBEGYN6xWK9euXePYsWNY
rVZqa2s5c+YMk5OT+P3+294vAq4gCEKYpqamaG9v5+zZs9jtdhoaGrh06RJ2u10EXEEQhNmk0WhI
Tk6muLgYjUZDVlYWCxcuRK1Wh3W/CLiCIAhhioiIIDs7m+XLl6PX6ykpKaGiogK9Xo9MJrvt/fK7
MEZBEIR5QaFQEBERQWxsLAqFgqioKIxGIwqFIqz7xQxXEAQhTD6fD6fTic1mw+fzYbfbmZqawufz
EU7Clwi4giAIYXI6nQwNDdHc3IzT6aS7u5uOjg6mp6fDCrhiSUEQBCFMZrOZixcv8sEHH2A2mzl+
/DhGo5G0tDTi4uKQSr96DitmuIIgCGHS6/VkZmaydOlS9Ho9hYWFlJaWotVqbxtsQcxwBUEQwmY0
GikvL0cqlfLRRx+xatUqNmzYIE6aCYIg3G9EwBUEQbhLRMAVBEEIk8Viob6+nkOHDmGxWDhz5gzH
jx/HarXi8/lue78IuIIgCGGy2+10d3dTV1eH3W6nubmZq1ev4nA4RC0FQRCE2aTT6cjIyGDx4sXo
dDry8/MpKSkJO0tBBFxBEIQwBdPCKisrQ2lhixYtQqfTibQwQRCE2SSXy9FqtURHRyOXy4mIiCAy
MhK5PLxQKma4giAIYfJ6vdjtdiwWC16vF5vNhtVqxev1iloKgiAIs8nhcNDf309DQwNOp5P29vZQ
XYVwNs3EkoIgCEKYbpUWlpSURE5ODmq1+rY1ccUMVxAEIUwGg4Hc3FxWrlxJREQEZWVloQ00sWkm
CIIwi6KioiguLsbn87F3716WLVvGqlWrRC0FQRCE+40IuIIgCHeJWFIQBEEIk9ls5sqVK+zbtw+b
zTbj+8UMVxAEIUxOp5P+/n4aGxuZnp6e8f0i4AqCIIRJr9eTk5PDihUr0Gq1eDwePB4Pfr9fHHwQ
BEGYTXq9HpPJRHl5OTKZjJMnT/LJJ5+I8oyCIAizTSaTodFoiIiIQCKRYDabGRsbw+PxhHW/CLiC
IAhh8ng82Gw2xsbG8Pv9LFiwgJSUFJRKJRKJ5Lb3iywFQRCEMDmdTgYGBmhqasLv91NVVcWaNWvE
wQdBEITZZrVauXr1Kh999BFTU1Mzvl8EXEEQhDBFRkZSUFDAunXr0Gq1OBwO7HY7Pp9PZCkIgiDM
JoPBQH5+Po899hgqlYq6ujrOnTuHzWYT5RkFQRDmitvt5ne/+x2Tk5Pk5uai1WpvW55RBFxBEIQ7
oFar+d73vscLL7xASkpKWG12RMAVBEEI0/j4OBcvXmT37t1MTU2Rnp5OdnY2arVapIUJgiDMpunp
aUZHR+no6MDj8aBSqVCr1WEVHwexaSYIghC24KZZMPfW5XLhcrlELQVBEITZptFoSElJobi4GJlM
RnV1NQcPHmRiYkLUUhAEQZhNMpkMlUqFTqdDIpFgt9ux2+1hpYSBCLiCIAhhc7vdWK1WhoaG8Pv9
pKWlkZGRgUqlEk0kBUEQZpPdbqezs5Pa2lo8Hg+VlZWh2rjhEDNcQRCEME1NTdHR0cG5c+dwOp0z
vl8EXEEQhDBFRUVRUlLCpk2b0Ol0TE5OYrVa8Xq9IktBEARhNkVERJCdnc2yZctQKBTU1tZy5swZ
UUtBEARhLnm9Xo4ePUpERATl5eXodDpRS0EQBGEuqFQqXnjhBV588UWSkpJELQVBEITZNDo6Sk1N
Dbt27cJms7FgwQJSU1NFix1BmC98Ph82m42uri4sFgtarZaioqIZneEXZofb7cZisTA4OIjX60Wh
UKBUKsN+H0TAFYT7lNvtxu12Y7PZaG9vZ9euXTQ1NZGcnMzf/M3fkJCQgEwmQyqVolarUSgUt11D
FL6eyMhICgsL2bhxI9evX8dutzM1NRU6+HC7Wa4IuIJwn2pra+PSpUvU19czNDTE+fPn6e/vJzo6
Go1GQ2RkJFKpFJ1Ox6pVq8jLyyMmJuZeD3te02q1JCcnk5eXh0Qi4ciRI0RHR7NlyxaioqJuu44r
Aq4g3KcGBgaor6+noaGB5ORkysrKyM3NRalUolAoqK+vp6+vD51OF1pLFAF3bkmlUhQKRaj+rdfr
DTsHF0TAFYT7mkqlYsGCBaxateqm46N2u5329nYsFgsWiwWv13uPRvnwcLvdmM1m+vv78fv9ZGZm
snDhQjQajailIAgPsqSkJJYuXQrAY489hk6nu+HrKpUKn8/HlStXxObZXTI1NUVnZycXLlzA4/FQ
VlZGZWVl2LUURMAVhPtUTk4O6enpwGd1WL/osccew263MzY2FlYOqPD12e12uru7uXTpEtPT0zO+
X7xLgnCfCuZ2Op3OUDnAL3K5XHg8HiwWC1arFafTecvgLMyO6OhoysvLMZvN9PT0MDExwfj4OAqF
ArlcLrIUBOFBEwgE8Pl8+P1+zGYzLS0t1NTUhGZUn+8s0NLSQk9PDxcuXCApKQmDwUBWVta9Gvq8
p9frSU9Pp6KiArlczoULF0hPT2fjxo1ERkaKo72C8KDxer2MjY1htVppbW2lurqaP/7xj0ilUjwe
D8PDwzdcL5PJsFgsmEwmsrKyRMC9S3w+HzU1NSQnJ7N8+XL0er0IuILwoJmamuLNN99kz549tLS0
IJfLKS4u5uWXX2ZgYIAf/OAHN1xvNBp544032Lp1K9nZ2fdo1A8XiUSCWq3me9/7Hq+88gpRUVHi
aK8gPGja2to4cOAAx44dw2AwsHPnThYtWkR8fDwFBQVMTU0REREBwIEDB7h48SIAcrk8dOpMmDvD
w8OcPXuWP/7xj1gsFuRyOQqFIqxgCyLgCsJ9ZWhoiNOnT+PxeHjkkUdYu3YtFRUVKBQKNBoNPp8v
NIvt6uqiqakJiUSCTCYTAfcu8Pl8OJ1OrFYrfr8/9H0XAVcQHkButxuXy0VhYSHLly+ntLSUxMTE
0NcDgQBqtRqr1Qp8lour0WjQaDSijsJdEBUVxaJFi5iYmOD69etMTk5isVhQKpVhBV7x61AQ7jMe
j4fW1lZaW1sZGRm54Ws+n4+RkRF++ctfUlNTQ0JCAs888wzl5eVERkbeoxE/PNRqNQkJCaFPGYcP
H2bPnj2YzeYbske+jAi4gnCfCQbc5ubmGzISHA4HTU1NvP/+++zdu5e2tjYiIyNZsmQJJpPpppNo
wuyTSqXI5fJQScZgeUaxpCAIDyCtVsuCBQu4fv06Q0NDNDc3k5qaCoDVauXChQvs37+f6elppFIp
Wq2WhIQEDAYDCoXiHo9+/puenmZ0dJTu7m58Ph85OTkUFBSg1WpFLQVBeNAkJCRQVVXF6OgoHo+H
S5cuMTU1hc/nw+Vy0dTURGdnJ1u2bOHy5cuhEo3C3TE1NUV7ezvnzp3D7XZTVFREaWmpqKUgCA+i
1NRUtm3bBkBtbS3d3d00NTUxMTFBSkoK0dHRrFu3jr/4i7/g448/xu12YzAYRNC9S4LHrK9fv47b
7Z7x/SLgCsJ9RC6XYzQa2bhxIxUVFXR2dtLQ0MC1a9dYu3YtxcXFaDQa0tLS2Lx5M16vl8TERFG8
5i4xGo1UVFQwOTlJV1cXY2NjDA8Pk5ycjFwuv+0vPkkg3Mq5giDcdWazmY6ODrq7uykvLycjI+Ne
D+mhZ7VauXTpEn/2Z39Gfn4+zz77LE8++SSRkZGi44MgPMiMRiNGo5HFixff66EIX+Dz+bh27RoN
DQ2sXr06dALwq4iAKwiCcAfUajWvvfYaL7/8MgkJCSJLQRAEYTYNDg5y6tQpfv/732M2mzEYDGGV
ZQwSAVcQBCFMgUAAv98f6h8nkUjCao8eJAKuIAhCmKKjoyktLcVms9HY2IjZbGZsbIykpKSwOj6I
5D1BEIQwqdVq4uLiQr3mDh48yAcffBB2LQUxwxWE+5jVaqWnp4erV68ik8nIzMwkMzOT48ePk5ub
S0ZGRtinnISvL1gKM5hzazAYiIqKEmu4gvCg8nq9jIyMYLFY6Ovro6GhgerqauRyOeXl5VRUVPDu
u++yfPlyVq5cycKFC8M+yy98PU6nk+HhYdra2vD5fOTm5lJYWChqKQjCgyjYgffChQtcu3aNtrY2
WltbqampQS6X09/fT0dHB0eOHGF0dBSv14tKpcJkMomauHdBsJbC+fPncbvd5ObmUlRUJGopCMKD
aGJigrq6Ot577z3OnTvHwMAAPp8vtCt++fJlGhoacLvdnDp1CofDgVwuZ+PGjaSmpqLX6+/xK5jf
pqenGRsbo7OzE4/HM+P7Zd///ve/P/vDEgThTjQ1NfHOO+9w4sQJBgcHmZ6exu/3h77u9/tDmzN+
vx+bzcbQ0BAqlQqDwUBERARKpfJeDX/eUygU6HQ6dDodNTU1ZGVlkZ6eTkREBBKJ5LZZCmKGKwj3
CZfLxcjISKjw+PT09G3vmZycpKGhAZVKhVQqRalUUlhYeBdG+3DSaDQkJSWRm5uLVCrl/PnzpKWl
ER0dTVRU1G3XccUquyDcJ3p6emhpacFisdwwq70dp9PJp59+ypkzZ+ju7p7DEQqBQIBgvS+/309v
by9dXV1MT08TTh0wMcMVhPvE+++/z1tvvUVHR8eMAq5wb6hUKr71rW/xyiuvEBUVFdZpMxFwBeE+
4fF4blqzFe4vAwMDVFdX884772A2m1GpVKjV6rBT8sSSgiDME93d3Vy8eJH6+vo76kYg3F5wnVyj
0YRdP+GG++dgTIIg3AO9vb1cuXKFxsbGO0pZEm4vOjqaiooKtm3bhk6nY2RkhKGhIdxud1hruCLg
CsI8YTKZqKiooKSkRHTwnSMqlQqj0UhqaiqBQIB9+/bx7rvvMj4+HlYtBRFwBeE+sXjxYtasWUNy
cvIdnRiLi4sjMzMTk8kkepzNkWA5xuCfxMREUlJSws59Fu+KINxDgUCA6elpWltbcblcREVFodFo
kEqlYc2Y4LPGk8nJyeTk5JCSkiJOm80hh8PBwMAA165dw+v1kp+fT3FxsailIAj3O7/fH/oHvHfv
XoaHh+np6cHhcISdqaBQKIiLi2PFihUsWbKE5OTkOR71wy1YS+HChQu43W6ysrLIzc1Fo9GEdb8I
uIJwj7jdbrq7uzly5AhvvfUW/f39eDwe/H5/WBswALGxsSxbtoydO3eyZMkSEhIS5njUDzev14vV
amVwcDDsTyCfJwKuINxFbrcbq9XKyMgI4+PjnD59mt/85jf09/czPT2NVqslISEBrVbL1NQUZrOZ
ycnJL328uLg4ysvLSU9PR6/XixKNc8xoNFJZWYnb7aa1tZW+vj66urrIzMxEqVTe9vsvAq4gzLFA
IIDL5cLtdjM2Nsa1a9c4duwYw8PDtLe309LSgl6vR61Wk52dzZo1a4iPj6epqYnz58/T2NiITCZD
o9GgUCjw+XxMTU3h9/sxm800NjZSUVFBUlJSWK26hTunVquJj48nIyMDiUTChQsXMJlMxMXFER0d
LQKuINwrwaUBr9dLe3s7vb29tLe3U1dXx+7du7FarUgkEnQ6HY888ggGg4GSkhI2b94cWt9taGhA
JpNhNBrJz88nPj6eyclJzp07h81mo6+vjyNHjrBkyRJycnKIi4u71y97Xgs2kQz+MZvNobrE4RAB
VxDmSLCO7eTkJLt27eLDDz+kqakpVABFLpejUqlITU3lX//1X8nLy0Oj0WC1WvnJT37Crl27aGlp
QavVUlxczN///d9TVVVFS0sL3/jGN2hpaQmropgwewKBQOh9VSqVvP7667z66qthZ4aIgCsIc2T/
/v189NFH9PX10dHRQX9/Pz6fL9SbbOfOnVRWVqLVasnOzkar1SKTyZBIJKEZVEJCAlVVVbz++uuU
lpaiVqvJzMzkxz/+MT//+c+prq6+1y/zodLf388nn3zC//zP/zA+Po5MJgu9Z+EQAVcQZonL5aKj
o4NTp04BcPToUc6cOcPY2Bherxefz4derycjI4OnnnqKrVu3UlRUhEQiCW249Pf3c+rUKerr67FY
LOj1elJTU1m0aBExMTFIpVL0ej1VVVUcOHBAFBu/yxQKBZGRkSQlJdHe3j7j+0XAFYQ7ZLfbsVgs
TExMAGCz2Th9+jS/+MUvALBYLFitVgKBAEajkcjISFJTU6msrOT5558nMzPzpl5YPT097N69m9ra
WsxmMwaDAYVCgUqlCp0++/wGmlQqxe12Mzg4yPDwMHFxcWLjbA4Faym43W4uXbrEwMAAvb29pKen
o1QqRccHQZgr7e3tHDt2jE8++QT4LOVraGiIjo6OG65Tq9WsXbuWRx99lLy8POLj48nOzkatVt/0
mE6nk5GREaxWa9gbMVNTU/zpT39CpVIhl8tZsmTJ139xwi0plUqioqJITEzE7/eze/duAL797W+T
kJBw2yPVIuAKwgwMDQ1x/vx5ent7aWlpoaGhgfr6euCzDRW3241areapp54iMTERhUKBUqlkyZIl
5Ofn3/B3t5sNZWZm8uijj7JixYpbBucgj8dDV1cXPT09WCyWWX29wo2CfcuCNRUyMzPJzc39yvfn
80TAFYQvCAQCOJ1Ouru7GRkZueFrPT09HD16lLa2NkZGRjCbzZjNZnQ6XSgfU6PR8Mwzz5CamopS
qUQmkxEfH090dPRXttPu7Ozk+vXrTExM4PP5SElJobS0lLKyMlQq1U3XZ2ZmsnDhQhwOBzabDYfD
IcoyzjG73U5PTw9XrlzB6/VSUFDAokWLRC0FQQhXIBDA4XDgdDpDR2vHx8eprq7m8uXLN1w7NjZG
fX09k5OTyGQyFAoFSUlJJCQksGbNGoqLi1EqlaxcuZLY2NgZlUm8fPkyp06dYnh4GI1GQ2pqKllZ
WaSkpNzy+sWLF9PT08PAwAB2u/1rfQ+E8Njtdjo7O6mpqcHtdmMymcjMzBS1FAQhXIFAgJ6eHlpb
WxkZGcHv9zM8PMzBgwc5d+7cTdfLZDLy8/PJzs4mNjYWqVTKggULePLJJ1m8ePEdj+PKlSucOnWK
8fFxSkpKyMvLIykp6UuvX7x4MaOjo5w4cYLe3t47fl4hfD6fD6fTidVqvaNWSCLgCvNesARisPV4
ZmYmnZ2dTE5OhtK1jh8/zqlTp2hvbycQCODxeBgfHwc+a6uSlZVFREQEcrkchULB2rVrWb58Oenp
6aG0rpiYmBmPze/343a7aWtrY2BggOnpadRqNStWrGDVqlXk5OSE/Vjj4+P09PTQ19dHYmKiqIk7
B4K1FDweD01NTXR1ddHW1kZOTk6oVf1XEe+IMK94vV7sdjtutzs0AwkEAoyPj/Ppp59iNpt58cUX
2b17N62traFSiG1tbXR2djIxMYFCoUCv16PRaNBoNCiVSnbs2BH66CiTyVi4cCHp6ekYjcavNV6/
38/k5CTvvvsutbW1TE1NoVKpiI2NJT4+fkYpXr29vVy+fJn09HRiYmJEwJ0DwY4PwWWe2tpa0tPT
Q5uhIuAK88LnSxYGT2LdqoSh1WqlsbGRvr4+nE5n6O9HR0c5cuQI4+PjRERE8N5779Hc3IzT6bwh
WyBYrausrIzIyEjgs1Sg5557joULF4a9VheO4Ll8q9XKoUOHaGpqwu12hwqQz5Tb7Q6tRYdb3lGY
meDRXp/PF9pcnUn9YhFwhQeCx+MJ7cArlUocDsct81Tb2tr47//+bz766CNGR0dv+Vjf/e53Q4+j
1+tvmAnGxcWxbNky/uEf/oGsrKw5eCX/x+/3Mz09zeTkZOgfsEwmQ6vVhvXx9ItKS0t56qmn2LBh
Q9hpSsLM+Hw+pqencTgcKBQKXnnlFV599dWvzD75PBFwhQfC6dOnuX79OhKJhMrKSn75y1/S2tp6
03UOhyPsfNS1a9fy9NNPk52dHfo7hUJBVFTUV25WzRar1cqRI0f48Y9/THt7Ox6Ph0WLFvHaa6/x
+OOPs2DBghk93pkzZ/D5fNjtdp599ll0Ot0cjfzh1dfXx+HDh3nzzTcZGxub8f0i4Ar3jNlspru7
m7a2NsrLyxkcHKS2tvaW116+fJne3l4kEgkNDQ18/PHHDAwM3HRd8CNfIBAgPj6e3NxcysvLb/mY
lZWVLF++/KbAJpVK76iJ40x5PB4GBga4ePEiXq+XpUuXsmXLFtavX09aWlpYs1STycTmzZtDBbE7
Ozvp6ekJ+5SaMDMajYbExERyc3MZHByc8f0i4Aph8fl8jI+PMzo6Snp6OhMTE/j9fjQaDW63m4mJ
iRmXCuzr6+PSpUucPXuWrVu30tzczAcffHDLaz+f1H/58mWcTifx8fFotVo6OjpISUkhMjLyhuWB
rKwsVq5cybZt2275mFqtFr1ef9cLwPj9fpxOJ11dXXR3d4eC4/Lly9m0aVOoe0A4FagyMjLYsmUL
HR0dDA8Ph6qMCXMjWEvB6/VSU1NDd3c3HR0dZGdni44Pws2CmynBf5RSqTSsHlpOp5MTJ05w4MAB
/vZv/5aTJ0/icrnIzs5maGiITz/9lL6+vhmNxW63MzExwejoKAMDA0xOTtLf349UKr1hg+yLgcfp
dBIbG8uWLVvIzs7mBz/4AS+++CKLFy8mOjo6dF1ERATx8fFfenDgXvF6vfT09PD++++zf/9+4LP3
ITIyEqPROKP1V41GQ2xsLDqdTmQl3AVKpRKDwUBsbGyoloJEIuE73/kOCQkJIuAKN/L5fExOTlJd
XY1CoWDZsmUcPnyYwcHBr5yhut1url69Sn19PRqNhpaWFrxeb6gDQUtLC2azeUZj8fv9eL1ePB4P
HR0d+Hw+kpKS2LFjB6dOnUKhUJCfn09ycvJNP8h6vZ6Kigri4+NxOp2sXr2a9PT0G9YtpVLpfVm+
MBAIhI6IDgwMEBUVxfbt21m2bBkGg+FeD08Ik0wmo7CwUBzt/aLghkRUVBTx8fHzqtFeMHG+paUF
v99PVlYWra2tWCyWW56r9/l8WCwWDh48iFKpZGJigj179tDX14fL5frK55mYmMBsNvPxxx+Hyg4G
lxQUCgUJCQkoFAoGBgYwmUzY7XaGhoYoKSkJnYSKi4vDaDR+6XuQmprKjh07iI6ORi6Xs2jRIkwm
003XKxQKYmJi0Gg0PP3006F+Xvf7LM/pdDIwMEBtbS3d3d1MT08THR3N+vXryc/PD3u3W7g3pqam
6OjoCB3tDdZS0Ol0IuAG1xY//fRTvF4vhYWFD1zPp2DfJLlcjkwmw+1243Q6Q0sCwcT5gwcP4vP5
WL9+PQcPHqSnpweHw3HLx3M4HNTX1yOXyxkcHKSuro6JiYlQfy2/34/P50OpVKLVakOtoWUyGXFx
cXg8nhsCg1qtJjc3l6ysLDQaDRcvXmTlypUMDw9z5coVnn32Wc6fP08gEKCgoICsrKwv3ZQyGo1U
VFSEDhikpqYSGxv7leuZBQUFX/O7fPfYbDaam5s5cuQI/f39REREYDKZKCgoIC4u7mvPyD0eD5OT
k4yNjaFSqUR62Cyz2+10d3dTV1eH2+0mOTmZtLS0WxYXupV5HXBtNhsnT55kz549REREEBERQWVl
5b0e1pf64voqwPT0NDU1NURERKDX6xkdHaWtrS308T+YOH/gwAG8Xi82m439+/fT1dWFw+EIrYEG
HzsQCNzwm7i7uzv030lJSeTm5uJ0OkObUjk5OVitVs6fP49Op2P58uXI5fKbAmBeXh45OTloNBrS
09NZvXo1Q0NDZGVlsXPnTlJSUggEAhQXF5OTk3PbLID5WNM1EAgwNTVFW1sbp06dYnJykvz8fB5/
/HGioqJmJTPCZrPR3t5OTU0NarWa5OTkWRi5EBQ8rOL1em9oKPn5PYevMq8D7vj4OLt27aKuro6i
oqJ7PZzbCgbM1tbW0Md7h8PB22+/TWxsLEajke7ubmpqakKz12Aa1MTEBIFAgNHR0VDGQEREBAsW
LCAmJia0QeV0OsnKyrrlTGrhwoUsW7YMm82GzWYjIyODyspKRkZGQuUFd+7cecuAGzwGK5VKycjI
wGAwkJaWRmFhIbGxsaxevRog7LWu+WhiYoLu7m7a29txu91otVrKysp4/fXXiY+Pn5WA63K5GBoa
or29nbKyslkYtfB5RqORxYsX43a7qauro729nevXr1NQUIBarX64A67H42FoaIhAIIBWq53VY5lf
9nwOhwO73X7DLFUikWAwGG5Y57Hb7Tgcjhs2qux2O729vbz33nuhpGqPx8Ply5dD45+cnMRsNqNU
Km8ImlFRUaH/Dp7vN5lMPProo5SUlDAwMMD169cZHR3l6aefvuXmTExMDGlpaUxPT4fWFpOTk0OV
7NVqNVlZWUil0q/8wfr8+f/guO6ksMt8093dzenTpzlx4gRer5ekpCRSU1NJTU2dtedQq9UkJCSQ
mZkZdidZIXxKpZLIyEgSExORSCTU1dWRmZlJWlqaSAsLysnJobCwcMYnd8IRCATwer34/X4sFgvN
zc00NzffsH6qVCpZvHgxhYWFoVlMR0cH165duyF52uFw0Nvby+7du7FYLLd88+RyOVlZWRQUFJCQ
kPCVYzOZTKxYsYLi4mIGBwe5fv06Y2NjbNu2bUa74QaDgaVLl4Z9vXCj4KeQ/v5+6uvraWhoIC4u
joqKCkpKSmb1uYKdCG71KUT4+j6fWRMIBG6ZtvhVHoqAu3z5ctasWUNeXt6s/xAGAgGsVisOh4O2
tjZ27drFhx9+yPDwcOgavV7PG2+8EWoICPDJJ5/w7rvvUlNTc9NjSiQSjEbjLYOiRqPh8ccf5/nn
n//SE1S3kpmZSWZm5h28QuHr8vv92Gw2JicncTqdyOVyTCYTL7zwAk8Wgs0+AAAgAElEQVQ99dSs
PtfY2Bg1NTXo9XpMJtOcTDIeZl6vl6mpKcbGxpBKpezcuVPUUviiXbt20d/fz/T0NGvXrp3Vx/b5
fLz11lucOHGCjo4OxsbGbspHdTgcvPXWWxw4cCA0ax0fH//Ss9iRkZF85zvfYcuWLTf9gpBKpURH
RxMbGzurr0OYOy6Xi127drFr165b/oKdTampqWzYsIFvf/vbN9SIEGZHX18f+/fv5xe/+IWopfBl
gh1Sz507x4ULF24ZxCorK6mqqkKlUs14FtzX10djYyOdnZ23/Lrf76e/v/+Gs//BXU2pVEpeXh5l
ZWWYTCYAdDod69evp6ys7EvHIj4uPhh6e3uprq5mz549XLlyBb/fT2lpKTt27Ji1gKjValm/fj02
m42mpiY6Ozu5dOkSMTExomX6LNPr9WRmZrJ06dJQt+aZmLcBd3BwkKtXr2K1WsnMzMTv93Px4kV6
enpCR/DMZjOdnZ1IJBK2bt2KWq2mpKQErVYb1o7x5OQkzc3NDA0NfeWhgaAvHp/VaDQkJyezceNG
nnzySYqLi4HPgqler78rBVSEuTUwMMDBgwepra3F5/NRVFTEE088wfbt22ctZUuhUJCamkpKSgoN
DQ1cunQJg8FAfn4+aWlps/IcwmeCWQo+n4/Tp0/T3t5Oc3MzeXl5D3fHh9OnT/Pzn/88VMVfKpWi
0+moqKhg8+bNKJVKzp49S0NDA36/n8OHD2O32/nHf/xHUlNTwypt19XVxY9+9CPOnTsXascyEwkJ
CWzevJnnnnuOvLy8UMFrYX4IZq1MTEzgcDgoKCjgqaee4tlnnyUlJWXWjh3b7XaOHj3K8ePHaW1t
DRXHEUVsZp9cLker1RIVFYXf72fv3r1IpVL++q//msTExIc34AZnr1NTU6EiK48++ihbtmyhuLg4
dGoqOjoan8/HuXPnGBwcxOVyhf2DGtwoM5vNd9SeWqVSkZiYSFJSkkjhmYdOnz4dauUTzItOSEgg
OTl5Vo8ge71eBgcHGR4eRq1WU1payrPPPitmt3NMLpdTXl7O0qVL0ev1D/fRXq/XGwqe6enpVFVV
sWHDBsrKyjAajUgkEhQKBRqNhpqaGrxe74xnBcGZRPDUyUxJpVJUKhUqlUosH8wTgUAAt9tNTU0N
+/fv5+TJk4yPj5OZmUlJSQmZmZlhHwOdCbfbjdvtxufz3TZPWrhzNpuNlpYWTp8+zfT0NPn5+ZSU
lIRdS2FeH/lRKpUsWLCAVatWsXHjRiorK4mPj0epVKJQKIiMjCQtLQ2Hw4HNZsPlctHb24vVasXt
dt/yMYPH+cbHxxkYGLihWaEgwGfHsQ8ePMixY8dobW3F7XZTUlJCZWXlnKTmyWQyYmJiQhOJvr4+
mpubmZycnPXnetgFc+Xr6+txu90kJCSwYMGCsOsXz+uAGxkZydq1a3nqqaeoqqq6ZZm/YItruVyO
xWLh2LFjtLe3MzU19aWP6/V6aWpqCp2H9/l8c/1ShAdA8ICD3W7n1KlToSaVKpWKvLw8CgsL56Q2
r0qloqSkhKKiIvR6fShLYWJiYtaf62EnkUiQy+Wh9Xev1xv6hBvOp9x5u6QAn1Vn37ZtG2VlZbc8
WiqXyzEYDDz99NP09/fT1dVFZ2cnZrP5K2vDBmsW9PT0MD09LTqkCsD/raWeO3cOi8WCz+fDYDBQ
WFhIWlranKVoyeVyEhISiI+PJyEhAY1GQ1FRkdiEnQPR0dGUl5fj8Xg4e/Yszc3NNDY2UlJSgkaj
ue0sd17NcIPH7gYHB0MnQWJjY9Hr9aETXp8X/K3k8Xjwer2huqTZ2dlf+Y9DJpNRVFTEypUrMRgM
d7T+qtPpiImJwWAwPLTFXOaLQCDA9PQ0fX19VFdX8+abb9LX14dOp2PRokXs2LGDysrKOasn4XK5
uHz5MvX19dhsNrKysli8eHGopoYwexQKBREREaH3sr6+ntraWqampsJaWpxXM9zgJtaxY8eora3F
5XJ95ezT7/czNTXF0aNHuXLlChqNhqqqKtLT0780ayD4kWLhwoWYzWZiY2OZmJj40jXfW1EoFOTk
5LB06VJyc3NFzdIHWPCX/PDwMCdPnuTDDz/k6NGjqFQqlixZwqZNm9i0aRPp6elzslkGn22YXb9+
nZaWFux2O+np6Xe8kSt8Nb/fj8fjCcUWjUYTdt4+zMMZrs1m49e//jX79+/Hbrd/5fVer5eJiQl+
9atf8dFHH4V1eOHz1Go1JpOJyMjIW86gb0UikRAfH8/atWt5/vnnqaqqEqeBHlDBwkUWi4Xa2lp+
+9vfsm/fPmQyGSkpKTz99NO8+OKL5Obmzlmw/SKr1UpjYyPV1dU31PMQZkewqcHAwAASiYRt27bx
wgsvEBsbG1aq37wKuHdbbm4u//7v/8769etJSkoKa2lAo9Hw7W9/mxdffPGB6lQg3CwQCDA2Nsbx
48f54Q9/yPnz54HPSlL+0z/9E88888xtK7rNlmDVqpSUFDZt2sQbb7xBbm7uXXnuh0l/fz/79u3j
Bz/4gailcLdpNBqysrJ48cUXqayspL29ndraWurq6rDZbDddn5mZyXPPPccTTzxBdna26F/1gOvs
7OTkyZO8//77NDY24vV6qays5IUXXmDVqlUkJSXdlSaWOp2OTZs24XK5qK+vp6mpiZMnT4bawAuz
JzIyksLCQjZs2MCf/vSnGd8/rwPu1NQUFy9eJCoqCrlcfsMPn8vlor+/n7NnzzI5OYnJZKKsrGzG
NQykUilVVVVUVlYyMDBARkYGcXFxt+xgW1RUxDe+8Q2Sk5PnvBi6MPcGBwepqanh+PHjuFwuDAYD
BQUFvPbaa3e1bXnw1GRsbCzT09Ncv36dyMhISktLRUnOWRYdHU1ZWRler5djx45x/fp1GhoaKC4u
Rq1WPzxHe4Pda202G16vF4VCwdTUFL/85S9DzRUzMjJC1w8PD3P69Gn+8z//E7PZzJYtW/jzP/9z
kpOTZ7TeJpFIQjNVlUrF9u3bWbVqFV6v96Zr9Xo9qampKBQKkZnwAAueJvt8jVupVIpWqyUyMvKG
7ht3g91u5+OPPw7lkH++h50wu2QyGWq1Gr1ej8/nC3W/XrBgwcNVS2FycpLGxkZ+85vf0NHRwdKl
SykvL+eTTz7h0KFDXL58+YY0GZvNxuDgIOPj47z00kts3rw5VMbxToOhUqkkNjaW6OjoW/7AS6VS
FAqFOHb5gPN4PJw+fZpDhw5RV1eHRCIhMTGRrVu3snXr1rs+Hp/Px8jICKOjo2g0GhYvXszzzz9P
enr6XR/Lw0Qul1NZWRlKD32oaikE24oEUzRMJhMbNmxArVZTV1fH4OAgTqeTQCCAzWYjJiaG3Nxc
MjMzQ6URg+eh7zQgSqXSUFAV5qfx8XHq6+vZv38/p0+fZmxsjIyMDNauXXtDic27LXjiKdj+xeVy
iROQc8BqtXLt2jWqq6txuVzk5eVRVFQUdnPUeRNwlUoliYmJPProo3R0dLBw4UKKiopCnRGsVitG
oxG/38/o6Cg5OTlUVFSgUqkoLi4mOjr6Hr8C4X5nNptDwba6upqhoSGMRiPLli1j69atVFRU3PNO
HMGz/o2NjVRUVMxqg0oBnE4nAwMDNDU14Xa7iY2NJT4+PuxJ1rwJuGq1mpSUFIxGIy6Xi5iYGGJj
Y0lLS8Pj8eB0OomMjMTv92M2m0lPTxdpWUJYgmu2V69e5dChQxw8eJC+vj6SkpJYvnw527dvZ8WK
FffFUdpgwL127ZooXjMH5HI5Go2GqKgoZDJZqEpbsEX6Q9UmPbhx8eSTTyKTyUKZAGVlZQQCgdCU
3+fziY/9Qti8Xi+XLl1i7969HDp0iJ6eHpKTk1m9ejVPPvkkq1atum9S/HQ6Henp6SxatOiub949
DKKioigtLcXtdlNdXU1TUxNXrlyhoqICrVb7cAVciUSCTCa76QctnO4NgvBFPp+Pqakpurq6+P3v
f8/x48cZHh4mPj6edevWhUp+3k8nBY1GIxUVFWzatGnWWvgI/ye4TxQZGUkgEKCxsZErV66Ql5f3
cKWFCcJsCdY8ttlsXLt2jT179oRmtrGxsaxcuZJNmzaxePFikpKS7vVwb6DT6UhLSxPVwuaIz+dj
enoah8MBfJaXazQaw865FgFXED4nWEHO6XTS0dHBwYMH+eEPf0ggEEAikZCUlMS2bdtYsWLFfbnR
Ghx/8I9IQZxdLpeL0dHRUIfuTZs2sX379rCXlETAFYQv8Hq9dHd38+tf/5r33nuPQCCAUqkMtUS6
nw+tBAvqBDuRiNZNs2twcJBDhw7xs5/9DIvFMuP7RcAVhM8J9qx6++23OXLkCGNjYyiVSr75zW+S
nZ1NWloaxcXF9+3R7OHhYU6cOIHRaGTLli3k5OTc6yHNK8E18u3bt/P+++/P+H4RcAXh/2c2m2ls
bOTQoUPs37+f3t5e4LONkjVr1lBVVUV0dPR9fTTb5/PhdDqx2Wx31Ela+GpRUVEUFRUxPT3N/v37
qa+v5+LFi5SVlYV1+EEEXOGhFwgEcLlcNDY2snfvXn73u99hsVjQarWoVKrQrrRer79vZ7ZBcXFx
VFVV8dxzz2Eyme71cOYdqVSKUqlErVbj9Xr56KOP0Gq1oQLzIuAKwm34fD7Onj3L3r17Q8sIcXFx
PPnkkyxfvhy5XE5eXt5dKyL+dSiVSiIjI4mPjxedROaYQqFgxYoVbNiwgcjIyIfraK8g3Amz2cyV
K1fYt28fn376Kd3d3fh8PrRaLUVFRaxfvx6JRILRaHwgDssEc9Hlcvl9u+zxILNYLFy9epWPPvoI
p9NJTk4OBQUFaDQaEXAF4asEC9Hs27eP48ePMzQ0RFRUFAsXLsRkMpGVlTUnbc2FB5fL5WJ4eJjW
1tZQ49mZ/DIWAVd46ATXbBsaGjhw4AAHDx5kYGCABQsWUFFRwdKlS4mOjiYrK+teD/W2vF4vTqcz
lAYmzC2FQkFUVBRJSUnIZDJcLhdOp/PhrKUgCOEIBAJcunSJffv2cejQIbq6ujCZTDz22GNs2rSJ
VatWIZVKH4g10JGREWpra+np6cHhcNw3NR3mq2CWgsvl4tChQzQ0NFBXV0dlZWVY3WLEIo/w0PD7
/VitVurr63n33Xc5cuQIw8PDJCUlsWbNGjZt2sTSpUuJiorCYDDclX5kX9f4+DhXr16lv79/xl2n
hZkLdnzQ6XQEAgFaWlpoamoKtU2/HTHDFeY1v98f+tjtcrno6Ojggw8+4OOPP2ZwcJC4uDhWrVoV
qo2QmJh4r4c8I3q9nuTkZKKioh6ITb0HXfBnKdgkNjExkQULFqBUKsM6Ri0CrjBvBevYWiwWmpub
MZvN1NXV8dOf/hSfz8eCBQtYtmwZL7/8MuXl5Q9ksZeMjAy2bNlCY2Mj3d3d93o4857T6WRwcJDr
16/j9/tDnT5ELQXhoefz+TCbzVy4cIH/+I//oLW1NVQwWqPRsH79el5//fVQ5w9BuJ2RkRGOHj3K
z372M6xW64zvFwFXmLd6e3uprq7mt7/9LQ0NDaEOCFKplNdff51t27aFcigFIRyxsbEsW7YMi8XC
b3/72xnfLzbNhHknEAjQ2dlJdXU1e/fu5dNPP2VychKpVEpSUhLbt2/n2WefZcmSJQ98V4TBwUFO
nz5Ne3s7U1NT93o4815ERAR5eXk89thjKJVKLl68yNmzZ7HZbGGl5YkZrjCveDwebDYbR48e5YMP
PuDs2bPI5XJiYmLQ6XQsWbKEf/mXfyE5OTnsTqv3s+vXr/P2229z9uxZLBbLPW9iOd8Fu4PL5XJ8
Ph/V1dVERkaycOFC0fFBePiMjIywb98+du/ezeXLlwkEAhQUFPDyyy9jMplISEggPT39vq74NRPT
09OMj49jt9tFW/S7TKFQsHr1ajZv3kxUVJQ42is8PI4dO0Z3dzc9PT2cPXuWq1evolAoKCkp4ckn
n2TdunXEx8ejUqlCKTzzoRtCsB1QIBAgKyuL5cuXs2TJEpEiNkcmJia4fPky+/btw263k5mZycKF
C0UtBWH+C/Yda2trY9++fVy9epXR0VEGBgZQKBQUFhayfv16nnjiCdLS0ublKazIyEiys7Pp7e0l
NjaW+Ph4YmNjRaeHOTI9PY3ZbKa3txefz4fBYCAqKkr0NBPmN7/fj91up6WlhXfeeYePP/6Yrq4u
3G43arWaRx55hI0bN7J+/Xry8vLu9XDnTEJCAsuWLaOrqwu73c7g4CDDw8NieWGOqFQqYmNjycjI
4Pz58zgcDux2e6gW7u0+NT34i1jCQ8npdFJfX88HH3zAH/7wBzo6OnC5XOj1ekpLS9m8efO8D7bw
2VFTpVKJXC6nt7eXS5cu0dDQILo9zJHIyEgKCgpYu3YtKpWKS5cuceHCBaampkSWgjC/OBwOzGYz
AwMDTExM8PHHH7N//37MZjNpaWlERkaSkpLCunXreOyxx8jIyHgg6iF8Hf39/VRXV9Pc3IxUKiUh
IYG4uDixpDBHPt/xIRAI0NXVRVtbG4sXL0an0932fhFwhQeCy+Wit7eXixcvcuLECaampqivr6er
q4uoqCjWrVtHXl4eycnJlJSUYDKZ5uWa7RdNTk7S0dHB2NgYhYWFVFZWUl5ePu9/0dwrXq8Xu92O
xWIhEAiQmppKRkYGKpVK1FIQHmx+vz+0Az8wMMD58+fZs2cPu3fvBj6bbcTHx7N06VKee+45Kioq
HviDDF9HRkYGlZWVlJWVzYuUt/uRw+Ggr6+Pq1ev4vf7WblyJevWrRO1FIQH3/T0NE6nE4/Hw/Hj
x3nvvfc4ceIE8FkrGYPBQGVlJT/5yU+Ii4t76I/out1uHA4HTqcTrVY7L9Le7jejo6OcOHGCX/3q
V6KWgjC/1NXVsX//fpqamujv76enpydU89VoNLJ9+3Zee+01FixYIHp4AbW1tSiVSnw+H1u3bg1r
TVGYmfj4eFavXo3X6+XNN9+c8f0i4Ar3pfPnz7N371727t1La2srgUCAqKgoSktLKSkpwWg08vjj
j/PII4/Mm0MMX5dSqUSr1aLRaMT3Y47o9Xqys7OZmprif//3fzl79iwmk4mqqip0Ot1tNytFwBXu
C16vF6vVisViAeCdd97ho48+orOzk0AggE6no6CggM2bN/Pqq68il8vR6/UP/az284qLi3niiSdY
u3btA9Ee6EH0+V/uXq+XU6dOERcXR1FRERqNRgRc4cFgs9nYu3cv77//PgDXrl1jeHgYr9cLQEVF
Bdu3b+eJJ54gISEhrCTzh41arSYiIgK9Xi++N3eBQqFg48aNPPPMM8TExIijvcL9bXx8nNbWVs6e
Pcvk5CQXLlzgwoULANjtdtLT0yktLSU5OZmCggLKy8tJSUlBJpOJgHILEokEqVQqZv1zaGxsjLq6
Onbv3s3U1BQmk4nMzMzQSbPbEQFXuCfGxsaor6/n2LFjHD58GJfLxejoKG63m/z8fJRKJWVlZaxa
tYrMzEyMRiNGo/GhyK29U6Ojo3R0dNDV1UVKSkrY5/uF8Hk8HiYnJxkdHcXv96PT6YiIiAj7oIl4
R4S7Jpjm5Xa7aWho4MiRIxw+fJimpia0Wi0KhYKFCxfy0ksvYTAYyMzMJC8vj/j4eDGjDUN/fz9X
r14lOzubhIQEEXDngEajISkpiby8PC5cuIDNZsNqtaJUKsP65CXeEeGuGRwc5MqVK/T19dHQ0MC5
c+dobm4mKiqKRx99lMTERFJSUti5c2eoTbk4oircTwwGA3l5eTgcDt59910uXrxIVlYWa9asCWum
KwKu8KWCpei6urpCm1dBqampJCQk3Pawgd1u5/r167hcLq5cucKxY8dobm7GarXicrlITk7mkUce
YefOnWRmZqLRaIiJiRF5tXcgeNJMHO2dO8GODwqFAr/fz8DAAH19fbjdbgKBwG3vFwFXuIHP58Pp
dGK32xkbG6OlpYXDhw/jcDhuuG7t2rWUlZURHx+PTqcL5X66XC4mJydDP3zDw8O8++67jI+P09XV
RUtLCzabDbVaTVJSEqWlpezYsYOlS5cSHx9/L17yvBEZGUliYqL4Ps6hYAunsbExgFABcrVaLWop
CDPj9/txOp20tbXR3t5OR0cHV69eZdeuXTcFXKvVysDAACaTiZycHNLT05FKpfT19XHlypXQjHhg
YIA//OEPjI+P4/P50Gq15OXlYTKZyM7OpqKigscff1x0KBAeCHa7nZ6eHq5cuYLP5+ORRx5h5cqV
opaCMHNut5vBwUH27t3Lhx9+SEtLC36/H7fbfdO1hw4d4pNPPiEuLo4dO3bw1FNPIZfLOX78OP/1
X/+F0+kEPgvi09PTREZGotVqSUlJ4fnnn2fTpk2kpaUhk8nE5o7wwBgfH+fMmTO88847opaC8PW0
tLTw3nvvsWfPHrq6ukJ1C27F6/Xi9XoZGhpi9+7dnD17FolEwtjYGBMTE/j9/hvyQp999llWrVqF
yWQiJSUlrPVfQbjfJCYmsn79emQyGT/96U/x+Xz4fL7QEprIUhDCZrVaaW5uprOz86YlhC/j8Xjo
6uqiq6vrhr9XKpUUFxezdOlSJBIJW7dupby8nJiYmDkYuSDcHTqdjvT0dMrKypDJZJw8eZKkpCTW
rFmDXq+/7ac1EXCFWaNQKIiIiCA+Ph6DwcD27dv55je/iUQiQafTiZ1zYV7xer1cvHiRtLQ0lixZ
EtY6rgi4wqyJjY1lxYoVfOtb38JgMJCYmIjRaBTVvIR5SalUsmXLFl566SViYmLCyhkXiY4CAGfO
nOHAgQM0NTXdcQNCu91Od3c3Fy5cQKPR3FBkRgTd2ffJJ5+wd+9eent7b8qTFubG6Ogop06d4u23
38Zms7FgwQJSUlJELQVhZq5fv05tbe3X+sfrdDrp6uri2LFjoQ4MiYmJNDQ0kJKSIroyzLJgvrTX
6w0r6V74+nw+Hy6XC5vNht/vR6PRoNVqRS0FYWY+387mTv/xejwexsbGqK2tRS6XEwgEKC8v5/e/
/z3Lly+nqKjohoMSIh3s68nIyGDhwoXU1NQwOjp6r4fzUAimNpaUlHD+/HksFgtmsznsWgqy73//
+9+/O0MV7mcOhwObzcbIyEioI+mdCAQCTE9PMzg4yOTkJCMjI+zatYuJiQkGBwcZGBhAKpViMBjE
bPdriouLY2pqitraWoaGhsjLy6O0tJScnJx7PbR5S6lUotPpUCgUHDx4EI/HQ0REBKmpqWEtK4gp
hgBASUkJY2NjXLt2jZ6eHnw+34zuNxqNJCcnExsbi91up62tjbq6OlpbW0PJ4vX19cTGxtLZ2Ul5
eTlxcXHIZDL0ej0LFy58qDvu3gmpVBqaVYn18bvj87nlgUAAs9nM6Oho2J8MRcAVAIiOjiY+Pp6I
iIgZFY2RSqVERESwaNEiqqqqyM/PZ2RkhP3799Pe3g5AUlISExMT9Pb2MjQ0hMvlorGxEb1ej1Kp
JDExkaeeeor09HSUSiXx8fGiyHgYzGYzY2NjuFwusYZ7l7jdbqxWK0NDQwQCAXJzcykqKgq7S7II
uMLXolQqycnJYd26dTzxxBMUFhYyMjKCVCqlra0tdN358+fp7OxkamqK9vZ2Wlpa8Hq9yOVykpKS
8Pv9ZGRkEBsby7p160L1cYNVw0TwvVlrayuNjY1YLBb8fv+9Hs5DwW6309XVxcWLF/F4PJSXl/PI
I4+IWgrC3REREcGGDRvYunUr+fn5SCQSkpOT+au/+qsbZl0//vGPOXz4MAMDAwChws3BVLKf/vSn
SCQSCgsLSUxMJDY2lpiYGKKjo8Va75f49NNP+fjjjxkcHJzxEpBwZ8xmMzU1NezatQubzTbj+0XA
FYDPMgzcbnfoXHhwfVAmkxEIBPB4PEgkEmQyGR6PJ/Q1jUaDUqm8qX7tF9NknnvuOdauXcv09DQA
p0+f5tChQ5w9exa/3x9aA2tra+Pv/u7vUCqVrFy5ku3bt1NUVBR6bJlMhkKhEDNeYMeOHahUKt58
802am5vx+Xy43W48Hg9yuVx8j+ZAUlISjz/+OGq1mh/96Ee43W7cbneoPKOopSCEpba2lqNHj9LS
0oLH4wmlvhQUFGCxWDhx4gQRERGUlpZy4MAB8vPzycnJCR1rjI6O/srHN5lMmEym0P9HRUWRkJBA
eXk5o6OjHDlyhIGBAex2O3V1dcBns2Cz2YzJZEIqlRIbG0t+fj5VVVUimADp6elkZ2djMBiQSqW0
tLRw8uRJjEYjlZWVolX6HAimhRUWFiKVSjl69CgxMTE88cQTGAwGUUtB+Gput5vu7m727t3Lvn37
6OjowGg0UlVVxfbt21m9ejWDg4PodDpiY2PZvHkzTqeTVatWUVVVRVpaWmitdSYWLlxIeno6Gzdu
pLOzE7/fT1NTU+jrvb29dHR00NHREVrDzcjIYPXq1ajValQqFQkJCSQkJMz2t+SBNTQ0REtLC+3t
7ZSXl9/r4cx7Pp+PpqYmrly5wsqVK4mIiLjtPSLgPuTMZjP/7//9P06cOEFPTw8qlYrHH3+cF154
gaVLl2IwGNBqtbzxxhvI5XKMRiPf//73MRgMGAwGVCrVHT3v55cj9Ho9//zP/3xDhbJ/+7d/48iR
Izck9Le0tDAyMsKxY8eIj4/ntdde45VXXvna34P5ory8nG3btvHEE0+I2e1doFQq2blzJy+99FIo
xfF2RMB9SHk8Hi5dusQf/vAHTp06xeDgIMnJyTz22GNs27aNoqIi9Ho9UqkUpVJJQkICEokEuVxO
cnJyqHD4nX60D94nk8lQq9UkJyffsPHzyiuvsHz5cnp7ezl16hRXr14NLTHYbDaGh4d55513uHr1
auie0tLS0Kz7YaTT6YiJicFoNIrmm3NkeHiYc+fO8cc//pHJyUliY2OJ///aO9OYuM40bV/USi1Q
7FCA2XcwxmBsDHZjOzbECXF7GTudxEl3q6PWKJqR+tdII82ov6ChO+oAACAASURBVJ7WaDRS/kwr
05oZT88onVZn9xLjBWLHKzsY7NjGNvtS7FAsta/fD391FDpfYnAwm88lWTLFqar3UHWe877Pez/3
ExGBQqEQZWEi38bXRuf27ducO3eO8+fPMzg4SExMDDt27KCiooL8/HzCwsKEtje+DTIfS6ka8G3E
/eVrbtmyhYyMDMbGxggLCyMpKYmZmRmcTqfg29vS0iJofQF6e3uZmJggPj6euLg4YmNjCQsLW7Kx
rnZkMhlKpVK0wXyGeL1e3G634F+hVCrx9/dfsHZdDLjPCTabDZPJxMzMDFNTU5w5c4YLFy7Q19dH
UFAQO3bs4OWXX6aoqIjw8PAV9zkIDw8nPDycyMhItFot+fn52Gw2LBYLg4ODnDx5koGBAUwmE+Pj
48KNZGBggODgYIqKiigqKiI9PR2lUklwcPC6D0Rms5mpqSmMRiM6nU7sevwM8BmQFxQU0NDQwMTE
BGNjY8TExCxoxSd6KTwnDA0N0djYyLlz52hsbOT8+fPcv38fjUZDRUUFf/VXf0VxcTFRUVGr6kKV
y+VEREQI3VGTk5PZsGEDWq2WpKQkIiIiePDgAR6Ph9nZWQYHB+no6BBKLoeHh5mYmCAmJgaNRrPS
p7PkdHZ2cv36dYaHh5FIJPj7+xMUFER0dPSK3zTXI0qlErVajUwmo7KyEqvVilarJT4+XvRSEHmc
qzUYDFy9epWqqipqa2txuVzMzMywYcMGiouLee2119i4ceOa8DLwlQL71BJdXV1YLBZsNhsej0eo
ZPOVETc2NpKQkIDFYkGv1wuv40ubPO2m32qkt7eX5uZmYQYmbpw9O7xeL16vF7PZzNzc3IItMsWA
u46xWq2MjIxw/fp1zp8/T319PQMDA0I5bWlpKa+++ir5+fkEBweviVblvllcdHQ0Ho8HnU6H1+sV
vvBjY2NcuXKF+/fvMzExweTkJBMTE5jNZkG2I5FIeOONN0hLSyM4OJiQkBBh1rLWUKvV6PV6dDqd
kE6YmZlZVd4KLpcLs9mMxWJBrVaj0+lWekhPjd1uZ2pqisHBQTweD1lZWeTl5aHRaEQD8ucZX8vz
+vp6zp49S0NDA+Pj4wQEBBAQEMDOnTs5ePAge/fuRaFQrKo0wkLxFUOUl5cLj42PjxMUFERWVhZd
XV08fPiQ1tZWmpubcTgcuFwuJBIJarWalJQUNmzYQEFBAfHx8UK1kEwmWzN/k6ioKLZv347BYBCq
+FYTLpeL2dlZurq6MBgMJCUlkZubu9LDempMJhM9PT00NTXhdDrJzc0lPz9f9FJ4HvnmrMZoNNLS
0sKf//xnrly5AkBERASRkZFERUXxi1/8gj179izpez6J5agOCw8P5/DhwwDcv3+fixcvYjKZsNvt
jI6OMjU1hcfj4eOPPwYgOTmZn//852zfvp2goCDkcjlarRa9Xi+kG1ZzVVtaWhpvvPEG/f39jIyM
rPRwvoWvC8j58+e5e/cuFRUVazrgzszMcOfOHS5cuIDZbBZSC2Kb9OcQp9MpWPWdP3+ezz//nLq6
OtxuN3l5ebz00ku88sorKBQKYmJiluQ9vV6vUL8PjyVkCoUCm82G2+1GIpGgUqlWRBeakJDAsWPH
KC0tZWhoiA8//JBz584Jv/etAk6cOMHHH3+MTCYjODiYTZs28Ytf/IINGzYgk8kWPHtZCVwu1w/u
1PEs6ejo4NSpU3zwwQfExsau9HB+MHq9nv3796PVavmXf/kXbDYbVqt1wdIwMeCuE9xuN+3t7Zw+
fRqbzUZTUxNff/01ZrOZvLw8Dh06RHl5OXl5eUv6vmazmYaGBlpbW3G73aSmppKfn091dTXd3d1E
RETw+uuvExoauuyyLLVajVqtJiYmhqSkJORyOZs2bRJ+39jYSF1dHX19ffOeYzAYmJubQ6/Xk5mZ
ybFjx1atRWRXVxdnz57l1q1bTE9Pr7qbg9lsZnh4mP7+/nWhifb16UtJSQHgwoULaLVaDh48SHBw
sOilsN7xzTC7urqorKzkvffew2Qy4XA40Gg0ZGRkcODAAV5++WUyMzOX7H37+/sZHx9naGiIyspK
Ll26hMvlorCwELPZTE1NDXV1dajVasrLy9HpdCuqgw0KCmLv3r3z0ijnzp1Do9HQ2dnJ6OgoY2Nj
mEwmwY9ArVZTXFxMTEyMEHC1Wi2xsbHodLpVsck2MzNDR0cHY2Nj2O12LBYLBoOBBw8ekJGRsSo2
qORyOeHh4aSmphIeHr7Sw1kyPB4Pvb29dHV1LdgEfuW/MSJPhdfrxePx4HK5GB8f5z/+4z/4+OOP
mZycxOv14ufnR3JyMm+++SYHDx4kOjp6SZb1vkqbkydPUllZSU9PD3Nzc8zNzeH1eqmtrWVubo7X
XnuNiIgILl26tOJLXd/M9C8D5J49eygoKMBisfDpp59y5swZ2tragMfnaTKZuHHjBo8ePRJeJzs7
m7/+678WfCZ8j6/UDDgnJ4d33nkHp9PJpUuXMBgMXLhwAZvNxjvvvENhYaFw7Ddb1i8nOp2OnTt3
8stf/pKCgoJlfe+lxnfdeTweFAoFb7zxBsePHycyMnJBN2Ax4K5R+vv7aWho4OrVq1itVhobGzEa
jUJw27lzJ6+88gr79u0jMjJyyWaXExMTvP/++5w7dw63201FRQWpqanCRaxQKAgJCSEnJ4f09HQK
CgrQ6/WrUnKm0Wjw9/fH5XJRUVFBeno6Y2NjeL1eRkdHqa6upqWlBYPBADwOrDabjX//93/n5MmT
KJVKdDodGRkZvPzyy4SEhCz7Ofj7+xMaGopGo0EqleJ2u5mYmKC2tvZb2uOjR49SUFCAVqtd1jH6
VCHBwcGrLuWxWEZHR7l58yZ//vOfmZ6eFmSFC13tiAF3jeFyuejv7+fatWtUV1dTU1ODx+PBaDQS
GRlJQUEBCoWCkpISSkpKSExMRKVS/WCJk9PppKenh6+++oozZ84gk8koLCxk7969pKWlCV84Pz8/
5HI5Op2OqKgo4uPjCQwMXJVmKjKZTJCApaSkoNfrsdvteL1eQUKXmJiIy+Wirq6O8fFxxsbGaGho
QKlUIpVKCQwM5MGDB1gsFqFwRKlUUlxcvKgL8WkZHR2lsbGR3t5eLBaL0DV5aGgIk8k0r/hBIpFg
t9vZsmULOp3uB38m09PTdHZ20t3djZ+fH0VFRej1euGcHz16RFtbG93d3fOM6tcyPtmgr6pMLpcv
SkK4ts/+OWJ6eprZ2VlmZmZobm7mwoUL1NbWYjAYkMlkhIeHU1JSwuuvv45arWbDhg1ER0cv2WzG
6XTy9ddf8+GHH3Lnzh2OHDnCrl272LJly/e6U62GHOKT8PPzE/TJ8HjZGB4ejkajobCwEJvNBjwu
o7VarXi9Xqanp5mbm2NkZISJiQmGh4eF4KbRaJDJZEK5pw+1Wi3YWi4F4+PjNDU1cebMGe7duzev
5YvNZhPG7ePixYt4vV7kcjm5ubkEBgYueuVhtVqZm5tjenpaqGC8efOmMLvOzs4Wzvny5ctcuXKF
7u7uJd+sXSl8JeVbt26lrq6O0dFRhoaGBF9oURa2hvHlS+GxprSpqYnu7m4ePHjA119/zcjICDKZ
jMDAQPbu3cvRo0d54YUXFuVetFA8Hg+Dg4M0NjbicDiIi4sjPT19XW2C+PDz80Oj0ZCVlUVWVhYO
hwObzcbg4KAggauvr6e1tZWhoSHGx8cF316PxyPU2/9lKic1NZWCgoLvDD4LybH6UkYej4e6ujpO
njzJpUuXGB0dfWIjyY6ODjweD16vF4VCQVZW1hM7dXwTj8fD6OgoLS0tNDY2MjIywu3bt7l79y5S
qRS1Wk1CQoIwi21paeHBgwdCy6b1gEajIT4+nvz8fGQyGTU1NURHR4sqhfXA8PAwLS0t2O12amtr
qa+vp6enB6vVilKpJDc3l/T0dAIDAzlw4AAlJSUolcpnuimi0WgoLi4mLS1t2XOBK4VMJqO0tBSH
wyH0d4uLiyMpKUnI78JjXe/AwACtra1cvnz5WzOejIwMenp66O7u/v++T1ZWFomJid9rsuPxeJib
m6Ouro7PPvuM69evMzExseCuvQaDgevXr7Nt2zYSEhIWFXB7enq4fv260ItOqVSi1+s5fPgwfn5+
BAUFCdV9JpMJs9mMWq0mKyuL/Pz8JZvZryZcLteiNNBiwF1l+Ga1o6Oj1NTU8PHHH2MymRgYGGBy
clLwQYiPj6ewsJDS0lKUSiUpKSnLsmkTGBjIwYMHyc3NXRPpgqVAIpEQGhoq/Ox2u9mxYwcpKSnz
lvEWi4XW1tZ5JbYWi4Xx8XEsFgt2u53x8XGam5v/v+9TXl5OUVHR9wZBp9PJ2NgYH3zwAfX19QwP
DwtFJwvBZrNhNBqxWq2Lbq3e3t7OjRs3aGhoYG5ujoSEBPbu3UtJSYlwTH19PRMTE4yMjGCxWAgN
DSU+Pp6UlJR10X3ZZrMxPj5OT08PbrebjRs3kp+fL3oprDV8HVd9lSs3b97k1KlTVFdXY7FYkEql
xMbGsmXLFtLS0khMTGTjxo1s3br1mY7LJ4Mxm81YrVZUKhWFhYXEx8evS7vDhSCVSr/VFBMe5zdj
Y2Pn5bMNBgP19fUYDAZhBjwwMIDb7cZut+Pn54dSqcRsNuNwOOjv7//eG5nL5WJycpKLFy8yPT29
LJI7t9uNzWajq6uLR48eMTs7S1paGmVlZbz00kvzpF5hYWGCG11fX58gofJ1g17rmEwmuru7hdRa
ZmYmubm5opfCWuCbX0DfTKivr4/Z2Vn++Mc/cuHCBUFTGxISQkFBAcePH6e0tHTZZpc+Y+++vj4M
BoOQA/T9W43VVyuFSqUiPz9/XgPHO3fuoNVq+frrr7FarQCCjeTw8DAymYzo6Gja29upqanh5s2b
wnOfVYD65ue3kM/QbrfT19fHyMgIHo+HxMREXnzxRX7yk5+Qmpo679i8vDyUSiVtbW2Mj49jNBp5
8OABt2/fJjs7e81Xm5nNZjo7O6mtrRU2UEUvhTWCb+Zgs9no6Ojg0qVLfPjhh0Ixg0wmIyAgAD8/
P1588UWOHDnCjh07lnVm6Xa7GR8f56OPPuL8+fN4vV5mZmawWq1r1tJwOUlJSeFv//ZvsVgswhLe
6XTS2dnJF198gUql4ujRo/z617+mu7t7XnrAbrcLP8vlchwOhzAjnpubW3RKwIcv4JvNZpxO5xM1
2hMTE/zv//4vFy9eRK1WU1FRwc9//vN5Gt9vIpVKCQgIQKVSkZSUxI9//GPeeuutdbHBGhUVRXl5
ORqNht/+9reCH65PJvgkxKtlBRkbG+PmzZs0NzfT29tLR0cH7e3twu+zs7N54403CAgIIDs7m8zM
zEVtciwFEokEnU5HSUkJAwMDfPXVV/zXf/0Xx48fFzpEiHw3arX6W00t3W43UVFRhISEIJfL2bhx
I7/61a+Ympqa10jz9u3bdHV14XQ6SU9P5/bt2wQEBLB161ZOnDjB5OTkUwXd2dlZvvjiC2GDNSMj
43uPdzqdDA0NMTExQVxcHBEREcTExHxnoA4LC+P1118HHs+mIyIiiI6OXhdKBaVSSVhYGPHx8Xi9
Xr744gsUCgWvvvoqoaGhokphteF2u3n06BETExM8evSIc+fOceXKFaanpwW3qoyMDNRqNVu3buXt
t98mKCjoB3XI/SH4WqOXlZUxMDBAZWUlp06dYuPGjeTk5IgB9ymQSqVERkYSEREhPHbkyJFvHVdb
W8u9e/ew2+3k5eWRnJxMYGAgRUVFfPrppxiNxqcKuC6Xi7GxMSYnJ4U0x0KIjo4mNTWV2NjY7/0u
KhQK9Ho9ISEhmEymRY9vreDxeBgfH2dkZERQsDwJMeA+Y3wfgtPpFOwTT5w4wbVr1xgcHBQ2S3yN
DrOzs/nNb34jGGIHBwevCqcqXwWZv7+/oEW1Wq1YLBahYgse31DcbjdyuXxVVpetJp70mebn55Od
nS10h83KysLj8TA8PIxKpUImk+FyuRb9vsHBwfz0pz+loqJCcL1aCDt27GDXrl3s2rXrez/b4eFh
fve733H16lUSEhLYvn37ose4WvF4PDidTux2O3K5nLfeeovjx48TFRUleimsFqxWK6dOneKrr77C
ZrNx69YthoeHMZvNSCQS8vPz2bVrF7m5uYSEhJCRkSHkblfLMkypVLJ7927+4R/+gd///vdcvnyZ
9vZ2YmNj2bVrF8XFxUilUu7du0dNTQ2HDx8mKytrpYe9plEqlUIlmEQiQaFQ4PF4kEql/PrXv+YP
f/gDN2/eZHZ2dlGv6ytJ1mq1i/LYaGlpwWazoVar2bNnz3d+N30qBbPZ/FQ3hNXMyMgIV69e5YMP
PmB6epqAgIBFOcfJqquryc7OXjJDapHHTE9P09vbK+gyv/zySxoaGoSWIzExMRQVFRETE0N2djbb
tm0jOTlZ8CFYbZtRUqmUuLg4ysvLmZ6epra2ljt37nD37l2mpqbo7u5GKpUKwv7du3ev9JDXPBKJ
ZF5Qk0gkeL1eAgIC2LFjB9PT0ygUCmpqahacz42Li2PXrl3CTX0xN/ShoSH8/f0xGAxPXD673W7B
vOgvlQxrGZlMhlarJTQ0FKlUKqzuFroClV24cAGdTicG3CXAbrdjNBqZnp5mYGCA5uZmzp49i8vl
YmBgAJPJRHR0NKGhoRQVFbFjxw4yMjIIDQ0lMjJyVRcSSCQStFotycnJHD16VLjgjEYjk5OT3Llz
Bz8/P6Ft9Gp0B1sP+FI7ERER7NmzBz8/PxwOB83NzRiNxm8VQfj5+eHv709cXBwymYzNmzfz4x//
mPT09EVXCvp8FCwWy3ceMzU1JUgbMzIyKCoqIiMjY8VTYkuFVqslJSWF4uJiampqMBgM9Pf3k5iY
iFwuf3Kb9I6OjkUvSUQe48vnAILDVENDAy0tLfT29tLZ2UlLS4tQ4pmSksKrr76KTqcjMzOTrKys
NXejU6lU5ObmYrfbyczMZGZmZt7vZTIZQUFBREdHr9AInx8SEhKEoGu322ltbcVoNCKRSJBKpYKz
VWxsLD/72c8ICAggKSmJgoICYYa2UGQymXC8r5zVN7P75nVw584dzp07R09PD4WFhSQmJhIZGflM
zn8l8HUQyc7ORiqVUltbS3R0NCEhIYSEhDw54JaWln6nnk7k+/H5js7NzQk+pE1NTcJsw+PxEBIS
QklJCcHBwcLsUKfTCV6sa5WsrCySk5PnyZh8yGSy57YKbbnR6/UUFxdTV1dHR0cHbrebhIQEsrKy
BDvE6Ohojh49ilarxd/fH7VavahUQkBAANu3b2dsbAyj0cjXX39NfX09mzdvRqPRMDIywvXr13G7
3TQ1NfHll18yNDS0KrsILzW+m9tCke3fv3/NzbJWCl85Zl9fHxaLhZ6eHj766CMmJycFBcLo6Ch2
u53Q0FDCw8OJjIzk9ddfR6/Xo9PpBMu+1bIZ9rRoNBoxqK4CrFYrExMTmEwmXC4XQUFB5Ofnc+zY
MbRa7by2QAqF4qmW9gEBAezevZuBgQGuXr1KY2MjKpUKs9lMcHAwHR0d/PGPf8TlcjE6Oiq4qq2H
Ut6/xGq1MjIywqNHj3C73WzatIktW7ag1WoX5qWQk5OzDMNcm/gCrM1mw+Px4HA4mJ6e5uzZs4yM
jDA8PMyVK1eYnZ1FIpHg7++PQqEgLS2NzZs3k5GRQUhICLt3717zJY0iqxODwcC1a9fo6OjAZDIR
ExNDXFwc27dvX7I9AZVKRXp6OmlpabS1tdHX18etW7eESsiBgQHa29uF1Y7vZuzzBV5P/KWXQkpK
iqCbXwjr66+xRPj8AqxWKwaDgcHBQcFUZnR0lBMnTggu9z4iIiKIjY0lIiKCbdu2sX///jXfv0lk
9dPX10dlZSV37tzBbrc/sSjhhxARETFP6tfR0SH8f8uWLd86fj0aHPliwt27d7Hb7YI5j+il8AOY
m5vDarUyODhIVVUV586dEwyefT4HAQEB85YRP/rRj6ioqGDbtm2Cs7+IyHKiUqkIDAwUNNxLTUlJ
Cbm5ud/qJPFd6HS6deeZHBUVxb59+9BoNPzjP/4jMzMzGI1GlErlwgofnmfHp2+6538z33Tx4kWa
m5vp7u6mq6uLzs5OzGazUIigUCjYt28f5eXlQjuRuLg4UlNTxXy4yLLhq+rzfX9zcnLYv3+/0PVj
qVnK9kBrFYVCQVBQEHq9Ho/Hw9mzZ4XuvWFhYU/2UrDb7Wt6t/yH4MvRNjU1YTQahcc/+eQT6urq
GB4eFh5Tq9VER0eTk5ODQqHgyJEjHDhw4Ln924msPPfv36etrU1QxCQkJLBlyxY2bdq00kN7brBY
LFgslgX7/cpmZmaeu6Dhq4Wem5tjbGyMf/7nf6atrU34vdlsxuPxoNFoBAH/hg0bKC8v5+/+7u+A
xwH4mw0CRUSWm5MnT/LBBx8wMDCAXC4X/BVEnh0+S1WTyYRcLuf48eMcP36csLAw0Z7xu3jw4AHV
1dXcuHEDu90uzBJ8eDwe8vPz2bt3L4WFhcDjAKvX6wV7xLUu6xJZ+1gsFqELx6FDh4TWRyLPjqGh
IS5dusT777/P5OQkKpUKjUazYC2ubD30GXoSzc3NdHV1MTU1BUB3dzdNTU3cvXtXMGP29SbymXn4
6sB9XqFSqVQQkouIrBRutxuj0Uh1dTVtbW2YTCYUCgXJyckkJSUtS1+75xmfH25CQgKPHj1CKpUK
VX0LYV0FXJ+KoKenZ15zv3PnztHc3MzQ0BDwWIUwMzODRCIhPj4eqVTK3r172b9/PyqVCj8/P3Q6
HWFhYQQFBa3U6YiIfAu3283U1BSffvopd+/eRSaTkZqaKnTgXYz7l8jiCQgIIC0tjZKSEq5du0Zf
Xx9dXV2kpqaiUCieXNq7lk1GfM3pnE6nEGxNJhOfffbZPI3g7du36e/vx2w2CzPU4OBgcnJyOHr0
KDKZjKysLDZu3PjU1TgiIsuBTx9+//59xsbGyMjI4KWXXiInJ2dVmx+tF1QqFVFRUaSmpiKRSAQv
hYiICEJDQ58ccJdpnM8Em81Gd3c3d+/exWg04na7MZvNnDx5ku7u7nnHRUREUFBQQFJSkjCDzczM
pKKiAqlUOs97VERkrRAZGcnWrVtJTExccLWTyNKhUqlQqVQL3tNZkwF3aGhIaG1x584dbty4wfDw
MF6vF5fLRXd3N2q1mg0bNgiORmlpaRQXF7Np0yYkEglyuZzg4GBCQkLEGa3ImsBut2MwGLh9+zZW
qxWPx4NcLkej0Sy4iaHID8NisWAwGLh//z4ej4e8vDy2bdu2cC+FZRjjU+P1evF4PMzOzs5zHqqv
r+fOnTv09PTQ09PDw4cPsdls+PLRarWawsJCdu3ahVqtxs/Pj9jYWDIyMkhKShIVBiJrCl+6bHh4
mIaGBs6ePcvMzAwajYbAwEBxZbaMmEwmenp6aGpqwuFwkJCQQHJyMgvdC1v1AdftdtPX18fk5KQg
LK6uruby5ct0dnYCj0sIY2Nj53mw7tu3j7feegudTifOYEXWNF6vF7PZzKNHj6iuruazzz4DHrdg
j42NRaPRiJOIZcJX8u/zUlgsqyrg+nKw09PTOBwO4ed//dd/pa6uTnAjMplMeDwewsPDCQgIICcn
h1deeYX9+/cLr6XRaAgICFipUxERWTIcDgcPHjzgxIkTVFVVCY8fO3aMN954Q2jNJPLsiY6O5uWX
XyY0NJS///u/F1KbsbGxQqOB72NFA65vqeTrxWQymbh16xZVVVX09fXh9XpxOp00NzczNjY2T++W
np7Orl272L59OxERESQlJYk+BiLrDt81YjabmZqaYm5uTmizExISQnBwsFjxuIzI5XICAgIICwvD
4/FQWVmJUqnkzTffJCws7Ik3vhUNuBaLhebmZkZHR4VyudbWVr788kv6+/vnHZucnExeXp6Qk01L
S6O0tJRt27aJd3eRdYvJZKKzs5OamhpGRkYEhU1paSlpaWnPXVn+asNnaLXgwodnPB4Bn4H3zMyM
MKMdGhri97//PU1NTULXUZfLhdfrJTAwcJ7MpaysjF/96ldEREQIbS3kcrlY+SWyrhkbG+PatWuc
OHGC8fFxdDodmzZt4je/+Q2pqaliwF1mfFr/qakppFIpP/nJT3jzzTcJDg5eUNBdtmhlNptpb2/n
3XffFRoP2mw2Hj58yPT0NE6nU9gUS05OZv/+/bz88svC8/V6/bw2Ib5/IiLrGa/Xi8PhwG63ExAQ
QHl5Oe+88w5JSUkolUrxGlhmDAYDVVVV/Pd//zdTU1MoFIpFfQ7PNODa7XZ6e3tpaWmhp6eHgYEB
bt68idVqBR7Pei0WCzk5OWRmZgrNLPV6PXl5efM6JigUCvz9/cVAK/Lc0NnZyfXr17l+/ToWiwWd
Toder2fjxo1CI0jxWlhe1Go1sbGxbNy4EYPBgEQiWbmUgsPhoK+vT1AZWK1W7t27x6VLl+js7MRi
sTA2Nobb7SYsLIy4uDiUSiWlpaVs376dxMRE4HH1RnBwsODMJSLyPOF0OhkaGuLGjRtUVVXR2tqK
UqkkLS2NtLS0594EfCXxeSns2LGDK1eu0NXVxcOHD8nIyFhQc9gfFHB9KQCr1SrkZysrK2lvbxeC
7sjICN3d3ZhMJpRKpSDVysvL49ChQ4SEhJCamkp8fLzYaFFEhMcrw5qaGs6fP09tbS0TExMkJydT
VlZGcXHxSg/vucbf35/w8HASExPx8/Ojrq6OmJgY9Ho9YWFhz95Lwe12U1tbS3t7O1NTU1y6dImu
ri7m5uaEUludTsfWrVvJz88XnpeTk8PevXvR6XSij4GIyDdwOBx0dHTw4MEDRkdHkclkhIaGsnHj
RlJTU1d6eCL/D59iJDg4eMHxa1EB1+VyYTQaGRgYYGZmRqgEO3XqFM3NzZhMJkZGRtBoNKSkpAjW
hnq9nqKiIkpLS4XXCgoKIjIyUnTnEhH5Bkajkbt379LVOc4mPwAACpxJREFU1cX09DRyuZzY2Fhy
c3PR6/Wi5naFMZvN9PX10dbWhsvlYvPmzWzdunVpvRTMZjMWi4WZmRm6u7upqamht7dX8Dpoampi
eHhY6EWfn59Pfn4+CQkJwGMrxJSUlHktlkVEROYzMzPD3bt3uXjxInfv3sXhcBAXF8e2bdt44YUX
5pWui6wMvoB769YtHA4HsbGxxMfHL/hG+J0B95ua2IGBAbq6uujt7aW9vV3YBPumO1FsbCz5+fkE
BASwc+dOiouLSU9P/+FnKCKyjvHtgzidTh4+fMiXX37JqVOn6O3tJSoqiq1bt/LKK69QVlYmlqqv
Ar5Z9ed2u3G5XIIf90IUVN8ZcM1mM6OjozgcDi5dusSFCxdoamrC6XTidrsJDQ2dt8lVUlLCL3/5
S2JiYtBqtaIgW0RkgTgcDgYHB/n00085ffo0AwMD6HQ6du7cyZEjR3jhhRdEr9tVQkREBKWlpahU
Kh4+fCh4KSiVygWlR4WA60sPWK1WvF4vt2/f5sMPP8RgMNDX18fg4CCTk5NIpVLi4+PZs2cPBw8e
FF4oMjKS9PR00blIRGQReDwejEYjv/vd7/jyyy8ZHBxEJpNRXl7O4cOHBa9VkdWBTCZDrVaj0+lw
u92cO3cOf39/fvrTnxIeHr5wlYLL5WJqaooLFy4wOztLe3s7Z8+eZXR0FJfLBTxupBgXF0dZWRmH
Dh2irKzs2Z6diMg6x9cyp6amhu7ubux2O8HBwaSnp5OZmUlUVNRKD1HkO/Dz8yMgIIDAwMAFWwzI
rFYrMzMzGI1Gurq6+O1vf8vAwAAejwev10tQUJDQ716lUlFcXMzx48fZtm3bMz4dEZH1jdvtZnZ2
lsHBQex2O16vV9B5LuYiFlk+fPUGo6OjSKVSjhw5wvHjxxdcjCK7c+cOH374IXV1ddhsNgwGA06n
E3hcVfGzn/2M4uJi9Ho9EomEoKAg9Hq92M5DROQHMjMzw8WLF3n33Xfp6enB6XSyefNm3n77bfbu
3SuUuousHoaGhqisrOQ///M/mZiYQCqVLurGKPvTn/7E1atX6enpERy99uzZQ35+PkFBQezYsYPk
5GShc4LPpUvUzoqIPB0ul4vR0VGqqqo4deqU0CJq586dHDhwgNLSUlFzu0rRarWkpqZSUlJCZWXl
oo20pLOzs/+nt7cXm82Gv78/+fn5HDt2jIqKCvLz80lMTCQkJASVSoVCoUAul4ubYiIiT4nVamV4
eJhr165x+vRp6uvrsdvt5OXlcfjwYcrKykhKSkKlUomryFWIVCoV1Ag3btwgNDSUyMhIgoOD5zVI
+C5kg4ODyOVygoKCiI6O5u2336a0tJQNGzagUCiW6TRERNY/DoeD4eFh6uvr+eijjwQf6LCwMF57
7TX27dtHUlKSKAFbxSiVSkJCQoiNjQWgsbGRDRs2EB8fj0KheLJKQa/X86Mf/YisrCzCwsI4cOCA
UJIrIiKydPT29vLVV1/x2WefUV9fj9lsRiqVolar2blzJykpKaJ+fY3g6/QQFRVFTEzMgi0KZOHh
4RQVFbFz506USqV4dxURWWJcLhd9fX1cu3aNy5cvc+/ePZRKJenp6URFRQmqBHFfZPVjMpno7u6m
oaEBh8NBbm4uBQUFaDSahQVcrVZLXFycWIYrIvIMsFqtjI6Ocu3aNaqrq2lpacFut5OZmUlZWRlZ
WVmo1WrCwsJEGdgawGw209/fz+3bt3E4HPNmuAtB/IRFRJ4hU1NTNDQ08MUXX9DQ0IDZbCY1NZUX
X3yRQ4cOkZOTs9JDFFkEPstZh8MhtD9yOBwL7kYjBlwRkWfIwMAAn3zyCTdv3sRoNBITE0NBQQGv
v/46cXFxKz08kUUSHh7Ozp07UalU3L59m+HhYQYHB0lJSVlQHlfUd4mILDEej4eZmRkmJyeZmppi
ZmYGm82GRCJBq9USFBSEVqsVTffXIFKpVNjrcrlcVFVVcebMGYxGI263+4nPF2e4IiJLiNfrxWaz
cebMGYaGhuju7qa/vx+n0yl42+7cuVPcnF4H+FQK0dHRC65PEAOuiMgSY7FY+J//+R+ampqwWCz4
+fkREhJCcXExR44coaKiYqWHKPKU2O12JicnGRgYwM/PjwMHDvDqq68u+AYqBlwRkWeMSqXi8OHD
HD16lMLCwpUejsgPYHBwkDNnzvDee+8xNTW16OdLjh07RkpKyjMYmojI84XFYqGhoYF/+qd/oqur
S2iRc/z4cQ4ePEh2drbobbvGCQoKYtOmTVRUVDxVBw7pu++++398OQgREZHFYbVaGRkZoaWlhba2
Nq5cucInn3zC+Pg4cXFx7N69myNHjrB582bCwsLE62yNI5PJUCqV+Pn5cfXqVQIDAwkLCyM0NBSZ
TPZkWVhcXJzoSiQi8hTY7XaGhoZobGzk9OnTjIyMMDo6ytDQECEhIezatYtDhw5RWFiITqcTg+06
QKFQoNPpiIyMxOv10tLSQkJCAikpKSiVyid7KYgGNSIiT8fg4CDXr18XvBFmZ2cFE/FDhw5x6NAh
tmzZQkhIiFi2uw6RSCTExMQsrmuv+EUQEVkcbreb7u5url69SlVVFU1NTfj5+ZGfn09MTAxqtZqj
R4+Sk5NDUFCQaGe6jpidneXRo0fcvHkTh8NBXl4ehYWFaLXaBdlpiioFEZFF8JfeCA0NDUxMTJCQ
kMDu3bspKSlBoVCQn5+PTqcT/RHWGVarlcHBQe7du4fT6SQ8PJzIyMgFp4vEb4OIyALx+dnW1tZS
WVlJS0sL4+PjBAYGEhkZybZt23jllVdWepgizxBf1xvfjdRms2G1WkUvBRGRpWZiYoLGxkbef/99
mpub8Xq9bNiwAb1eT1JSEjqdbqWHKPKMCQsLo7i4GH9/fxobGxkcHKS/vx+1Wi2oF74PMeCKiDwB
j8fD9PQ0Fy9e5PPPP6e1tRWPx8OmTZvYt28fe/fuRa1WExMTs9JDFXnGSCQS5HI5CoUCl8vF5cuX
CQoKIjIykvDw8CerFJZpnCIiawav1ws8DrQ+C74zZ85w8uRJGhsbmZubE9IHZWVlbNq0aYVHLLJc
eL1ePB4PHo8HPz8/4uPjSUpKwt/fX/RSEBF5Grxer6CxnZycxGq18oc//IHW1lYAUlNTOXDgABUV
FWRkZKzwaEWWE9+m6aNHj/B6vbz44oscPHhQ9FIQEfkhDA4O8t5773H69Gk8Hg8TExPY7XZycnL4
m7/5G8rKyoiOjl7pYYosMwaDgdOnT/Nv//ZvWCyWRT9fDLgiIt/Ap7P805/+xKVLlxgZGRFc/nfu
3MmhQ4coLS0lPDxclHw9h4SFhbF9+3YmJyf56KOPFv18UZEtIvL/mJiYoLW1lZMnT1JdXU1PTw8O
hwOPx8P27ds5cOAAL7zwAnFxcQvO2YmsL7RaLcnJyRQVFaFQKLh16xYNDQ3Mzc3h8Xie+HzxFi3y
3OP1epmbm+PevXtUVVXx+eefMzQ0hEajITIyEqVSyWuvvcauXbtITExEpVKt9JBFVgi5XE5AQACh
oaF4vV7a2tpISUkhMzMTlUolqhRERJ6Ex+Ohra2NyspKqqqq6OzsJCwsjPLycrZu3YpMJmPfvn3E
xMSIRk8iAlKplOTkZNLS0hb8vfi/M/6898D6UToAAAAASUVORK5CYII=
"
id="image843"
x="41.652977"
y="150.26443"
style="opacity:0.33246322" />
<circle
style="opacity:1;fill:#000000;fill-rule:evenodd;stroke-width:1.165;stroke-linecap:round"
id="path849"
cx="104.14818"
cy="173.08696"
r="2.1439371" />
<circle
style="fill:#000000;fill-rule:evenodd;stroke-width:1.165;stroke-linecap:round"
id="path849-3"
cx="107.28627"
cy="208.00011"
r="2.1439371" />
<circle
style="fill:#000000;fill-rule:evenodd;stroke-width:1.165;stroke-linecap:round"
id="path849-3-6"
cx="78.637512"
cy="199.65303"
r="2.1439371" />
<path
style="fill:none;stroke:#000000;stroke-width:1.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
d="m 80.29042,199.10253 c 8.147222,-2.97716 19.060655,-11.96107 23.26785,-24.38034"
id="path893"
sodipodi:nodetypes="cc" />
<path
style="fill:none;stroke:#000000;stroke-width:1.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
d="m 106.63258,206.74252 c -1.33862,-5.5145 -0.58865,-13.09594 -0.35784,-18.4834 0.22174,-5.17585 -0.0726,-11.58807 -1.48986,-13.59537"
id="path895"
sodipodi:nodetypes="csc" />
<text
xml:space="preserve"
id="text897"
style="font-size:4.93889px;line-height:1.25;font-family:'Myriad Pro';-inkscape-font-specification:'Myriad Pro';letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect899);" />
<text
xml:space="preserve"
style="font-size:10.1591px;line-height:1.25;font-family:'Myriad Pro';-inkscape-font-specification:'Myriad Pro';letter-spacing:0px;word-spacing:0px;stroke-width:0.544238"
x="101.26399"
y="168.81955"
id="text905"><tspan
sodipodi:role="line"
id="tspan903"
x="101.26399"
y="168.81955"
style="stroke-width:0.544238">a</tspan></text>
<text
xml:space="preserve"
style="font-size:10.1591px;line-height:1.25;font-family:'Myriad Pro';-inkscape-font-specification:'Myriad Pro';letter-spacing:0px;word-spacing:0px;stroke-width:0.544238"
x="111.28193"
y="211.37102"
id="text905-3"><tspan
sodipodi:role="line"
id="tspan903-5"
x="111.28193"
y="211.37102"
style="stroke-width:0.544238">d</tspan></text>
<text
xml:space="preserve"
style="font-size:10.1591px;line-height:1.25;font-family:'Myriad Pro';-inkscape-font-specification:'Myriad Pro';letter-spacing:0px;word-spacing:0px;stroke-width:0.544238"
x="77.399193"
y="210.4151"
id="text905-3-6"><tspan
sodipodi:role="line"
id="tspan903-5-2"
x="77.399193"
y="210.4151"
style="stroke-width:0.544238">c</tspan></text>
</g>
</svg>

After

Width:  |  Height:  |  Size: 41 KiB

116
exercise10/main.tex Normal file
View File

@ -0,0 +1,116 @@
\documentclass[12pt]{article}
\usepackage{ntnu}
\usepackage{ntnu-math}
\author{Øystein Tveit}
\title{MA0301 Exercise 10}
\usepackage{amsthm}
\usepackage{mathabx}
\usetikzlibrary{arrows.meta}
\begin{document}
\ntnuTitle{}
\break{}
Because there are no exercise where there are multiple edges between two vertices, I will use strings of vertex names to represent a walk.
\begin{excs}
\exc{}
\begin{subexcs}
\subexc{}
\[ bcbcd \]
\subexc{}
\[ bacbed \]
\subexc{}
\[ bcd \]
\subexc{}
\[ bcb \]
\subexc{}
\[ befgedcb \]
\subexc{}
\[ bacb \]
\end{subexcs}
\exc{}
\begin{figure}[H]
\center
\scalebox{2}{
\input{diagrams/ex2.tex}
}
\end{figure}
\exc{}
By using trial and error, starting with the nodes that had a higher degree, I managed to bring it down to three nodes.
\includeDiagram[scale=2, width=12cm]{diagrams/ex3.tex}
The red vertices represent the guards
\exc{}
\begin{subexcs}
\subexc{}
The graphs are not isomorphic because the shortest cycle between the vertices with a degree of 3 has a different length.
\subexc{}
The graphs are isomorphic
\end{subexcs}
\exc{}
\begin{subexcs}
\subexc{}
\includeDiagram[scale=2, width=12cm]{diagrams/ex5_a.tex}
\[ adhijkgcbgjfbefiedba \]
\subexc{}
Because $deg(e) = deg(f) = 3$ is now odd, they have to be the starting vertex and ending vertex.
\includeDiagram[scale=2, width=12cm]{diagrams/ex5_b.tex}
\[ dabdhijkgcbgjfbefie \]
\end{subexcs}
\exc{}
\begin{subexcs}
\subexc{}
$G_1$ is not an induced subgraph if it's missing an edge $e_1$ between $v_1, v_2 \in G_1$ where $e_1 \in G$
\subexc{}
\includeDiagram[scale=0.8, width=6cm, pdf=true]{diagrams/ex6_b.pdf}
$G_1$ contains the vertices $c$ and $d$ while it is missing the edge $cd$ even though $cd$ was present in $G$. Therefore, it is not an induced subgraph
\end{subexcs}
\exc{}
\begin{align*}
\sum_{deg(v) \in V} = 2 |E| \\
3|V| \leq 2 |E| \\
|V| \leq \frac{2 |E|}{3} \\
|V| \leq \frac{2 \cdot 17}{3} \\
|V| \leq \frac{34}{3} \\
|V| \leq 11.33 \\
\end{align*}
The max amount of vertices in $G$ has to be $11$
\end{excs}
\end{document}

View File

@ -0,0 +1,24 @@
\newcommand{\point}[3]{
\node [label=#3:$#1$] (#1) at #2 {};
}
\begin{tikzpicture}[]
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
\point{a}{(0,1)}{left}
\point{b}{(1,2)}{above}
\point{c}{(2,1)}{above right}
\point{d}{(1,0)}{below}
\point{e}{(4,1)}{above left}
\point{f}{(5,2)}{above}
\point{g}{(6,1)}{right}
\point{h}{(5,0)}{below}
\end{scope}
\draw (a) -- (b) -- (c) -- (d) -- (a);
\draw (e) -- (f) -- (g) -- (h) -- (e);
\draw (b) -- (f);
\draw (c) -- (e);
\draw (d) -- (h);
\end{tikzpicture}

View File

@ -0,0 +1,27 @@
\newcommand{\point}[3]{
\node [label=#3:$#1$] (#1) at #2 {};
}
\begin{tikzpicture}[]
\begin{scope}[every node/.style={fill=black, shape=circle, inner sep=1pt}]
\point{a}{(0,1)}{left}
\point{b}{(1,2)}{above}
\point{c}{(2,1)}{above right}
\point{d}{(1,0)}{below}
\point{e}{(4,1)}{above left}
\point{f}{(5,2)}{above}
\point{g}{(6,1)}{right}
\point{h}{(5,0)}{below}
\end{scope}
\draw (a) -- (b);
\draw (e) -- (f);
\draw (c) -- (d);
\draw (h) -- (e);
\draw (b) -- (c);
\draw (f) -- (g);
\draw (c) -- (e);
\end{tikzpicture}

211
exercise11/main.tex Normal file
View File

@ -0,0 +1,211 @@
\documentclass[12pt]{article}
\usepackage{ntnu}
\usepackage{ntnu-math}
\usepackage{ntnu-code}
\author{Øystein Tveit}
\title{MA0301 Exercise 11}
\begin{document}
\ntnuTitle{}
\break{}
\begin{excs}
\exc{}
\[n^{n-2} = 4^{4-2} = 4^{2} = 16\]
\exc{}
To solve this exercise, I chose to implement the algorithm in python
In order to keep track of the nodes, I have given them the following labels
\includeDiagram[width=13cm, scale=1.6]{diagrams/ex2_1.tex}
\break
\codeFile{scripts/Kruskal.py}{python}
Output:
\begin{verbatim}
[('a', 'b'), ('e', 'f'), ('c', 'd'), ('h', 'e'), ('b', 'c'), ('f', 'g'),
('c', 'e')]
\end{verbatim}
When we connect the nodes, we get the minimal spanning tree:
\includeDiagram[width=13cm, scale=1.6]{diagrams/ex2_2.tex}
\exc{}
\begin{subexcs}
\subexc{}
By counting the vertices, edges and regions, we can see that
\begin{align*}
|V| &= 17 \\
|E| &= 34 \\
|R| &= 19
\end{align*}
By applying Eulers theorem, we can confirm that this is a possible graph
\begin{align*}
V + R - E &= 2 \\
17 + 19 - 34 &= 2 \\
36 - 34 &= 2 \\
2 &= 2
\end{align*}
\subexc{}
By counting the vertices, edges and regions, we can see that
\begin{align*}
|V| &= 10 \\
|E| &= 24 \\
|R| &= 16
\end{align*}
By applying Eulers theorem, we can confirm that this is a possible graph
\begin{align*}
V + R - E &= 2 \\
10 + 16 - 24 &= 2 \\
26 - 24 &= 2 \\
2 &= 2
\end{align*}
\end{subexcs}
\exc{}
Every edge touches 2 regions. And every is connected to at least 5 edges. Therefore the amount of edges will be
\[ E \geq \frac{53 \cdot 5}{2} = 132.5 \]
Since the amount of edges has to be an integer, we can round it up to $E \geq 133$
Now we can use Eulers theorem for planar graphs to determine the amount of vertices
\begin{align*}
V + R - E &= 2 \\
V &= 2 - R + E \\
V &\geq 2 - 53 + 133 \\
V &\geq 82
\end{align*}
Therefore $|V| \geq 82$
\exc{}
\begin{subexcs}
\subexc{}
By flipping the matrix once vertically and once horizontally, the matrix will equal the other matrix.
Because flipping a matrix is a bijective function, composing two of them will also make a bijective function.
After checking that the last matrix is a valid undirected graph, it is safe to conclude that the graphs are isomorphic
\[
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
\cong
\begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}
\cong
\begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]
\subexc{}
By the same reasoning as \textbf{a)}, we have the following
\[
\begin{bmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}
\cong
\begin{bmatrix}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{bmatrix}
\cong
\begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{bmatrix}
\]
\end{subexcs}
\exc{}
\begin{subexcs}
\subexc{}
\[ uv = ababbab \]
\[ |uv| = 7 \]
\subexc{}
\[ vu = bababab \]
\[ |vu| = 7 \]
\subexc{}
\[ v^2 = babbab \]
\[ |v^2| = 6 \]
\end{subexcs}
\exc{}
\begin{subexcs}
\subexc{}
\[ KL = \{ ab^2, abb^2, a^2b^2, aaba, ababa, a^2aba \} \]
\subexc{}
\[ LL = \{ b^2b^2, b^2aba, abab^2, abaaba \} \]
\end{subexcs}
\exc{}
\begin{subexcs}
\subexc{}
\[ L^* = \{b^2\}^* \]
\subexc{}
\[ L^* = \{a,b\}^* \]
\subexc{}
\[ L^* = \{a,b,c^3\}^* \]
\end{subexcs}
\exc{}
\begin{subexcs}
\subexc{}
$w$ does not belong to $r$ because $w$ is does neither fit $a^*$ nor $(b \vee c)^*$
\subexc{}
$w$ does belong to $r$ because $w$ is exactly $(a \cdot 1) (b \vee c \cdot 2)$
\end{subexcs}
\end{excs}
\end{document}

View File

@ -0,0 +1,40 @@
def kruskal(vs, es):
f = []
sets = [set(v) for v in vs]
find_set = lambda v: [x for x in sets if v in x][0]
def merge_sets_that_contains(u, v):
setv = find_set(v)
newsets = [x for x in sets if v not in x]
newsets = [setv.union(x) if u in x else x for x in newsets]
return newsets
sorted_es = [e for e,w in sorted(es, key=lambda e: e[1])]
for (u, v) in sorted_es:
if find_set(u) != find_set(v):
f += [(u, v)]
sets = merge_sets_that_contains(u,v)
return f
if __name__ == '__main__':
vs = [chr(i) for i in range(ord('a'), ord('h') + 1)]
es = [
(('a', 'b'), 1),
(('b', 'c'), 5),
(('c', 'd'), 3),
(('d', 'a'), 7),
(('e', 'f'), 2),
(('f', 'g'), 6),
(('g', 'h'), 8),
(('h', 'e'), 4),
(('b', 'f'), 10),
(('c', 'e'), 9),
(('d', 'h'), 11)
]
print(kruskal(vs,es))

View File

@ -0,0 +1,21 @@
% https://www3.nd.edu/~kogge/courses/cse30151-fa17/Public/other/tikz_tutorial.pdf
\begin{tikzpicture}
\tikzset{
->, % makes the edges directed
>=Stealth, % makes the arrow heads bold
node distance=3cm, % specifies the minimum distance between two nodes. Change if necessary.
every state/.style={thick, fill=white}, % sets the properties for each state node
initial text=$ $, % sets the text that appears on the start arrow
}
\node[state, initial] (s0) {$s_0$};
\node[state, below of=s0] (s1) {$s_1$};
\node[state, accepting, right of=s0] (s2) {$s_2$};
\draw (s0) edge[right] node{b} (s1)
(s0) edge[above] node{a} (s2)
(s1) edge[loop below] node{a, b} (s1)
(s2) edge[bend left, right] node{a} (s1)
(s2) edge[loop above] node{b} (s2);
\end{tikzpicture}

View File

@ -0,0 +1,26 @@
\begin{tikzpicture}
\tikzset{
->, % makes the edges directed
>=Stealth, % makes the arrow heads bold
node distance=5cm, % specifies the minimum distance between two nodes. Change if necessary.
every state/.style={thick, fill=white}, % sets the properties for each state node
initial text=$ $, % sets the text that appears on the start arrow
}
\node[state] (s0) {$s_0$};
\node[state, right of=s0] (s2) {$s_2$};
\node[state, below of=s0] (s3) {$s_3$};
\node[state, right of=s3] (s1) {$s_1$};
\draw (s0) edge[loop above, above] node{a,0} (s0)
(s0) edge[right] node{b,1} (s3)
(s0) edge[above] node{c,1} (s2)
(s1) edge[below, loop below] node{(a,0), (b,0)} (s1)
(s1) edge[below] node{c,1} (s3)
(s2) edge[right] node{(a,1), (b,1)} (s1)
(s2) edge[below right, bend left] node{c,0} (s3)
(s3) edge[above left, bend left] node{a,1} (s2)
(s3) edge[below, loop below] node{b,0} (s3)
(s3) edge[left, bend left] node{c,1} (s0);
\end{tikzpicture}

110
exercise12/main.tex Normal file
View File

@ -0,0 +1,110 @@
\documentclass[12pt]{article}
\usepackage{ntnu}
\usepackage{ntnu-math}
\author{Øystein Tveit}
\title{MA0301 Exercise 12}
\usetikzlibrary{automata, positioning, arrows.meta}
\begin{document}
\ntnuTitle{}
\break{}
\begin{excs}
\exc{}
\[ r = \{a,b\}^* a \{a,b\}^* a \{a,b\}^* a \{a,b\}^* \]
\exc{}
\begin{subexcs}
\subexc{}
\[ \{ab\} \{ab\}^* \]
\subexc{}
\[ a (a | \lambda) b (b | \lambda)\]
\end{subexcs}
\exc{}
\[ M = (Q, \Sigma, \delta, s, F) \]
\begin{align*}
Q &= \{ s_0, s_1, s_2 \} \\
\Sigma &= \{a, b\} \\
\delta &= \begin{Bmatrix}
s_0 \xrightarrow{b} s_1, \\
s_0 \xrightarrow{a} s_2, \\
s_1 \xrightarrow{a,b} s_1, \\
s_2 \xrightarrow{a} s_1, \\
s_2 \xrightarrow{b} s_2
\end{Bmatrix} \\
s &= s_0 \\
F &= \{ s_2 \}
\end{align*}
\includeDiagram[scale=1.6, width=10cm]{diagrams/ex3.tex}
\exc{}
The words $L$ can be described by the regular expression $r$ where
\[ r = a^* b b^* a \{a,b\}^* \]
\exc{}
The words in $L$ can be described by the regular expression $r$ where
\[ r = (a^* b)^3 \{ (a^* b)^4 \} \]
\exc{}
\begin{subexcs}
\subexc{}
\begin{align*}
s_0 &\xrightarrow{a, 0} s_0 \\
s_0 &\xrightarrow{a, 0} s_0 \\
s_0 &\xrightarrow{b, 1} s_3 \\
s_3 &\xrightarrow{b, 0} s_3 \\
s_3 &\xrightarrow{c, 1} s_0 \\
s_0 &\xrightarrow{c, 1} s_2
\end{align*}
The output would be $001011$
\subexc{}
\includeDiagram[scale=1.2, width=13cm]{diagrams/ex6_b.tex}
\end{subexcs}
\exc{}
\begin{subexcs}
\subexc{}
Suppose we have $a \in A, b \in B$
\begin{align*}
AB^* &= \{a, ab, ab^2, ab^3, \ldots \} \\
&= \{a\} \cup \{ab, ab^2, ab^3, \ldots \} \\
&= A \cup \{ab, ab^2, ab^3, \ldots \} \\
&\Rightarrow A \subseteq AB^*
\end{align*}
\qed
\subexc{}
Since $A \subseteq B$, we can rewrite $B$ as $A \cup \overline{A}$ where $\overline{A} = \{b \mid b \in B, b \notin A \}$
\begin{align*}
B^* &= (A \cup \overline{A})^* \\
&= A^* \cap \overline{A}^* \cap B_1, \qquad B_1 = \{(B^*\ a\ B^*\ a_1\ B^*) \vee (B^*\ a_1\ B^*\ a\ B^*) \mid a \in A, a_1 \in \overline{A}\} \\
&\Rightarrow A^* \subseteq B^*
\end{align*}
\qed
\end{subexcs}
\end{excs}
\end{document}

View File

@ -0,0 +1,29 @@
\def\cone{(90:2cm) circle (2.5cm)}
\def\ctwo{(180:2cm) circle (2.5cm)}
\def\cthree{(270:2cm) circle (2.5cm)}
\def\cfour{(360:2cm) circle (2.5cm)}
\def\universe{(-5, -5) rectangle (5,5)}
\begin{tikzpicture}[scale=0.8]
\fill[cyan] \universe;
\begin{scope}
\clip \ctwo;
\fill[white] \universe;
\end{scope}
\begin{scope}
\clip \cthree;
\fill[white] \universe;
\end{scope}
\begin{scope}
\clip \cfour;
\fill[white] \universe;
\end{scope}
\draw \cone node[text=black,above] {$c_1$};
\draw \ctwo node [text=black,left] {$c_2$};
\draw \cthree node [text=black,below] {$c_3$};
\draw \cfour node [text=black,right] {$c_4$};
\draw \universe;
\draw (0, 5) node [text=black,above] {$N$};
\end{tikzpicture}

View File

@ -0,0 +1,30 @@
\def\cone{(90:2cm) circle (2.5cm)}
\def\ctwo{(180:2cm) circle (2.5cm)}
\def\cthree{(270:2cm) circle (2.5cm)}
\def\cfour{(360:2cm) circle (2.5cm)}
\def\universe{(-5, -5) rectangle (5,5)}
\begin{tikzpicture}[scale=0.8]
\fill[white] \universe;
\fill[red] \cone;
\begin{scope}
\clip \ctwo;
\fill[white] \universe;
\end{scope}
\begin{scope}
\clip \cthree;
\fill[white] \universe;
\end{scope}
\begin{scope}
\clip \cfour;
\fill[white] \universe;
\end{scope}
\draw \cone node[text=black,above] {$c_1$};
\draw \ctwo node [text=black,left] {$c_2$};
\draw \cthree node [text=black,below] {$c_3$};
\draw \cfour node [text=black,right] {$c_4$};
\draw \universe;
\draw (0, 5) node [text=black,above] {$N$};
\end{tikzpicture}

View File

@ -0,0 +1,33 @@
\def\cone{(90:2cm) circle (2.5cm)}
\def\ctwo{(180:2cm) circle (2.5cm)}
\def\cthree{(270:2cm) circle (2.5cm)}
\def\cfour{(360:2cm) circle (2.5cm)}
\def\universe{(-5, -5) rectangle (5,5)}
\begin{tikzpicture}[scale=0.8]
\fill[ForestGreen] \universe;
\begin{scope}
\clip \cone;
\fill[white] \universe;
\end{scope}
\begin{scope}
\clip \ctwo;
\fill[white] \universe;
\end{scope}
\begin{scope}
\clip \cthree;
\fill[white] \universe;
\end{scope}
\begin{scope}
\clip \cfour;
\fill[white] \universe;
\end{scope}
\draw \cone node[text=black,above] {$c_1$};
\draw \ctwo node [text=black,left] {$c_2$};
\draw \cthree node [text=black,below] {$c_3$};
\draw \cfour node [text=black,right] {$c_4$};
\draw \universe;
\draw (0, 5) node [text=black,above] {$N(\overline{c}_1\overline{c}_2\overline{c}_3\overline{c}_4)$};
\end{tikzpicture}

View File

@ -0,0 +1,33 @@
\def\cone{(90:2cm) circle (2.5cm)}
\def\ctwo{(180:2cm) circle (2.5cm)}
\def\cthree{(270:2cm) circle (2.5cm)}
\def\cfour{(360:2cm) circle (2.5cm)}
\def\universe{(-5, -5) rectangle (5,5)}
\begin{tikzpicture}[scale=0.8]
\fill[ForestGreen] \universe;
\begin{scope}
\clip \cone;
\fill[red] \universe;
\end{scope}
\begin{scope}
\clip \ctwo;
\fill[white] \universe;
\end{scope}
\begin{scope}
\clip \cthree;
\fill[white] \universe;
\end{scope}
\begin{scope}
\clip \cfour;
\fill[white] \universe;
\end{scope}
\draw \cone node[text=black,above] {$c_1$};
\draw \ctwo node [text=black,left] {$c_2$};
\draw \cthree node [text=black,below] {$c_3$};
\draw \cfour node [text=black,right] {$c_4$};
\draw \universe;
\draw (0, 5) node [text=black,above] {$N$};
\end{tikzpicture}

227
exercise9/main.tex Normal file
View File

@ -0,0 +1,227 @@
\documentclass[12pt]{article}
\usepackage{ntnu}
\usepackage{ntnu-math}
\author{Øystein Tveit}
\title{MA0301 Exercise 9}
\usepackage{amsthm}
\usepackage{mathabx}
\begin{document}
\ntnuTitle{}
\break{}
\begin{excs}
\exc{}
\begin{align*}
p \rightarrow (q \vee r) &\equiv \neg p \vee (q \vee r) \\
&\equiv \neg p \vee q \vee r \\
&\equiv \neg (p \vee \neg q) \vee r \\
&\equiv (p \vee \neg q) \rightarrow r \\
\end{align*}
\exc{}
R does not define a partial orderering, because it is not transitive.
$aRb$ and $bRc$, however $\neg aRc$
\exc{}
\begin{subexcs}
\subexc{}
\begin{gather*}
xyz + xy\overline{z}+\overline{x}y \\
xy + \overline{x}y \\
y
\end{gather*}
\subexc{}
\begin{gather*}
y + \overline{x}z + x\overline{y} \\
y + \overline{x}z + x \\
y + z + x \\
x + y + z
\end{gather*}
\end{subexcs}
\exc{}
Step 1:
\begin{align*}
\sum^1_{n=1}\frac{1}{(2n-1)(2n+1)} &= \frac{1}{2\cdot1 + 1} \\
\frac{1}{(2\cdot1-1)(2\cdot1+1)} &= \frac{1}{3} \\
\frac{1}{(1)(3)} &= \frac{1}{3} \\
\frac{1}{3} &= \frac{1}{3} \\
\end{align*}