211 lines
4.1 KiB
TeX
211 lines
4.1 KiB
TeX
|
\documentclass[12pt]{article}
|
||
|
\usepackage{ntnu}
|
||
|
\usepackage{ntnu-math}
|
||
|
\usepackage{ntnu-code}
|
||
|
|
||
|
\author{Øystein Tveit}
|
||
|
\title{MA0301 Exercise 11}
|
||
|
|
||
|
\begin{document}
|
||
|
\ntnuTitle{}
|
||
|
\break{}
|
||
|
|
||
|
\begin{excs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\[n^{n-2} = 4^{4-2} = 4^{2} = 16\]
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
To solve this exercise, I chose to implement the algorithm in python
|
||
|
|
||
|
In order to keep track of the nodes, I have given them the following labels
|
||
|
|
||
|
\includeDiagram[width=13cm, scale=1.6]{diagrams/ex2_1.tex}
|
||
|
|
||
|
\break
|
||
|
|
||
|
\codeFile{scripts/Kruskal.py}{python}
|
||
|
|
||
|
Output:
|
||
|
\begin{verbatim}
|
||
|
[('a', 'b'), ('e', 'f'), ('c', 'd'), ('h', 'e'), ('b', 'c'), ('f', 'g'),
|
||
|
('c', 'e')]
|
||
|
\end{verbatim}
|
||
|
|
||
|
When we connect the nodes, we get the minimal spanning tree:
|
||
|
|
||
|
\includeDiagram[width=13cm, scale=1.6]{diagrams/ex2_2.tex}
|
||
|
|
||
|
\exc{}
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
By counting the vertices, edges and regions, we can see that
|
||
|
|
||
|
\begin{align*}
|
||
|
|V| &= 17 \\
|
||
|
|E| &= 34 \\
|
||
|
|R| &= 19
|
||
|
\end{align*}
|
||
|
|
||
|
By applying Eulers theorem, we can confirm that this is a possible graph
|
||
|
|
||
|
\begin{align*}
|
||
|
V + R - E &= 2 \\
|
||
|
17 + 19 - 34 &= 2 \\
|
||
|
36 - 34 &= 2 \\
|
||
|
2 &= 2
|
||
|
\end{align*}
|
||
|
|
||
|
\subexc{}
|
||
|
By counting the vertices, edges and regions, we can see that
|
||
|
|
||
|
\begin{align*}
|
||
|
|V| &= 10 \\
|
||
|
|E| &= 24 \\
|
||
|
|R| &= 16
|
||
|
\end{align*}
|
||
|
|
||
|
By applying Eulers theorem, we can confirm that this is a possible graph
|
||
|
|
||
|
\begin{align*}
|
||
|
V + R - E &= 2 \\
|
||
|
10 + 16 - 24 &= 2 \\
|
||
|
26 - 24 &= 2 \\
|
||
|
2 &= 2
|
||
|
\end{align*}
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
Every edge touches 2 regions. And every is connected to at least 5 edges. Therefore the amount of edges will be
|
||
|
|
||
|
\[ E \geq \frac{53 \cdot 5}{2} = 132.5 \]
|
||
|
|
||
|
Since the amount of edges has to be an integer, we can round it up to $E \geq 133$
|
||
|
|
||
|
Now we can use Eulers theorem for planar graphs to determine the amount of vertices
|
||
|
|
||
|
\begin{align*}
|
||
|
V + R - E &= 2 \\
|
||
|
V &= 2 - R + E \\
|
||
|
V &\geq 2 - 53 + 133 \\
|
||
|
V &\geq 82
|
||
|
\end{align*}
|
||
|
|
||
|
Therefore $|V| \geq 82$
|
||
|
|
||
|
\exc{}
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
|
||
|
By flipping the matrix once vertically and once horizontally, the matrix will equal the other matrix.
|
||
|
|
||
|
Because flipping a matrix is a bijective function, composing two of them will also make a bijective function.
|
||
|
|
||
|
After checking that the last matrix is a valid undirected graph, it is safe to conclude that the graphs are isomorphic
|
||
|
|
||
|
\[
|
||
|
\begin{bmatrix}
|
||
|
0 & 0 & 1 \\
|
||
|
0 & 0 & 1 \\
|
||
|
1 & 1 & 0
|
||
|
\end{bmatrix}
|
||
|
\cong
|
||
|
\begin{bmatrix}
|
||
|
1 & 0 & 0 \\
|
||
|
1 & 0 & 0 \\
|
||
|
0 & 1 & 1
|
||
|
\end{bmatrix}
|
||
|
\cong
|
||
|
\begin{bmatrix}
|
||
|
0 & 1 & 1 \\
|
||
|
1 & 0 & 0 \\
|
||
|
1 & 0 & 0
|
||
|
\end{bmatrix}
|
||
|
\]
|
||
|
|
||
|
\subexc{}
|
||
|
By the same reasoning as \textbf{a)}, we have the following
|
||
|
|
||
|
\[
|
||
|
\begin{bmatrix}
|
||
|
0 & 1 & 0 & 1 \\
|
||
|
1 & 0 & 1 & 1 \\
|
||
|
0 & 1 & 0 & 1 \\
|
||
|
1 & 1 & 1 & 0
|
||
|
\end{bmatrix}
|
||
|
\cong
|
||
|
\begin{bmatrix}
|
||
|
1 & 0 & 1 & 0 \\
|
||
|
1 & 1 & 0 & 1 \\
|
||
|
1 & 0 & 1 & 0 \\
|
||
|
0 & 1 & 1 & 1
|
||
|
\end{bmatrix}
|
||
|
\cong
|
||
|
\begin{bmatrix}
|
||
|
0 & 1 & 1 & 1 \\
|
||
|
1 & 0 & 1 & 0 \\
|
||
|
1 & 1 & 0 & 1 \\
|
||
|
1 & 0 & 1 & 0
|
||
|
\end{bmatrix}
|
||
|
\]
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
\[ uv = ababbab \]
|
||
|
\[ |uv| = 7 \]
|
||
|
|
||
|
\subexc{}
|
||
|
\[ vu = bababab \]
|
||
|
\[ |vu| = 7 \]
|
||
|
|
||
|
\subexc{}
|
||
|
\[ v^2 = babbab \]
|
||
|
\[ |v^2| = 6 \]
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
\[ KL = \{ ab^2, abb^2, a^2b^2, aaba, ababa, a^2aba \} \]
|
||
|
|
||
|
\subexc{}
|
||
|
|
||
|
\[ LL = \{ b^2b^2, b^2aba, abab^2, abaaba \} \]
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
\[ L^* = \{b^2\}^* \]
|
||
|
|
||
|
\subexc{}
|
||
|
\[ L^* = \{a,b\}^* \]
|
||
|
|
||
|
\subexc{}
|
||
|
\[ L^* = \{a,b,c^3\}^* \]
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
$w$ does not belong to $r$ because $w$ is does neither fit $a^*$ nor $(b \vee c)^*$
|
||
|
|
||
|
\subexc{}
|
||
|
$w$ does belong to $r$ because $w$ is exactly $(a \cdot 1) (b \vee c \cdot 2)$
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
\end{excs}
|
||
|
\end{document}
|