116 lines
2.2 KiB
TeX
116 lines
2.2 KiB
TeX
|
\documentclass[12pt]{article}
|
||
|
\usepackage{ntnu}
|
||
|
\usepackage{ntnu-math}
|
||
|
|
||
|
\author{Øystein Tveit}
|
||
|
\title{MA0301 Exercise 10}
|
||
|
|
||
|
\usepackage{amsthm}
|
||
|
\usepackage{mathabx}
|
||
|
|
||
|
\usetikzlibrary{arrows.meta}
|
||
|
|
||
|
\begin{document}
|
||
|
\ntnuTitle{}
|
||
|
\break{}
|
||
|
|
||
|
Because there are no exercise where there are multiple edges between two vertices, I will use strings of vertex names to represent a walk.
|
||
|
|
||
|
\begin{excs}
|
||
|
|
||
|
\exc{}
|
||
|
\begin{subexcs}
|
||
|
|
||
|
\subexc{}
|
||
|
\[ bcbcd \]
|
||
|
|
||
|
\subexc{}
|
||
|
\[ bacbed \]
|
||
|
|
||
|
\subexc{}
|
||
|
\[ bcd \]
|
||
|
|
||
|
\subexc{}
|
||
|
\[ bcb \]
|
||
|
|
||
|
\subexc{}
|
||
|
\[ befgedcb \]
|
||
|
|
||
|
\subexc{}
|
||
|
\[ bacb \]
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\begin{figure}[H]
|
||
|
\center
|
||
|
\scalebox{2}{
|
||
|
\input{diagrams/ex2.tex}
|
||
|
}
|
||
|
\end{figure}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
By using trial and error, starting with the nodes that had a higher degree, I managed to bring it down to three nodes.
|
||
|
|
||
|
\includeDiagram[scale=2, width=12cm]{diagrams/ex3.tex}
|
||
|
|
||
|
The red vertices represent the guards
|
||
|
|
||
|
\exc{}
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
The graphs are not isomorphic because the shortest cycle between the vertices with a degree of 3 has a different length.
|
||
|
|
||
|
\subexc{}
|
||
|
The graphs are isomorphic
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
|
||
|
\includeDiagram[scale=2, width=12cm]{diagrams/ex5_a.tex}
|
||
|
|
||
|
\[ adhijkgcbgjfbefiedba \]
|
||
|
|
||
|
\subexc{}
|
||
|
Because $deg(e) = deg(f) = 3$ is now odd, they have to be the starting vertex and ending vertex.
|
||
|
|
||
|
\includeDiagram[scale=2, width=12cm]{diagrams/ex5_b.tex}
|
||
|
|
||
|
\[ dabdhijkgcbgjfbefie \]
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
$G_1$ is not an induced subgraph if it's missing an edge $e_1$ between $v_1, v_2 \in G_1$ where $e_1 \in G$
|
||
|
|
||
|
\subexc{}
|
||
|
\includeDiagram[scale=0.8, width=6cm, pdf=true]{diagrams/ex6_b.pdf}
|
||
|
|
||
|
$G_1$ contains the vertices $c$ and $d$ while it is missing the edge $cd$ even though $cd$ was present in $G$. Therefore, it is not an induced subgraph
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\begin{align*}
|
||
|
\sum_{deg(v) \in V} = 2 |E| \\
|
||
|
3|V| \leq 2 |E| \\
|
||
|
|V| \leq \frac{2 |E|}{3} \\
|
||
|
|V| \leq \frac{2 \cdot 17}{3} \\
|
||
|
|V| \leq \frac{34}{3} \\
|
||
|
|V| \leq 11.33 \\
|
||
|
\end{align*}
|
||
|
|
||
|
The max amount of vertices in $G$ has to be $11$
|
||
|
|
||
|
\end{excs}
|
||
|
\end{document}
|