Add exercise
This commit is contained in:
parent
c22cf7206e
commit
b2e3d7ff2f
|
@ -1,6 +1,7 @@
|
|||
|
||||
# Latex build files
|
||||
*.aux
|
||||
*.auxlock
|
||||
*.fdb_latexmk
|
||||
*.fls
|
||||
*.log
|
||||
|
|
|
@ -0,0 +1,20 @@
|
|||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
xlabel = $x$, ylabel = $y$,
|
||||
width = 10cm, height=6cm,
|
||||
axis lines = middle,
|
||||
grid,
|
||||
xmin=-1.5, xmax=5.5,
|
||||
ymin=-1.5, ymax=1.5,
|
||||
legend pos=outer north east,
|
||||
samples=10000
|
||||
]
|
||||
|
||||
\addplot+ [
|
||||
no marks,
|
||||
domain = 0:5.5,
|
||||
]{sin(deg(sqrt(x) * (e^(x))))};
|
||||
\addlegendentry{$y=sin(\sqrt{x}e^x)$}
|
||||
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,38 @@
|
|||
\begin{tikzpicture} [
|
||||
% declare function={
|
||||
% func(\x)= (\x >= -3) * (\x^2) +
|
||||
% and(\x < -3) * (-\x);
|
||||
% }
|
||||
]
|
||||
\begin{axis}[
|
||||
xlabel = $x$, ylabel = $y$,
|
||||
width = 10cm, height=10cm,
|
||||
axis lines = middle,
|
||||
grid,
|
||||
xmin=-9, xmax=5,
|
||||
ymin=-7, ymax=7,
|
||||
legend pos=outer north east,
|
||||
legend style={cells={align=left}}
|
||||
]
|
||||
|
||||
\addplot [
|
||||
blue,
|
||||
no marks,
|
||||
domain= -3:100
|
||||
]{2*x};
|
||||
\addplot [
|
||||
blue,
|
||||
no marks,
|
||||
domain= -100:-3
|
||||
]{-x};
|
||||
|
||||
\addplot+[blue,mark=*,mark options={fill=white}] (-3,3);
|
||||
\addplot+[blue,mark=*] (-3,-6);
|
||||
|
||||
\addlegendentry{$g(x) = \begin{cases}
|
||||
2x\text{, hvis } x \geq -3 \\
|
||||
-x \text{, hvis } x < -3
|
||||
\end{cases}$ \\}
|
||||
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
Binary file not shown.
|
@ -0,0 +1,43 @@
|
|||
\documentclass{article}
|
||||
|
||||
\input{../lib/lib.tex}
|
||||
|
||||
\usepackage{amssymb}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\thispagestyle{plain}
|
||||
\tittel
|
||||
\tableofcontents
|
||||
|
||||
\newpage
|
||||
|
||||
\section{Forberedende oppgaver}
|
||||
\begin{oppgaver}
|
||||
|
||||
\oppg
|
||||
\input{tasks/1.tex}
|
||||
|
||||
\end{oppgaver}
|
||||
|
||||
\newpage
|
||||
|
||||
\section{Innleveringsoppgaver}
|
||||
\begin{oppgaver}
|
||||
\setoppg{1}
|
||||
|
||||
\oppg
|
||||
\input{tasks/2.tex}
|
||||
|
||||
\oppg
|
||||
\input{tasks/3.tex}
|
||||
|
||||
\oppg
|
||||
\input{tasks/4.tex}
|
||||
|
||||
\oppg
|
||||
\input{tasks/5.tex}
|
||||
|
||||
\end{oppgaver}
|
||||
|
||||
\end{document}
|
|
@ -0,0 +1,20 @@
|
|||
\begin{deloppgaver}
|
||||
\delo
|
||||
\[f(x) = sin(\sqrt{x}e^x)\]
|
||||
er kontinuerlig for alle punkt hvor den er definert
|
||||
|
||||
\begin{graphbox}
|
||||
\input{figures/1a.tex}
|
||||
\end{graphbox}
|
||||
|
||||
\delo
|
||||
\[g(x) = \begin{cases}
|
||||
2x\text{, hvis } x \geq -3 \\
|
||||
-x \text{, hvis } x < -3
|
||||
\end{cases}\]
|
||||
er ikke kontinuerlig ved $x = -3$, hvor $y$-verdien gjør et hopp fra $3$ til $-6$
|
||||
|
||||
\begin{graphbox}
|
||||
\input{figures/1b.tex}
|
||||
\end{graphbox}
|
||||
\end{deloppgaver}
|
|
@ -0,0 +1,22 @@
|
|||
\begin{align*}
|
||||
\lim_{n\to\infty} a_n &= \lim_{n\to\infty} \frac{\sqrt{n^2+6n+9}}{\sqrt{n^2+1}} \\[1ex]
|
||||
\lim_{n\to\infty} a_n &= \lim_{n\to\infty} \sqrt{\frac{n^2+6n+9}{n^2+1}} \\
|
||||
\end{align*}
|
||||
|
||||
Ettersom $\lim\limits_{n\to\infty} (a_n b_n) = (\lim\limits_{n\to\infty} a_n)(\lim\limits_{n\to\infty}b_n)$
|
||||
|
||||
\[\lim_{n\to\infty} a_n = \sqrt{ \lim_{n\to\infty} \frac{n^2+6n+9}{n^2+1}} \]
|
||||
|
||||
Ettersom $\lim\limits_{n\to\infty} \frac{a_n}{b_n}= \frac{\lim\limits_{n\to\infty} a_n}{\lim\limits_{n\to\infty}b_n}$ \\
|
||||
I tillegg deler vi både teller og nevner på $n^2$
|
||||
|
||||
|
||||
\[ \lim_{n\to\infty} a_n = \sqrt{ \frac{ \lim_{n\to\infty} 1+\frac{6}{n}+\frac{9}{n^2}}{ \lim_{n\to\infty} 1+\frac{1}{n^2}}} \]
|
||||
|
||||
Både $\frac{9}{n^2}$, $\frac{6}{n}$ og $\frac{1}{n^2}$ går mot $0$ når $n \to \infty$
|
||||
|
||||
\begin{align*}
|
||||
\lim_{n\to\infty} a_n &= \sqrt{ \frac{ 1+0+0}{ 0+1}} \\
|
||||
&= \sqrt{1} \\
|
||||
&= 1 \\
|
||||
\end{align*}
|
|
@ -0,0 +1,19 @@
|
|||
\begin{align*}
|
||||
\lim_{n\to\infty} a_n &= \lim_{n\to\infty} \left(\sqrt{n^2-n+9} - \sqrt{n^2+9}\right) \\[1ex]
|
||||
&= \lim_{n\to\infty} \left(\sqrt{n^2-n+9} - \sqrt{n^2+9}\right)
|
||||
\frac{\sqrt{n^2-n+9} + \sqrt{n^2+9}}{\sqrt{n^2-n+9} + \sqrt{n^2+9}} \\[1ex]
|
||||
&= \lim_{n\to\infty} \frac{(n^2-n+9) - (n^2+9)}{\sqrt{n^2-n+9} + \sqrt{n^2+9}} \\[1ex]
|
||||
&= \lim_{n\to\infty} \frac{-n}{\sqrt{n^2-n+9} + \sqrt{n^2+9}} \\[1ex]
|
||||
&= -\lim_{n\to\infty} \frac{n}{\sqrt{n^2-n+9} + \sqrt{n^2+9}} \\[1ex]
|
||||
&= -\lim_{n\to\infty} \frac{1}{n^{-1}\sqrt{n^2-n+9} + n^{-1}\sqrt{n^2+9}} \\[1ex]
|
||||
&= -\lim_{n\to\infty} \frac{1}{\sqrt{n^{-2}(n^2-n+9)} + \sqrt{n^{-2}(n^2+9)}} \\[1ex]
|
||||
&= -\lim_{n\to\infty} \frac{1}{\sqrt{1-\frac{1}{n}+\frac{9}{n^2}} + \sqrt{1+\frac{9}{n^2}}} \\[1ex]
|
||||
\end{align*}
|
||||
|
||||
Dermed blir
|
||||
|
||||
\begin{align*}
|
||||
-\lim_{n\to\infty} \frac{1}{\sqrt{1-\frac{1}{n}+\frac{9}{n^2}} + \sqrt{1+\frac{9}{n^2}}} &= -\frac{1}{\sqrt{1-0+0} + \sqrt{1+0}} \\
|
||||
&= -\frac{1}{1 + 1} \\
|
||||
&= -\frac{1}{2} \\
|
||||
\end{align*}
|
|
@ -0,0 +1,13 @@
|
|||
\[ a_{k+1} = 2-\frac{1}{a_k} \]
|
||||
|
||||
Fikspunktet vil være punktet hvor $a_{k+1} = a_k$
|
||||
|
||||
\begin{align*}
|
||||
a &= 2 - \frac{1}{a} \\
|
||||
a - 2 &= - \frac{1}{a} \\
|
||||
a^2 -2a &= - 1 \\
|
||||
a^2 -2a + 1 &= 0 \\
|
||||
(a-1)^2 &= 0 \quad \Leftrightarrow \quad a = 1
|
||||
\end{align*}
|
||||
|
||||
$a$ har ett fikspunkt ved $a = 1$
|
|
@ -0,0 +1,27 @@
|
|||
\[
|
||||
\begin{cases}
|
||||
b_0 = 1 \\
|
||||
b_1 = 2 \\
|
||||
b_{n+1} = b_n + 2 \cdot b_{n-1}
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
|
||||
\begin{align*}
|
||||
b_2 &= b_1 + 2 \cdot b_{0} = 2 + 2 \cdot 1 = 4 \\
|
||||
b_3 &= b_2 + 2 \cdot b_{1} = 4 + 2 \cdot 2 = 8 \\
|
||||
b_4 &= b_3 + 2 \cdot b_{2} = 8 + 2 \cdot 4 = 16 \\
|
||||
b_5 &= b_4 + 2 \cdot b_{3} = 16 + 2 \cdot 8 = 32 \\
|
||||
b_6 &= b_5 + 2 \cdot b_{4} = 32 + 2 \cdot 16 = 64 \\
|
||||
b_7 &= b_6 + 2 \cdot b_{5} = 64 + 2 \cdot 32 = 128
|
||||
\end{align*}
|
||||
|
||||
Jeg gjetter at $f(n) = 2^n$.
|
||||
|
||||
\begin{align*}
|
||||
b_n + 2 \cdot b_{n-1} &= 2^n + 2 \cdot 2^{n-1} \\
|
||||
&= 2^n + 2^n \\
|
||||
&= 2 \cdot 2^{n} \\
|
||||
&= 2^{n+1} \\
|
||||
&= b_{n+1}
|
||||
\end{align*}
|
|
@ -26,7 +26,7 @@
|
|||
\pgfplotsset{compat=newest}
|
||||
|
||||
\author{Øystein Tveit}
|
||||
\title{MA0001 Øving 4}
|
||||
\title{MA0001 Øving 5}
|
||||
|
||||
\input{../lib/titling.tex}
|
||||
|
||||
|
|
Loading…
Reference in New Issue