Make Arc const
This commit is contained in:
@@ -274,21 +274,19 @@ class Arc extends SvgPath {
|
||||
final num rotation;
|
||||
final bool arc;
|
||||
final bool sweep;
|
||||
late final num radiusScale;
|
||||
late final Point center;
|
||||
late final num theta;
|
||||
late final num delta;
|
||||
// late final num radiusScale;
|
||||
// late final Point center;
|
||||
// late final num theta;
|
||||
// late num delta;
|
||||
|
||||
Arc({
|
||||
const Arc({
|
||||
required Point start,
|
||||
required Point end,
|
||||
required this.radius,
|
||||
required this.rotation,
|
||||
required this.arc,
|
||||
required this.sweep,
|
||||
}) : super(start: start, end: end) {
|
||||
_parameterize();
|
||||
}
|
||||
}) : super(start: start, end: end);
|
||||
|
||||
@override
|
||||
bool operator ==(Object other) =>
|
||||
@@ -311,68 +309,53 @@ class Arc extends SvgPath {
|
||||
String toString() => 'Arc(start=$start, radius=$radius, rotation=$rotation, '
|
||||
'arc=$arc, sweep=$sweep, end=$end)';
|
||||
|
||||
/// Conversion from endpoint to center parameterization
|
||||
/// http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
|
||||
void _parameterize() {
|
||||
// This is equivalent of omitting the segment, so do nothing
|
||||
if (start == end) return;
|
||||
|
||||
// This should be treated as a straight line
|
||||
if (radius.x == 0 || radius.y == 0) return;
|
||||
// Conversion from endpoint to center parameterization
|
||||
// http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
|
||||
num get _cosr => cos(radians(rotation));
|
||||
num get _sinr => sin(radians(rotation));
|
||||
num get _dx => (start.x - end.x) / 2;
|
||||
num get _dy => (start.y - end.y) / 2;
|
||||
num get _x1prim => _cosr * _dx + _sinr * _dy;
|
||||
num get _x1primSq => _x1prim * _x1prim;
|
||||
num get _y1prim => -_sinr * _dx + _cosr * _dy;
|
||||
num get _y1primSq => _y1prim * _y1prim;
|
||||
num get _rx => (radiusScale > 1 ? radiusScale : 1) * radius.x;
|
||||
num get _ry => (radiusScale > 1 ? radiusScale : 1) * radius.y;
|
||||
num get _rxSq => _rx * _rx;
|
||||
num get _rySq => _ry * _ry;
|
||||
num get _ux => (_x1prim - _cxprim) / _rx;
|
||||
num get _uy => (_y1prim - _cyprim) / _ry;
|
||||
num get _vx => (-_x1prim - _cxprim) / _rx;
|
||||
num get _vy => (-_y1prim - _cyprim) / _ry;
|
||||
num get t1 => _rxSq * _y1primSq;
|
||||
num get t2 => _rySq * _x1primSq;
|
||||
num get c =>
|
||||
(arc == sweep ? 1 : -1) *
|
||||
sqrt(((_rxSq * _rySq - t1 - t2) / (t1 + t2)).abs());
|
||||
num get _cxprim => c * _rx * _y1prim / _ry;
|
||||
num get _cyprim => -c * _ry * _x1prim / _rx;
|
||||
|
||||
final cosr = cos(radians(rotation));
|
||||
final sinr = sin(radians(rotation));
|
||||
final dx = (start.x - end.x) / 2;
|
||||
final dy = (start.y - end.y) / 2;
|
||||
final x1prim = cosr * dx + sinr * dy;
|
||||
final x1primSq = x1prim * x1prim;
|
||||
final y1prim = -sinr * dx + cosr * dy;
|
||||
final y1primSq = y1prim * y1prim;
|
||||
num get radiusScale {
|
||||
final rs = (_x1primSq / (radius.x * radius.x)) +
|
||||
(_y1primSq / (radius.y * radius.y));
|
||||
return rs > 1 ? sqrt(rs) : 1;
|
||||
}
|
||||
|
||||
num rx = radius.x;
|
||||
num rxSq = rx * rx;
|
||||
num ry = radius.y;
|
||||
num rySq = ry * ry;
|
||||
Point get center => Point(
|
||||
(_cosr * _cxprim - _sinr * _cyprim) + ((start.x + end.x) / 2),
|
||||
(_sinr * _cxprim + _cosr * _cyprim) + ((start.y + end.y) / 2),
|
||||
);
|
||||
|
||||
num get theta {
|
||||
final num n = sqrt(_ux * _ux + _uy * _uy);
|
||||
final num p = _ux;
|
||||
return (((_uy < 0) ? -1 : 1) * degrees(acos(p / n))) % 360;
|
||||
}
|
||||
|
||||
// Correct out of range radii
|
||||
num radiusScale = (x1primSq / rxSq) + (y1primSq / rySq);
|
||||
if (radiusScale > 1) {
|
||||
radiusScale = sqrt(radiusScale);
|
||||
rx *= radiusScale;
|
||||
ry *= radiusScale;
|
||||
rxSq = rx * rx;
|
||||
rySq = ry * ry;
|
||||
this.radiusScale = radiusScale;
|
||||
} else {
|
||||
// SVG spec only scales UP
|
||||
this.radiusScale = 1;
|
||||
}
|
||||
|
||||
final t1 = rxSq * y1primSq;
|
||||
final t2 = rySq * x1primSq;
|
||||
num c = sqrt(((rxSq * rySq - t1 - t2) / (t1 + t2)).abs());
|
||||
|
||||
if (arc == sweep) {
|
||||
c = -c;
|
||||
}
|
||||
final cxprim = c * rx * y1prim / ry;
|
||||
final cyprim = -c * ry * x1prim / rx;
|
||||
|
||||
center = Point(
|
||||
(cosr * cxprim - sinr * cyprim) + ((start.x + end.x) / 2),
|
||||
(sinr * cxprim + cosr * cyprim) + ((start.y + end.y) / 2),
|
||||
);
|
||||
|
||||
final ux = (x1prim - cxprim) / rx;
|
||||
final uy = (y1prim - cyprim) / ry;
|
||||
final vx = (-x1prim - cxprim) / rx;
|
||||
final vy = (-y1prim - cyprim) / ry;
|
||||
num n = sqrt(ux * ux + uy * uy);
|
||||
num p = ux;
|
||||
theta = (((uy < 0) ? -1 : 1) * degrees(acos(p / n))) % 360;
|
||||
|
||||
n = sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy));
|
||||
p = ux * vx + uy * vy;
|
||||
num get delta {
|
||||
final num n = sqrt((_ux * _ux + _uy * _uy) * (_vx * _vx + _vy * _vy));
|
||||
final num p = _ux * _vx + _uy * _vy;
|
||||
num d = p / n;
|
||||
// In certain cases the above calculation can through inaccuracies
|
||||
// become just slightly out of range, f ex -1.0000000000000002.
|
||||
@@ -381,8 +364,8 @@ class Arc extends SvgPath {
|
||||
} else if (d < -1.0) {
|
||||
d = -1.0;
|
||||
}
|
||||
delta = ((((ux * vy - uy * vx) < 0) ? -1 : 1) * degrees(acos(d))) % 360;
|
||||
if (!sweep) delta -= 360;
|
||||
|
||||
return ((((_ux * _vy - _uy * _vx) < 0) ? -1 : 1) * degrees(acos(d))) % 360 - (!sweep ? 360 : 0);
|
||||
}
|
||||
|
||||
@override
|
||||
@@ -448,7 +431,6 @@ class Arc extends SvgPath {
|
||||
class Move extends SvgPath {
|
||||
const Move({required Point to}) : super(start: to, end: to);
|
||||
|
||||
|
||||
@override
|
||||
bool operator ==(Object other) => other is Move && super == other;
|
||||
|
||||
@@ -472,7 +454,6 @@ class Close extends Linear {
|
||||
required Point end,
|
||||
}) : super(start: start, end: end);
|
||||
|
||||
|
||||
@override
|
||||
bool operator ==(Object other) => other is Close && super == other;
|
||||
|
||||
|
Reference in New Issue
Block a user