Initial commit
This commit is contained in:
410
lib/svg/parser.dart
Normal file
410
lib/svg/parser.dart
Normal file
@@ -0,0 +1,410 @@
|
||||
/// SVG Path specification parser
|
||||
///
|
||||
import 'path.dart'
|
||||
show Arc, Close, CubicBezier, Line, Move, Path, Point, QuadraticBezier;
|
||||
|
||||
const COMMANDS = {
|
||||
'M',
|
||||
'm',
|
||||
'Z',
|
||||
'z',
|
||||
'L',
|
||||
'l',
|
||||
'H',
|
||||
'h',
|
||||
'V',
|
||||
'v',
|
||||
'C',
|
||||
'c',
|
||||
'S',
|
||||
's',
|
||||
'Q',
|
||||
'q',
|
||||
'T',
|
||||
't',
|
||||
'A',
|
||||
'a'
|
||||
};
|
||||
const UPPERCASE = {'M', 'Z', 'L', 'H', 'V', 'C', 'S', 'Q', 'T', 'A'};
|
||||
|
||||
final COMMAND_RE = RegExp("(?=[${COMMANDS.join('')}])");
|
||||
final FLOAT_RE = RegExp(r"^[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?");
|
||||
|
||||
class ParserResult<T> {
|
||||
final T value;
|
||||
final String remaining;
|
||||
|
||||
const ParserResult({required this.value, required this.remaining});
|
||||
}
|
||||
|
||||
class InvalidPathError implements Exception {
|
||||
final String msg;
|
||||
const InvalidPathError(this.msg);
|
||||
|
||||
@override
|
||||
String toString() => 'InvalidPathError: $msg';
|
||||
}
|
||||
|
||||
// The argument sequences from the grammar, made sane.
|
||||
// u: Non-negative number
|
||||
// s: Signed number or coordinate
|
||||
// c: coordinate-pair, which is two coordinates/numbers, separated by whitespace
|
||||
// f: A one character flag, doesn't need whitespace, 1 or 0
|
||||
const ARGUMENT_SEQUENCE = {
|
||||
"M": "c",
|
||||
"Z": "",
|
||||
"L": "c",
|
||||
"H": "s",
|
||||
"V": "s",
|
||||
"C": "ccc",
|
||||
"S": "cc",
|
||||
"Q": "cc",
|
||||
"T": "c",
|
||||
"A": "uusffc",
|
||||
};
|
||||
|
||||
/// Strips whitespace and commas
|
||||
String strip_array(String arg_array) {
|
||||
// EBNF wsp:(#x20 | #x9 | #xD | #xA) + comma: 0x2C
|
||||
while (arg_array.isNotEmpty && ' \t\n\r,'.contains(arg_array[0])) {
|
||||
arg_array = arg_array.substring(1);
|
||||
}
|
||||
return arg_array;
|
||||
}
|
||||
|
||||
ParserResult<double> pop_number(String arg_array) {
|
||||
final res = FLOAT_RE.firstMatch(arg_array);
|
||||
if (res == null) {
|
||||
throw InvalidPathError("Expected a number, got '$arg_array'.");
|
||||
}
|
||||
|
||||
final number = double.parse(res.group(0)!);
|
||||
final start = res.start;
|
||||
final end = res.end;
|
||||
arg_array = arg_array.substring(0, start) + arg_array.substring(end);
|
||||
arg_array = strip_array(arg_array);
|
||||
|
||||
return ParserResult(value: number, remaining: arg_array);
|
||||
}
|
||||
|
||||
ParserResult<double> pop_unsigned_number(arg_array) {
|
||||
final number = pop_number(arg_array);
|
||||
if (number.value < 0) {
|
||||
throw InvalidPathError("Expected a non-negative number, got '$number'.");
|
||||
}
|
||||
return number;
|
||||
}
|
||||
|
||||
ParserResult<Point> pop_coordinate_pair(arg_array) {
|
||||
final x = pop_number(arg_array);
|
||||
final y = pop_number(x.remaining);
|
||||
return ParserResult(value: Point(x.value, y.value), remaining: y.remaining);
|
||||
}
|
||||
|
||||
ParserResult<bool> pop_flag(String arg_array) {
|
||||
final flag = arg_array[0];
|
||||
arg_array = arg_array.substring(1);
|
||||
arg_array = strip_array(arg_array);
|
||||
if (flag == '0') return ParserResult(value: false, remaining: arg_array);
|
||||
if (flag == '1') return ParserResult(value: true, remaining: arg_array);
|
||||
|
||||
throw InvalidPathError("Expected either 1 or 0, got '$flag'");
|
||||
}
|
||||
|
||||
const FIELD_POPPERS = {
|
||||
"u": pop_unsigned_number,
|
||||
"s": pop_number,
|
||||
"c": pop_coordinate_pair,
|
||||
"f": pop_flag,
|
||||
};
|
||||
|
||||
class Command {
|
||||
final String command;
|
||||
final String args;
|
||||
|
||||
const Command({required this.command, required this.args});
|
||||
|
||||
@override
|
||||
String toString() => 'Command: $command $args';
|
||||
}
|
||||
|
||||
// Splits path into commands and arguments
|
||||
List<Command> _commandify_path(String pathdef) {
|
||||
List<Command> tokens = [];
|
||||
List<String> token = [];
|
||||
for (String c in pathdef.split(COMMAND_RE)) {
|
||||
String x = c[0];
|
||||
String? y = (c.length > 1) ? c.substring(1).trim() : null;
|
||||
if (!COMMANDS.contains(x)) {
|
||||
throw InvalidPathError("Path does not start with a command: $pathdef");
|
||||
}
|
||||
if (token.isNotEmpty) {
|
||||
tokens.add(Command(command: token[0], args: token[1]));
|
||||
// yield token;
|
||||
}
|
||||
if (x == "z" || x == "Z") {
|
||||
// The end command takes no arguments, so add a blank one
|
||||
token.addAll([x, ""]);
|
||||
} else {
|
||||
// token = [x, x.substring(1).trim()];
|
||||
token = [x];
|
||||
}
|
||||
|
||||
if (y != null) {
|
||||
token.add(y);
|
||||
}
|
||||
}
|
||||
tokens.add(Command(command: token[0], args: token[1]));
|
||||
// yield token;
|
||||
return tokens;
|
||||
}
|
||||
|
||||
class Token {
|
||||
final String command;
|
||||
final List<Object> args;
|
||||
|
||||
const Token({required this.command, required this.args});
|
||||
|
||||
@override
|
||||
String toString() => 'Token: $command ($args)';
|
||||
}
|
||||
|
||||
List<Token> _tokenize_path(String pathdef) {
|
||||
List<Token> tokens = [];
|
||||
for (final token in _commandify_path(pathdef)) {
|
||||
// _commandify_path(pathdef).forEach((List<String> token) {
|
||||
String command = token.command;
|
||||
String args = token.args;
|
||||
|
||||
// Shortcut this for the close command, that doesn't have arguments:
|
||||
if (command == "z" || command == "Z") {
|
||||
tokens.add(Token(command: command, args: []));
|
||||
continue;
|
||||
}
|
||||
|
||||
// For the rest of the commands, we parse the arguments and
|
||||
// yield one command per full set of arguments
|
||||
final String arg_sequence = ARGUMENT_SEQUENCE[command.toUpperCase()]!;
|
||||
String arguments = args;
|
||||
while (arguments.isNotEmpty) {
|
||||
final List<Object> command_arguments = [];
|
||||
for (final arg in arg_sequence.split('')) {
|
||||
try {
|
||||
final result = FIELD_POPPERS[arg]!.call(arguments);
|
||||
arguments = result.remaining;
|
||||
command_arguments.add(result.value);
|
||||
} on InvalidPathError {
|
||||
throw InvalidPathError("Invalid path element $command $args");
|
||||
}
|
||||
}
|
||||
|
||||
tokens.add(Token(command: command, args: command_arguments));
|
||||
// yield (command,) + tuple(command_arguments)
|
||||
|
||||
// Implicit Moveto commands should be treated as Lineto commands.
|
||||
if (command == "m") {
|
||||
command = "l";
|
||||
} else if (command == "M") {
|
||||
command = "L";
|
||||
}
|
||||
}
|
||||
}
|
||||
return tokens;
|
||||
}
|
||||
|
||||
Path parse_path(String pathdef) {
|
||||
final segments = Path();
|
||||
Point? start_pos;
|
||||
String? last_command;
|
||||
Point current_pos = Point.zero;
|
||||
|
||||
for (final token in _tokenize_path(pathdef)) {
|
||||
final command = token.command.toUpperCase();
|
||||
final absolute = token.command.toUpperCase() == token.command;
|
||||
if (command == "M") {
|
||||
final pos = token.args[0] as Point;
|
||||
if (absolute) {
|
||||
current_pos = pos;
|
||||
} else {
|
||||
current_pos += pos;
|
||||
}
|
||||
segments.add(Move(to: current_pos));
|
||||
start_pos = current_pos;
|
||||
} else if (command == "Z") {
|
||||
// TODO Throw error if not available:
|
||||
segments.add(Close(start: current_pos, end: start_pos!));
|
||||
current_pos = start_pos;
|
||||
} else if (command == "L") {
|
||||
Point pos = token.args[0] as Point;
|
||||
if (!absolute) {
|
||||
pos += current_pos;
|
||||
}
|
||||
segments.add(Line(start: current_pos, end: pos));
|
||||
current_pos = pos;
|
||||
} else if (command == "H") {
|
||||
double hpos = token.args[0] as double;
|
||||
if (!absolute) {
|
||||
hpos += current_pos.x;
|
||||
}
|
||||
final pos = Point(hpos, current_pos.y);
|
||||
segments.add(Line(start: current_pos, end: pos));
|
||||
current_pos = pos;
|
||||
} else if (command == "V") {
|
||||
double vpos = token.args[0] as double;
|
||||
if (!absolute) {
|
||||
vpos += current_pos.y;
|
||||
}
|
||||
final pos = Point(current_pos.x, vpos);
|
||||
segments.add(Line(start: current_pos, end: pos));
|
||||
current_pos = pos;
|
||||
} else if (command == "C") {
|
||||
Point control1 = token.args[0] as Point;
|
||||
Point control2 = token.args[1] as Point;
|
||||
Point end = token.args[2] as Point;
|
||||
|
||||
if (!absolute) {
|
||||
control1 += current_pos;
|
||||
control2 += current_pos;
|
||||
end += current_pos;
|
||||
}
|
||||
|
||||
segments.add(
|
||||
CubicBezier(
|
||||
start: current_pos,
|
||||
control1: control1,
|
||||
control2: control2,
|
||||
end: end,
|
||||
),
|
||||
);
|
||||
current_pos = end;
|
||||
} else if (command == "S") {
|
||||
// Smooth curve. First control point is the "reflection" of
|
||||
// the second control point in the previous path.
|
||||
Point control2 = token.args[0] as Point;
|
||||
Point end = token.args[1] as Point;
|
||||
|
||||
if (!absolute) {
|
||||
control2 += current_pos;
|
||||
end += current_pos;
|
||||
}
|
||||
|
||||
late final Point control1;
|
||||
|
||||
if (last_command == 'C' || last_command == 'S') {
|
||||
// The first control point is assumed to be the reflection of
|
||||
// the second control point on the previous command relative
|
||||
// to the current point.
|
||||
control1 =
|
||||
current_pos + current_pos - (segments.last as CubicBezier).control2;
|
||||
} else {
|
||||
// If there is no previous command or if the previous command
|
||||
// was not an C, c, S or s, assume the first control point is
|
||||
// coincident with the current point.
|
||||
control1 = current_pos;
|
||||
}
|
||||
segments.add(
|
||||
CubicBezier(
|
||||
start: current_pos,
|
||||
control1: control1,
|
||||
control2: control2,
|
||||
end: end),
|
||||
);
|
||||
current_pos = end;
|
||||
} else if (command == "Q") {
|
||||
Point control = token.args[0] as Point;
|
||||
Point end = token.args[1] as Point;
|
||||
|
||||
if (!absolute) {
|
||||
control += current_pos;
|
||||
end += current_pos;
|
||||
}
|
||||
|
||||
segments.add(
|
||||
QuadraticBezier(start: current_pos, control: control, end: end),
|
||||
);
|
||||
current_pos = end;
|
||||
} else if (command == "T") {
|
||||
// Smooth curve. Control point is the "reflection" of
|
||||
// the second control point in the previous path.
|
||||
Point end = token.args[0] as Point;
|
||||
|
||||
if (!absolute) {
|
||||
end += current_pos;
|
||||
}
|
||||
|
||||
late final Point control;
|
||||
if (last_command == "Q" || last_command == 'T') {
|
||||
// The control point is assumed to be the reflection of
|
||||
// the control point on the previous command relative
|
||||
// to the current point.
|
||||
control = current_pos +
|
||||
current_pos -
|
||||
(segments.last as QuadraticBezier).control;
|
||||
} else {
|
||||
// If there is no previous command or if the previous command
|
||||
// was not an Q, q, T or t, assume the first control point is
|
||||
// coincident with the current point.
|
||||
control = current_pos;
|
||||
}
|
||||
|
||||
segments.add(
|
||||
QuadraticBezier(start: current_pos, control: control, end: end),
|
||||
);
|
||||
current_pos = end;
|
||||
} else if (command == "A") {
|
||||
// For some reason I implemented the Arc with a complex radius.
|
||||
// That doesn't really make much sense, but... *shrugs*
|
||||
final radius = Point(token.args[0] as double, token.args[1] as double);
|
||||
final rotation = token.args[2] as double;
|
||||
final arc = token.args[3] as bool;
|
||||
final sweep = token.args[4] as bool;
|
||||
Point end = token.args[5] as Point;
|
||||
|
||||
if (!absolute) {
|
||||
end += current_pos;
|
||||
}
|
||||
|
||||
segments.add(
|
||||
Arc(
|
||||
start: current_pos,
|
||||
radius: radius,
|
||||
rotation: rotation,
|
||||
arc: arc,
|
||||
sweep: sweep,
|
||||
end: end,
|
||||
),
|
||||
);
|
||||
current_pos = end;
|
||||
}
|
||||
|
||||
// Finish up the loop in preparation for next command
|
||||
last_command = command;
|
||||
}
|
||||
|
||||
return segments;
|
||||
}
|
||||
|
||||
void main(List<String> args) {
|
||||
// print(_commandify_path('M 10 10 C 20 20, 40 20, 50 10'));
|
||||
// print(_tokenize_path('M 10 10 C 20 20, 40 20, 50 10'));
|
||||
// print(_tokenize_path('M 10 80 Q 52.5 10, 95 80 T 180 80'));
|
||||
// print(_tokenize_path("""
|
||||
// M 10 315
|
||||
// L 110 215
|
||||
// A 30 50 0 0 1 162.55 162.45
|
||||
// L 172.55 152.45
|
||||
// A 30 50 -45 0 1 215.1 109.9
|
||||
// L 315 10
|
||||
// """));
|
||||
|
||||
print(parse_path('M 10 10 C 20 20, 40 20, 50 10'));
|
||||
print(parse_path('M 10 80 Q 52.5 10, 95 80 T 180 80'));
|
||||
print(parse_path("""
|
||||
M 10 315
|
||||
L 110 215
|
||||
A 30 50 0 0 1 162.55 162.45
|
||||
L 172.55 152.45
|
||||
A 30 50 -45 0 1 215.1 109.9
|
||||
L 315 10
|
||||
"""));
|
||||
}
|
682
lib/svg/path.dart
Normal file
682
lib/svg/path.dart
Normal file
@@ -0,0 +1,682 @@
|
||||
import 'dart:collection';
|
||||
import 'dart:math' as math;
|
||||
import 'dart:math' show sqrt, sin, cos, acos, log, pi;
|
||||
import 'package:bisect/bisect.dart';
|
||||
|
||||
// try:
|
||||
// from collections.abc import MutableSequence
|
||||
// except ImportError:
|
||||
// from collections import MutableSequence
|
||||
|
||||
// This file contains classes for the different types of SVG path segments as
|
||||
// well as a Path object that contains a sequence of path segments.
|
||||
|
||||
double radians(num n) => n * pi / 180;
|
||||
double degrees(num n) => n * 180 / pi;
|
||||
|
||||
class Point {
|
||||
final num x;
|
||||
final num y;
|
||||
|
||||
const Point(this.x, this.y);
|
||||
const Point.from({this.x = 0, this.y = 0});
|
||||
static const zero = Point(0, 0);
|
||||
|
||||
operator +(covariant Point p) => Point(x + p.x, y + p.y);
|
||||
operator -(covariant Point p) => Point(x - p.x, y - p.y);
|
||||
operator *(covariant Point p) => Point(x * p.x, y * p.y);
|
||||
operator /(covariant Point p) => Point(x / p.x, y / p.y);
|
||||
|
||||
Point addX(num n) => Point(x + n, y);
|
||||
Point addY(num n) => Point(x, y + n);
|
||||
Point add(num n) => Point(x + n, y + n);
|
||||
|
||||
Point subtractX(num n) => Point(x - n, y);
|
||||
Point subtractY(num n) => Point(x, y - n);
|
||||
Point subtractXY(num n) => Point(x - n, y - n);
|
||||
|
||||
Point xSubtract(num n) => Point(n - x, y);
|
||||
Point ySubtract(num n) => Point(x, n - y);
|
||||
Point xySubtract(num n) => Point(n - x, n - y);
|
||||
|
||||
Point timesX(num n) => Point(x * n, y);
|
||||
Point timesY(num n) => Point(x, y * n);
|
||||
Point times(num n) => Point(x * n, y * n);
|
||||
|
||||
Point dividesX(num n) => Point(x / n, y);
|
||||
Point dividesY(num n) => Point(x, y / n);
|
||||
Point divides(num n) => Point(x / n, y / n);
|
||||
|
||||
Point pow(int n) => Point(math.pow(x, n), math.pow(y, n));
|
||||
double abs() => math.sqrt(x * x + y * y);
|
||||
|
||||
@override
|
||||
String toString() => '($x,$y)';
|
||||
}
|
||||
|
||||
const defaultMinDepth = 5;
|
||||
const defaultError = 1e-12;
|
||||
|
||||
/// Recursively approximates the length by straight lines
|
||||
double segmentLength({
|
||||
required SvgPath curve,
|
||||
required num start,
|
||||
required num end,
|
||||
required Point startPoint,
|
||||
required Point endPoint,
|
||||
required double error,
|
||||
required int minDepth,
|
||||
required double depth,
|
||||
}) {
|
||||
num mid = (start + end) / 2;
|
||||
Point midPoint = curve.point(mid);
|
||||
double length = (endPoint - startPoint).abs();
|
||||
double firstHalf = (midPoint - startPoint).abs();
|
||||
double secondHalf = (endPoint - midPoint).abs();
|
||||
|
||||
double length2 = firstHalf + secondHalf;
|
||||
if ((length2 - length > error) || (depth < minDepth)) {
|
||||
// Calculate the length of each segment:
|
||||
depth += 1;
|
||||
return segmentLength(
|
||||
curve: curve,
|
||||
start: start,
|
||||
end: mid,
|
||||
startPoint: startPoint,
|
||||
endPoint: midPoint,
|
||||
error: error,
|
||||
minDepth: minDepth,
|
||||
depth: depth,
|
||||
) +
|
||||
segmentLength(
|
||||
curve: curve,
|
||||
start: mid,
|
||||
end: end,
|
||||
startPoint: midPoint,
|
||||
endPoint: endPoint,
|
||||
error: error,
|
||||
minDepth: minDepth,
|
||||
depth: depth,
|
||||
);
|
||||
}
|
||||
// This is accurate enough.
|
||||
return length2;
|
||||
}
|
||||
|
||||
abstract class SvgPath {
|
||||
final Point start;
|
||||
final Point end;
|
||||
|
||||
const SvgPath({
|
||||
required this.start,
|
||||
required this.end,
|
||||
});
|
||||
|
||||
/// Calculate the x,y position at a certain position of the path
|
||||
Point point(num pos);
|
||||
|
||||
/// Calculate the length of the path up to a certain position
|
||||
double size({double error = defaultError, int minDepth = defaultMinDepth});
|
||||
}
|
||||
|
||||
abstract class Bezier extends SvgPath {
|
||||
const Bezier({
|
||||
required Point start,
|
||||
required Point end,
|
||||
}) : super(start: start, end: end);
|
||||
|
||||
/// Checks if this segment would be a smooth segment following the previous
|
||||
bool isSmoothFrom(Object? previous);
|
||||
}
|
||||
|
||||
/// A straight line
|
||||
/// The base for Line() and Close().
|
||||
class Linear extends SvgPath {
|
||||
const Linear({
|
||||
required Point start,
|
||||
required Point end,
|
||||
}) : super(start: start, end: end);
|
||||
|
||||
// def __ne__(self, other):
|
||||
// if not isinstance(other, Line):
|
||||
// return NotImplemented
|
||||
// return not self == other
|
||||
|
||||
@override
|
||||
Point point(num pos) => start + (end - start).times(pos);
|
||||
|
||||
@override
|
||||
double size({double error = defaultError, int minDepth = defaultMinDepth}) {
|
||||
final distance = end - start;
|
||||
return sqrt(distance.x * distance.x + distance.y * distance.y);
|
||||
}
|
||||
}
|
||||
|
||||
class Line extends Linear {
|
||||
const Line({
|
||||
required Point start,
|
||||
required Point end,
|
||||
}) : super(start: start, end: end);
|
||||
|
||||
@override
|
||||
String toString() {
|
||||
return "Line(start=$start, end=$end)";
|
||||
}
|
||||
// @override
|
||||
// operator ==(covariant Line other) => start == other.start && end == other.end;
|
||||
}
|
||||
|
||||
class CubicBezier extends Bezier {
|
||||
final Point control1;
|
||||
final Point control2;
|
||||
|
||||
const CubicBezier({
|
||||
required Point start,
|
||||
required this.control1,
|
||||
required this.control2,
|
||||
required Point end,
|
||||
}) : super(start: start, end: end);
|
||||
|
||||
@override
|
||||
String toString() => "CubicBezier(start=$start, control1=$control1, "
|
||||
"control2=$control2, end=$end)";
|
||||
|
||||
// @override
|
||||
// operator ==(covariant CubicBezier other) =>
|
||||
// start == other.start &&
|
||||
// and end == other.end &&
|
||||
// and control1 == other.control1 &&
|
||||
// and control2 == other.control2;
|
||||
|
||||
// def __ne__(self, other):
|
||||
// if not isinstance(other, CubicBezier):
|
||||
// return NotImplemented
|
||||
// return not self == other
|
||||
|
||||
@override
|
||||
bool isSmoothFrom(Object? previous) => previous is CubicBezier
|
||||
? start == previous.end &&
|
||||
control1 - start == previous.end - previous.control2
|
||||
: control1 == start;
|
||||
|
||||
@override
|
||||
Point point(num pos) =>
|
||||
start.times(math.pow(1 - pos, 3)) +
|
||||
control1.times(math.pow(1 - pos, 2) * 3 * pos) +
|
||||
control2.times(math.pow(pos, 2) * 3 * (1 - pos)) +
|
||||
end.times(math.pow(pos, 3));
|
||||
|
||||
@override
|
||||
double size({double error = defaultError, int minDepth = defaultMinDepth}) {
|
||||
final startPoint = point(0);
|
||||
final endPoint = point(1);
|
||||
return segmentLength(
|
||||
curve: this,
|
||||
start: 0,
|
||||
end: 1,
|
||||
startPoint: startPoint,
|
||||
endPoint: endPoint,
|
||||
error: error,
|
||||
minDepth: minDepth,
|
||||
depth: 0);
|
||||
}
|
||||
}
|
||||
|
||||
class QuadraticBezier extends Bezier {
|
||||
final Point control;
|
||||
|
||||
const QuadraticBezier({
|
||||
required Point start,
|
||||
required Point end,
|
||||
required this.control,
|
||||
}) : super(
|
||||
start: start,
|
||||
end: end,
|
||||
);
|
||||
|
||||
@override
|
||||
String toString() =>
|
||||
"QuadraticBezier(start=$start, control=$control, end=$end)";
|
||||
|
||||
// def __eq__(self, other):
|
||||
// if not isinstance(other, QuadraticBezier):
|
||||
// return NotImplemented
|
||||
// return (
|
||||
// self.start == other.start
|
||||
// and self.end == other.end
|
||||
// and self.control == other.control
|
||||
// )
|
||||
|
||||
// def __ne__(self, other):
|
||||
// if not isinstance(other, QuadraticBezier):
|
||||
// return NotImplemented
|
||||
// return not self == other
|
||||
|
||||
@override
|
||||
bool isSmoothFrom(Object? previous) => previous is QuadraticBezier
|
||||
? start == previous.end &&
|
||||
(control - start) == (previous.end - previous.control)
|
||||
: control == start;
|
||||
|
||||
@override
|
||||
Point point(num pos) =>
|
||||
start.times(math.pow(1 - pos, 2)) +
|
||||
control.times(pos * (1 - pos) * 2) +
|
||||
end.times(math.pow(pos, 2));
|
||||
|
||||
@override
|
||||
double size({double error = defaultError, int minDepth = defaultMinDepth}) {
|
||||
final Point a = start - control.times(2) + end;
|
||||
final Point b = (control - start).times(2);
|
||||
final num aDotB = a.x * b.x + a.y * b.y;
|
||||
|
||||
late final double s;
|
||||
if (a.abs() < 1e-12) {
|
||||
s = b.abs();
|
||||
} else if ((aDotB + a.abs() * b.abs()).abs() < 1e-12) {
|
||||
final k = b.abs() / a.abs();
|
||||
s = (k >= 2) ? b.abs() - a.abs() : a.abs() * ((k * k) / 2 - k + 1);
|
||||
} else {
|
||||
// For an explanation of this case, see
|
||||
// http://www.malczak.info/blog/quadratic-bezier-curve-length/
|
||||
final num A = 4 * (a.x * a.x + a.y * a.y);
|
||||
final num B = 4 * (a.x * b.x + a.y * b.y);
|
||||
final num C = b.x * b.x + b.y * b.y;
|
||||
|
||||
final double sabc = 2 * sqrt(A + B + C);
|
||||
final double a2 = sqrt(A);
|
||||
final double a32 = 2 * A * a2;
|
||||
final double c2 = 2 * sqrt(C);
|
||||
final double bA = B / a2;
|
||||
|
||||
s = (a32 * sabc +
|
||||
a2 * B * (sabc - c2) +
|
||||
(4 * C * A - (B * B)) * log((2 * a2 + bA + sabc) / (bA + c2))) /
|
||||
(4 * a32);
|
||||
}
|
||||
return s;
|
||||
}
|
||||
}
|
||||
|
||||
/// radius is complex, rotation is in degrees,
|
||||
/// large and sweep are 1 or 0 (True/False also work)
|
||||
class Arc extends SvgPath {
|
||||
final Point radius;
|
||||
final double rotation;
|
||||
final bool arc;
|
||||
final bool sweep;
|
||||
late final num radiusScale;
|
||||
late final Point center;
|
||||
late final num theta;
|
||||
late final num delta;
|
||||
|
||||
Arc({
|
||||
required Point start,
|
||||
required Point end,
|
||||
required this.radius,
|
||||
required this.rotation,
|
||||
required this.arc,
|
||||
required this.sweep,
|
||||
}) : super(start: start, end: end) {
|
||||
_parameterize();
|
||||
}
|
||||
|
||||
@override
|
||||
String toString() => "Arc(start=$start, radius=$radius, rotation=$rotation, "
|
||||
"arc=$arc, sweep=$sweep, end=$end)";
|
||||
|
||||
// def __eq__(self, other):
|
||||
// if not isinstance(other, Arc):
|
||||
// return NotImplemented
|
||||
// return (
|
||||
// self.start == other.start
|
||||
// and self.end == other.end
|
||||
// and self.radius == other.radius
|
||||
// and self.rotation == other.rotation
|
||||
// and self.arc == other.arc
|
||||
// and self.sweep == other.sweep
|
||||
// )
|
||||
|
||||
// def __ne__(self, other):
|
||||
// if not isinstance(other, Arc):
|
||||
// return NotImplemented
|
||||
// return not self == other
|
||||
|
||||
void _parameterize() {
|
||||
// Conversion from endpoint to center parameterization
|
||||
// http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
|
||||
|
||||
// This is equivalent of omitting the segment, so do nothing
|
||||
if (start == end) return;
|
||||
|
||||
// This should be treated as a straight line
|
||||
if (radius.x == 0 || radius.y == 0) return;
|
||||
|
||||
final cosr = cos(radians(rotation));
|
||||
final sinr = sin(radians(rotation));
|
||||
final dx = (start.x - end.x) / 2;
|
||||
final dy = (start.y - end.y) / 2;
|
||||
final x1prim = cosr * dx + sinr * dy;
|
||||
final x1primSq = x1prim * x1prim;
|
||||
final y1prim = -sinr * dx + cosr * dy;
|
||||
final y1primSq = y1prim * y1prim;
|
||||
|
||||
num rx = radius.x;
|
||||
num rxSq = rx * rx;
|
||||
num ry = radius.y;
|
||||
num rySq = ry * ry;
|
||||
|
||||
// Correct out of range radii
|
||||
num radiusScale = (x1primSq / rxSq) + (y1primSq / rySq);
|
||||
if (radiusScale > 1) {
|
||||
radiusScale = sqrt(radiusScale);
|
||||
rx *= radiusScale;
|
||||
ry *= radiusScale;
|
||||
rxSq = rx * rx;
|
||||
rySq = ry * ry;
|
||||
this.radiusScale = radiusScale;
|
||||
} else {
|
||||
// SVG spec only scales UP
|
||||
this.radiusScale = 1;
|
||||
}
|
||||
|
||||
final t1 = rxSq * y1primSq;
|
||||
final t2 = rySq * x1primSq;
|
||||
double c = sqrt(((rxSq * rySq - t1 - t2) / (t1 + t2)).abs());
|
||||
|
||||
if (arc == sweep) {
|
||||
c = -c;
|
||||
}
|
||||
final cxprim = c * rx * y1prim / ry;
|
||||
final cyprim = -c * ry * x1prim / rx;
|
||||
|
||||
center = Point(
|
||||
(cosr * cxprim - sinr * cyprim) + ((start.x + end.x) / 2),
|
||||
(sinr * cxprim + cosr * cyprim) + ((start.y + end.y) / 2),
|
||||
);
|
||||
|
||||
final ux = (x1prim - cxprim) / rx;
|
||||
final uy = (y1prim - cyprim) / ry;
|
||||
final vx = (-x1prim - cxprim) / rx;
|
||||
final vy = (-y1prim - cyprim) / ry;
|
||||
num n = sqrt(ux * ux + uy * uy);
|
||||
num p = ux;
|
||||
theta = (((uy < 0) ? -1 : 1) * degrees(acos(p / n))) % 360;
|
||||
|
||||
n = sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy));
|
||||
p = ux * vx + uy * vy;
|
||||
num d = p / n;
|
||||
// In certain cases the above calculation can through inaccuracies
|
||||
// become just slightly out of range, f ex -1.0000000000000002.
|
||||
if (d > 1.0) {
|
||||
d = 1.0;
|
||||
} else if (d < -1.0) {
|
||||
d = -1.0;
|
||||
}
|
||||
delta = ((((ux * vy - uy * vx) < 0) ? -1 : 1) * degrees(acos(d))) % 360;
|
||||
if (!sweep) delta -= 360;
|
||||
}
|
||||
|
||||
@override
|
||||
Point point(num pos) {
|
||||
// This is equivalent of omitting the segment
|
||||
if (start == end) return start;
|
||||
|
||||
// This should be treated as a straight line
|
||||
if (this.radius.x == 0 || this.radius.y == 0) {
|
||||
return start + (end - start) * pos;
|
||||
}
|
||||
|
||||
final angle = radians(theta + pos * delta);
|
||||
final cosr = cos(radians(rotation));
|
||||
final sinr = sin(radians(rotation));
|
||||
final radius = this.radius.times(radiusScale);
|
||||
|
||||
final x =
|
||||
cosr * cos(angle) * radius.x - sinr * sin(angle) * radius.y + center.x;
|
||||
|
||||
final y =
|
||||
sinr * cos(angle) * radius.x + cosr * sin(angle) * radius.y + center.y;
|
||||
|
||||
return Point(x, y);
|
||||
}
|
||||
|
||||
/// The length of an elliptical arc segment requires numerical
|
||||
/// integration, and in that case it's simpler to just do a geometric
|
||||
/// approximation, as for cubic bezier curves.
|
||||
@override
|
||||
double size({double error = defaultError, minDepth = defaultMinDepth}) {
|
||||
// This is equivalent of omitting the segment
|
||||
if (start == end) return 0;
|
||||
|
||||
// This should be treated as a straight line
|
||||
if (radius.x == 0 || radius.y == 0) {
|
||||
final distance = end - start;
|
||||
return sqrt(distance.x * distance.x + distance.y * distance.y);
|
||||
}
|
||||
|
||||
if (radius.x == radius.y) {
|
||||
// It's a circle, which simplifies this a LOT.
|
||||
final radius = this.radius.x * radiusScale;
|
||||
return radians(radius * delta).abs();
|
||||
}
|
||||
|
||||
final startPoint = point(0);
|
||||
final endPoint = point(1);
|
||||
return segmentLength(
|
||||
curve: this,
|
||||
start: 0,
|
||||
end: 1,
|
||||
startPoint: startPoint,
|
||||
endPoint: endPoint,
|
||||
error: error,
|
||||
minDepth: minDepth,
|
||||
depth: 0);
|
||||
}
|
||||
}
|
||||
|
||||
// Represents move commands. Does nothing, but is there to handle
|
||||
// paths that consist of only move commands, which is valid, but pointless.
|
||||
class Move extends SvgPath {
|
||||
const Move({required Point to}) : super(start: to, end: to);
|
||||
|
||||
@override
|
||||
String toString() => "Move(to=$start)";
|
||||
// def __eq__(self, other):
|
||||
// if not isinstance(other, Move):
|
||||
// return NotImplemented
|
||||
// return self.start == other.start
|
||||
|
||||
// def __ne__(self, other):
|
||||
// if not isinstance(other, Move):
|
||||
// return NotImplemented
|
||||
// return not self == other
|
||||
|
||||
@override
|
||||
Point point(num pos) => start;
|
||||
|
||||
@override
|
||||
double size({double error = defaultError, int minDepth = defaultMinDepth}) => 0;
|
||||
}
|
||||
|
||||
// Represents the closepath command
|
||||
class Close extends Linear {
|
||||
const Close({
|
||||
required Point start,
|
||||
required Point end,
|
||||
}) : super(start: start, end: end);
|
||||
|
||||
// def __eq__(self, other):
|
||||
// if not isinstance(other, Close):
|
||||
// return NotImplemented
|
||||
// return self.start == other.start and self.end == other.end
|
||||
|
||||
@override
|
||||
String toString() => "Close(start=$start, end=$end)";
|
||||
}
|
||||
|
||||
/// A Path is a sequence of path segments
|
||||
class Path extends ListBase<SvgPath> {
|
||||
late final List<SvgPath> segments;
|
||||
List<num>? _memoizedLengths;
|
||||
num? _memoizedLength;
|
||||
final List<num> _fractions = [];
|
||||
|
||||
Path() {
|
||||
segments = [];
|
||||
}
|
||||
|
||||
@override
|
||||
SvgPath operator [](int index) => segments[index];
|
||||
|
||||
@override
|
||||
void operator []=(int index, SvgPath value) {
|
||||
segments[index] = value;
|
||||
_memoizedLength = null;
|
||||
}
|
||||
|
||||
@override
|
||||
int get length => segments.length;
|
||||
|
||||
@override
|
||||
set length(int newLength) => segments.length = newLength;
|
||||
|
||||
@override
|
||||
String toString() =>
|
||||
'Path(${[for (final s in segments) s.toString()].join(", ")})';
|
||||
|
||||
void _calcLengths({double error = defaultError, int minDepth = defaultMinDepth}) {
|
||||
if (_memoizedLength != null) return;
|
||||
|
||||
final lengths = [
|
||||
for (final s in segments) s.size(error: error, minDepth: minDepth)
|
||||
];
|
||||
_memoizedLength = lengths.reduce((a, b) => a + b);
|
||||
if (_memoizedLength == 0) {
|
||||
_memoizedLengths = lengths;
|
||||
} else {
|
||||
_memoizedLengths = [for (final l in lengths) l / _memoizedLength!];
|
||||
}
|
||||
|
||||
// Calculate the fractional distance for each segment to use in point()
|
||||
num fraction = 0;
|
||||
for (final l in _memoizedLengths!) {
|
||||
fraction += l;
|
||||
_fractions.add(fraction);
|
||||
}
|
||||
}
|
||||
|
||||
Point point({required num pos, double error = defaultError}) {
|
||||
// Shortcuts
|
||||
if (pos == 0.0) {
|
||||
return segments[0].point(pos);
|
||||
}
|
||||
if (pos == 1.0) {
|
||||
return segments.last.point(pos);
|
||||
}
|
||||
|
||||
_calcLengths(error: error);
|
||||
|
||||
// Fix for paths of length 0 (i.e. points)
|
||||
if (length == 0) {
|
||||
return segments[0].point(0.0);
|
||||
}
|
||||
|
||||
// Find which segment the point we search for is located on:
|
||||
late final num segmentPos;
|
||||
int i = _fractions.bisect(pos);
|
||||
if (i == 0) {
|
||||
segmentPos = pos / _fractions[0];
|
||||
} else {
|
||||
segmentPos =
|
||||
(pos - _fractions[i - 1]) / (_fractions[i] - _fractions[i - 1]);
|
||||
}
|
||||
return segments[i].point(segmentPos);
|
||||
}
|
||||
|
||||
num size({error = defaultError, minDepth = defaultMinDepth}) {
|
||||
_calcLengths(error: error, minDepth: minDepth);
|
||||
return _memoizedLength!;
|
||||
}
|
||||
|
||||
String d() {
|
||||
Point? currentPos;
|
||||
final parts = [];
|
||||
SvgPath? previousSegment;
|
||||
final end = last.end;
|
||||
|
||||
String formatNumber(num n) => n.toString();
|
||||
String coord(Point p) => '${formatNumber(p.x)},${formatNumber(p.y)}';
|
||||
|
||||
for (final segment in this) {
|
||||
final start = segment.start;
|
||||
// If the start of this segment does not coincide with the end of
|
||||
// the last segment or if this segment is actually the close point
|
||||
// of a closed path, then we should start a new subpath here.
|
||||
if (segment is Close) {
|
||||
parts.add("Z");
|
||||
} else if (segment is Move ||
|
||||
(currentPos != start) ||
|
||||
(start == end && previousSegment is! Move)) {
|
||||
parts.add("M ${coord(start)}");
|
||||
}
|
||||
|
||||
if (segment is Line) {
|
||||
parts.add("L ${coord(segment.end)}");
|
||||
} else if (segment is CubicBezier) {
|
||||
if (segment.isSmoothFrom(previousSegment)) {
|
||||
parts.add("S ${coord(segment.control2)} ${coord(segment.end)}");
|
||||
} else {
|
||||
parts.add(
|
||||
"C ${coord(segment.control1)} ${coord(segment.control2)} ${coord(segment.end)}",
|
||||
);
|
||||
}
|
||||
} else if (segment is QuadraticBezier) {
|
||||
if (segment.isSmoothFrom(previousSegment)) {
|
||||
parts.add("T ${coord(segment.end)}");
|
||||
} else {
|
||||
parts.add("Q ${coord(segment.control)} ${coord(segment.end)}");
|
||||
}
|
||||
} else if (segment is Arc) {
|
||||
parts.add(
|
||||
"A ${coord(segment.radius)} ${formatNumber(segment.rotation)} "
|
||||
"${(segment.arc ? 1 : 0).toDouble},${(segment.sweep ? 1 : 0).toDouble} ${coord(end)}",
|
||||
);
|
||||
}
|
||||
|
||||
currentPos = segment.end;
|
||||
previousSegment = segment;
|
||||
}
|
||||
|
||||
return parts.join(" ");
|
||||
}
|
||||
|
||||
// def __delitem__(self, index):
|
||||
// del self._segments[index]
|
||||
// self._length = None
|
||||
|
||||
// def reverse(self):
|
||||
// # Reversing the order of a path would require reversing each element
|
||||
// # as well. That's not implemented.
|
||||
// raise NotImplementedError
|
||||
|
||||
// def __len__(self):
|
||||
// return len(self._segments)
|
||||
|
||||
// def __eq__(self, other):
|
||||
|
||||
// if not isinstance(other, Path):
|
||||
// return NotImplemented
|
||||
// if len(self) != len(other):
|
||||
// return False
|
||||
// for s, o in zip(self._segments, other._segments):
|
||||
// if not s == o:
|
||||
// return False
|
||||
// return True
|
||||
|
||||
// def __ne__(self, other):
|
||||
// if not isinstance(other, Path):
|
||||
// return NotImplemented
|
||||
// return not self == other
|
||||
|
||||
}
|
Reference in New Issue
Block a user