463 lines
13 KiB
Typst
463 lines
13 KiB
Typst
#import "@preview/cetz:0.3.2";
|
|
#import "@preview/cetz-plot:0.1.1": plot
|
|
#import "@preview/physica:0.9.4": *
|
|
#import "@preview/plotsy-3d:0.1.0": plot-3d-parametric-surface
|
|
#import "@preview/fletcher:0.5.4" as fletcher: diagram, edge, node
|
|
|
|
#set page(paper: "a4", margin: (x: 2.6cm, y: 2.8cm), numbering: "1 : 1")
|
|
#set par(justify: true, leading: 0.52em)
|
|
|
|
#let FONT_SIZE = 18pt;
|
|
#set text(font: "FreeSerif", size: FONT_SIZE, lang: "us")
|
|
#show math.equation: set text(font: "Euler Math", size: (FONT_SIZE * 1.0), lang: "en")
|
|
|
|
#set heading(numbering: none)
|
|
#show heading.where(level: 1): it => {
|
|
rect(inset: FONT_SIZE / 2)[#it]
|
|
}
|
|
// #show heading.where(level: 2): it => [
|
|
// #set align(left)
|
|
// #set text(size: FONT_SIZE * 1.1, weight: "semibold")
|
|
// #(it.body)
|
|
// ]
|
|
|
|
#align(center)[
|
|
#text(size: FONT_SIZE * 2, weight: "bold")[#underline[exercise 1]]
|
|
]
|
|
|
|
these are my solutions to the first exercise set of TMA4135.
|
|
|
|
i recommend using a PDF-reader with document rotation capabilities, like
|
|
#link("https://wiki.archlinux.org/title/Zathura")[#text(blue.darken(5%))[zathura]].
|
|
|
|
this document was created using
|
|
#link("https://typst.app/")[#text(blue.darken(5%))[typst]].
|
|
|
|
#v(42pt)
|
|
|
|
#outline(title: none)
|
|
|
|
|
|
= problem 1
|
|
|
|
== a)
|
|
|
|
#[#show math.equation: set text(size: (FONT_SIZE * 0.56))
|
|
#rotate(
|
|
-90deg,
|
|
reflow: true,
|
|
table(
|
|
$bold(u(x, y, t))$, $bold(u_y)$, $bold(u_t)$, $bold(u_(x x))$, $bold(u_(x y))$, $bold(u_(y x))$,
|
|
|
|
$t^4 - cos(x y)$, $x sin(x y)$, $4 t^3$, $y^2 cos(x y)$, $x y cos(x y) + sin(x y)$, $x y cos(x y) + sin(x y)$,
|
|
|
|
$-sin(t x y)$,
|
|
$- t x cos(t x y)$,
|
|
$- x y cos(t x y)$,
|
|
$t^2 y^2 sin(t x y)$,
|
|
$t^2 x y sin(t x y)$,
|
|
$t^2 x y cos(t x y)$,
|
|
|
|
$e^(-t) sin(x) ln(y)$,
|
|
$(e^(-t) sin(x)) slash y$,
|
|
$- e^(-t) sin(x) ln(y)$,
|
|
$-e^(-t) sin(x) ln(y)$,
|
|
$(e^(-t) cos(x)) slash y$,
|
|
$(e^(-t) cos(x)) slash y$,
|
|
|
|
$e^(-x) sqrt(x^3 + y^2)$,
|
|
$(2 y e^(-x)) slash sqrt(x^3 + y^2)$,
|
|
$0$,
|
|
$(dagger)$,
|
|
$(dagger.double)$,
|
|
$(dagger dagger)$,
|
|
|
|
$(t e^t) sin(x)$, $0$, $e^t (t + 1) sin(x)$, $- t e^t sin(x)$, $0$, $0$,
|
|
|
|
$sin(t) e^(-x) + cos(t) e^(-y)$, $- cos(t) e^(-y)$, $cos(t) e^(-x) - sin(t) e^(-y)$, $sin(t) e^(-x)$, $0$, $0$,
|
|
|
|
rows: 7,
|
|
columns: 6,
|
|
)
|
|
+ [#set text(size: FONT_SIZE * 0.6, fill: gray.darken(35%))
|
|
#show math.equation: set text(size: FONT_SIZE * 0.5)
|
|
some calculations\
|
|
#table(
|
|
table.cell(
|
|
rowspan: 2,
|
|
$(dagger)$,
|
|
),
|
|
table.cell(
|
|
rowspan: 2,
|
|
$
|
|
& quad pdv(, x, 2)e^(-x) sqrt(x^3 + y^2) \
|
|
& = pdv(, x) ((3 x^2 e^(-x) ) / (2 sqrt(x^3 + y^2))
|
|
- e^(-x) sqrt(x^3 + y^2)) \
|
|
& = 3/2 dot ((2 x e^(-x) - x^2 e^(-x)) sqrt(x^3 + y^2)
|
|
- (3 x^4 e^(-x)) / (2 sqrt(x^3 + y^2))) / (x^3 + y^2)
|
|
- (3 x^2 e^(-x) ) / (2 sqrt(x^3 + y^2))
|
|
+ e^(-x) sqrt(x^3 + y^2) \
|
|
& = (3 e^(-x) ((2 x - x^2) (x^3 + y^2) - 3 x^4))
|
|
/ (4(x^3 + y^2)^(3/2))
|
|
- (6 x^2 e^(-x) (x^3 + y^2)) / (4 (x^3 + y^2)^(3/2))
|
|
+ (4 e^(-x) (x^3 + y^2)^2) / (4 (x^3 + y^2)^(3/2)) \
|
|
& = (3 e^(-x) (2 x y^2 - x^5 - x^2 y^2 - x^4)
|
|
- 6 x^2 e^(-x) (x^3 + y^2)
|
|
+ 4 e^(-x) (x^6 + 2 x^3 y^2 + y^4))
|
|
/ (4 (x^3 + y^2)^(3/2)) \
|
|
& = (6 x y^2 e^(-x) - 3 x^5 e^(-x) - 3 x^2 y^2 e^(-x) - 3 x^4 e^(-x)
|
|
- 6 x^5 e^(-x) + 6 y^2 e^(-x)
|
|
+ 4 x^6 e^(-x) + 8 x^3 y^2 e^(-x) + 8 y^4 e^(-x))
|
|
/ (4 (x^3 + y^2)^(3/2)) \
|
|
& = (6 x y^2 e^(-x) - 9 x^5 e^(-x) - 3 x^2 y^2 e^(-x) - 3 x^4 e^(-x)
|
|
+ 6 y^2 e^(-x)
|
|
+ 4 x^6 e^(-x) + 8 x^3 y^2 e^(-x) + 8 y^4 e^(-x))
|
|
/ (4 (x^3 + y^2)^(3/2)) \
|
|
& = e^(-x) dot (6 x y^2 - 9 x^5 - 3 x^2 y^2 - 3 x^4
|
|
+ 6 y^2
|
|
+ 4 x^6 + 8 x^3 y^2 + 8 y^4)
|
|
/ (4 (x^3 + y^2)^(3/2)) \
|
|
& #[a few errors somewhere, but close enough...]
|
|
$,
|
|
),
|
|
|
|
$(dagger.double)$,
|
|
$
|
|
& quad pdv(, y, x) e^(-x) sqrt(x^3 + y^2) \
|
|
& = pdv(, y) ((3 x^2 e^(-x) ) / (2 sqrt(x^3 + y^2))
|
|
- e^(-x) sqrt(x^3 + y^2)) \
|
|
& = (-3 x^2 y e^(-x))/2 dot (x^3 + y^2)^(-3/2)
|
|
- (2 y e^(-x))/(2 sqrt(x^3 + y^2))
|
|
$,
|
|
|
|
$(dagger dagger)$,
|
|
$
|
|
& quad pdv(, x, y) e^(-x) sqrt(x^3 + y^2) \
|
|
& = pdv(, x) space (-y e^(-x))/(sqrt(x^3 + y^2)) \
|
|
& = (y e^(-x) sqrt(x^3 + y^2) + y e^(-x) dot 1 slash 2 dot (x^3
|
|
+ y^2)^(-1/2)) / (x^3 + y^2) \
|
|
& = (y e^(-x) (sqrt(x^3 + y^2) + 1 slash 2 dot (x^3
|
|
+ y^2)^(-1/2))) / (x^3 + y^2)
|
|
$,
|
|
|
|
columns: 4,
|
|
stroke: none,
|
|
)
|
|
],
|
|
)
|
|
]
|
|
|
|
== b)
|
|
|
|
|
|
define $ f^i_k := (partial f^i) / (partial y^k)
|
|
quad quad f^i_(k l) := (partial f^i) / (partial y^k partial y^l) $
|
|
|
|
and let the jacobian matrix $ frak(J) := [ (f_y)_(i j) = f^i_j ] $
|
|
|
|
where $f^2_y$ is the matrix product and $f_(y y)$ has entries $(f^i_(k l))$.
|
|
|
|
consider $ f : RR^m -> RR^m,
|
|
space y |-> (f^1 (y^1, ..., y^m), ..., f^m (y^1, ..., y^m))^T $
|
|
|
|
show that $ (f_y f)_y f = f^T f_(y y) f + f^2_y f $
|
|
|
|
#align(center)[#line(length: 75%)]
|
|
|
|
$
|
|
y |-> #text(red)[$f(y)$] |-> pdv(, y) (pdv(f, y)(f(#text(red)[$x$])))
|
|
$ $
|
|
=> (f_y f)_y f & = pdv(, y) (pdv(f, y) (f(f(y)))) \
|
|
& = pdv(, y) (pdv(f, y) (f^2(y)))
|
|
$
|
|
|
|
$
|
|
y |-> #text(red)[$f(y)$] |-> f^T (pdv(f, y, 2)(#text(red)[$x$])) + pdv(f, y)
|
|
(pdv(f, y) (#text(red)[$x$]))
|
|
$ $
|
|
=> f^T f_(y y) f + f^2_y f & = (f(pdv(f, x, 2)(f(y))))^T + pdv(f, x) (pdv(f, x) (f(y)))
|
|
$
|
|
|
|
we can see through $eta$-reduction that we only need to show $ (f_y f)_y = f^T f_(y y) + f^2_y $
|
|
|
|
and further that $ f_y f = f^T f_y + f_y f $
|
|
|
|
thus we need to prove that $ f^T f_y = 0 $
|
|
|
|
but $ f^T f_y = (f(pdv(f, y)))^T = (f^1(f^1_y, ..., f^m_y), ..., f^m (f^1_y, ..., f^m_y)) $
|
|
|
|
|
|
no more, i yield, i yield!!
|
|
|
|
= problem 2
|
|
|
|
== a)
|
|
|
|
let $f(x) := x^4 + 3 x^3 - 2 x + 5$; find all taylor polynomials around
|
|
$x_0 := -2$.
|
|
|
|
#align(center)[#line(length: 75%)]
|
|
|
|
recall that each term is given by $ P_k (x) := (f^((k)) (x_0)) / k! (x - x_0)^k $
|
|
for $k in [0, deg(f)] inter ZZ$.
|
|
|
|
first compute
|
|
$
|
|
f'(x) & = 4x^3 + 9x^2 - 2 \
|
|
f''(x) & = 12x^2 + 18x \
|
|
f^((3))(x) & = 24 x + 18 \
|
|
f^((4))(x) & = 24
|
|
$
|
|
|
|
then
|
|
$
|
|
P_0(x) & = f(-2) = 16 - 24 + 4 + 5 = 1 \
|
|
P_1(x) & = f'(-2) dot (x + 2) = 2 (x+2) = 2x + 4 \
|
|
P_2(x) & = (f''(-2))/2 dot (x + 2)^2 = 6 x^2 + 24x + 24 \
|
|
P_3(x) & = (f^((3)) (-2))/6 dot (x + 2)^3 = -5 (x + 2)^3 \
|
|
& = -5x^3 - 30 x^2 - 60 x - 40 \
|
|
P_4(x) & = (x + 2)^4 = x^4 + 8 x^3 + 24 x^2 + 32 x + 16
|
|
$
|
|
|
|
note that there are finitely many unique derivatives, as $f(x)$ is a polynomial
|
|
of degree 4.
|
|
|
|
then the $k$-th taylor polynomial can be expressed as
|
|
$
|
|
T_k := sum_(i=0)^k P_i
|
|
$
|
|
|
|
or recursively
|
|
$
|
|
T_k = T_(k-1) + P_k quad and quad T_0 = P_0 = 1
|
|
$
|
|
|
|
for $k in NN^+$.
|
|
|
|
thus the taylor polynomials for $f$ are
|
|
$
|
|
T_0 & = P_0 = 1 \
|
|
T_1 & = P_0 + P_1 = 2x + 5 \
|
|
T_2 & = 6x^2 + 26x + 29 \
|
|
T_3 & = -5x^3 - 24x^2 - 34x - 11 \
|
|
T_4 & = x^4 + 3x^3 - 2x + 5 = f(x)
|
|
$
|
|
|
|
naturally we are able to perfectly describe a fourth-degree polynomial with
|
|
a taylor series.
|
|
|
|
== b)
|
|
|
|
let $g(x) := ln(1 + x)$; calculate its maclaurin series -- i.e. taylor series at
|
|
$x_0 = 0$.
|
|
|
|
#align(center)[#line(length: 75%)]
|
|
|
|
first we differentiate
|
|
$
|
|
g'(x) & = 1/(1+x) \
|
|
g''(x) & = -1/(1+x)^2 \
|
|
& dots.v \
|
|
g^((k)) (x) & = (-1)^(k-1) dot (k-1)! dot (1 + x)^(-k)
|
|
$
|
|
|
|
for $k in NN^+$.
|
|
|
|
as the function is infinitely differentiable and continuous around $x = 0$, we
|
|
can conclude that $g(x)$ is analytic.
|
|
|
|
recall that the maclaurin series of an analytic function $f$ is
|
|
$
|
|
f(x) = sum_(i=0)^infinity (f^((i)) (0))/(i!) x^i
|
|
$
|
|
|
|
fortunately we have
|
|
$
|
|
g^((k)) (0) = (-1)^(k-1) dot (k - 1)!
|
|
$
|
|
|
|
so
|
|
$
|
|
g(x) & = sum_(i=1)^k (g^((i)) (0)) / (i!) x^i \
|
|
& = sum_(i=1)^k (-1)^(i-1) (i-1)! / (i!) x^i \
|
|
& = sum_(i=1)^k ((-1)^(i-1) x^i) / i \
|
|
& = x - x^2 / 2 + x^3 / 3 - dots.c
|
|
$
|
|
|
|
thus we have the maclaurin series of $g(x)$.
|
|
|
|
= problem 3
|
|
|
|
== a)
|
|
|
|
are $1+x$, $1-x$ and $x-x^2$ linearly independent in $P_2$? what do they span?
|
|
|
|
#align(center)[#line(length: 75%)]
|
|
|
|
let us denote these in vector notation as
|
|
$
|
|
vec(0, 1, 1), vec(0, -1, 1) #[and] vec(-1, 1, 0)
|
|
$
|
|
respectively. thus we can determine their dependency via gauss-jordan
|
|
elimination
|
|
$
|
|
mat(0, 0, -1; 1, -1, 1; 1, 1, 0) ~
|
|
mat(1, 0, 0; 0, 1, 0; 0, 0, 1) = I_3
|
|
$
|
|
|
|
the three vectors are thus linearly independent. then what is their span?
|
|
since they are linearly independent in $P_2$, they form a basis for the vector
|
|
space and thus span out $P_2$. of note: $P_2$ is itself isomorphic to $RR^3$.
|
|
|
|
== b)
|
|
|
|
our affine space has two conditions, $p(1) = 1$ and $p(2) = 2$.
|
|
|
|
let
|
|
$
|
|
p(x) := a x^3 + b x^2 + c x + d
|
|
$
|
|
such that
|
|
$
|
|
p(1) = a + b + c + d = 1
|
|
$
|
|
and
|
|
$
|
|
p(2) = 8 a + 4 b + 2 c + d = 2
|
|
$
|
|
|
|
we can represent this system with a matrix
|
|
$
|
|
mat(1, 1, 1, 1 | 1; 8, 4, 2, 1 | 2) tilde
|
|
mat(1, 1, 1, 1 | 1; 7, 3, 1, 0 | 1)
|
|
$
|
|
|
|
thus the condition vectors are linearly independent and the matrix has rank 2,
|
|
so they span out a two-dimensional constraint space. by the rank-nullity theorem
|
|
we can conclude that the solution space must have
|
|
$
|
|
dim(P_3) - "rank" = 4 - 2 = 2
|
|
$
|
|
dimensions.
|
|
|
|
|
|
== c)
|
|
|
|
we can create a basis out of the three vectors
|
|
$
|
|
x-1, x^2 - 1 #[and] x^3 - 1
|
|
$
|
|
to form a three-dimensional space, since they are linearly independent.
|
|
|
|
from the results of the last task we can intuitively guess that the three
|
|
conditions will lead to a system of equations with three unknowns. thus the
|
|
system is solvable and we may indeed choose arbitrary values for our
|
|
conditions.
|
|
|
|
so let
|
|
$
|
|
p(x) := alpha (x - 1) + beta (x^2 - 1) + gamma (x^3 - 1)
|
|
$
|
|
such that
|
|
$
|
|
p(0) & = - alpha - beta - gamma = y_0, \
|
|
p(1) & = 0 = y_1, \
|
|
p(2) & = alpha + 3 beta + 7 gamma = y_2
|
|
$
|
|
|
|
this is different from my original expectation. we can tell that $y_1$ must be
|
|
0, thus cannot be chosen arbitrarily. then we effectively only have two
|
|
equations, thus ending up in the same situation as the last subtask, meaning we
|
|
will not be able to choose the remaining values arbitrarily, since the system of
|
|
equations will be underdetermined.
|
|
|
|
as such, if we choose for $y_1 = 0$ to hold, it is possible.
|
|
|
|
|
|
= problem 4
|
|
|
|
== a)
|
|
|
|
#let inner(f, g) = $angle.l #f, #g angle.r$
|
|
|
|
prove that ${sin(t), cos(t), 1}$ is orthogonal in the space $C[0, 2 pi]$ with
|
|
inner product
|
|
$
|
|
inner(f, g) := integral_0^(2 pi) f(s) g(s) dd(s)
|
|
$
|
|
i.e. that it is an orthogonal basis for $C[0, 2 pi]$.
|
|
|
|
#align(center)[#line(length: 75%)]
|
|
|
|
we must compute the pair-wise inner product of each base vector
|
|
$
|
|
// inner(sin, cos) & = integral_0^(2 pi) sin(t) cos(t) dd(t) = \
|
|
inner(sin, 1) & = integral_0^(2 pi) sin(t) dd(t) = 0, \
|
|
inner(1, cos) & = integral_0^(2 pi) cos(t) dd(t) = 0
|
|
$
|
|
because $sin(t)$ and $cos(t)$ all have a period of $2 pi$. lastly,
|
|
|
|
$
|
|
inner(sin, cos) & = integral_0^(2 pi) sin(t) cos(t) dd(t) \
|
|
& = 1/2 integral_0^(2 pi) sin(2 t) dd(t) \
|
|
& = 1/4 integral_0^(4 pi) sin(u) dd(u) = 0.
|
|
$
|
|
|
|
thus they are all orthogonal and they form a basis under this definition of
|
|
inner product. to make it an orthonormal basis, we can scale each base component
|
|
by its length, such that
|
|
$
|
|
frak(O) := {sin(t)/a, cos(t)/b, 1/c}
|
|
$
|
|
forms an orthonormal basis, where
|
|
$
|
|
a & = sqrt(inner(sin, sin)) = (integral_0^(2 pi) sin^2 t dd(t))^(1 slash 2) = sqrt(pi) \
|
|
b & = sqrt(inner(cos, cos)) = (integral_0^(2 pi) cos^2 t dd(t))^(1 slash 2) = sqrt(pi) \
|
|
c & = sqrt(inner(1, 1)) = (integral_0^(2 pi) dd(t)) = sqrt(2 pi)
|
|
$
|
|
|
|
== b)
|
|
|
|
to form an orthonormal basis for the monomials ${1, x, x^2}$, we use the
|
|
gram-schmidt method with $vectorbold(v_1) := 1$.
|
|
|
|
then
|
|
$
|
|
vectorbold(v_2) & := x - "proj"_(vectorbold(v_1)) (x) \
|
|
& = x - (inner(vectorbold(v_1), x) / inner(
|
|
vectorbold(v_1),
|
|
vectorbold(v_1)
|
|
)) vectorbold(v_1) \
|
|
& = x - inner(1, x) / inner(1, 1) \
|
|
& = x - 1/2 integral_(-1)^1 x dd(x) \
|
|
& = x
|
|
$
|
|
|
|
and similarly for the last vector
|
|
$
|
|
vectorbold(v_3) & := x^2
|
|
- "proj"_(vectorbold(v_1))(x^2)
|
|
- "proj"_(vectorbold(v_2))(x^2) \
|
|
& = x^2
|
|
- 1/2 integral_(-1)^1 x^2 dd(x)
|
|
- (integral_(-1)^1 x^2 dd(x))^(-1)
|
|
dot integral_(-1)^1 x^3 dd(x) \
|
|
& = x^2 - 1/3
|
|
$
|
|
|
|
thus we have found an orthonormal base using gram-schmidt
|
|
$
|
|
frak(O) := {1/a, x/b, (x^2 - 1/3)/c}
|
|
$
|
|
|
|
where $a & = sqrt(2), b & = sqrt(2/3)$ and $c & = sqrt(8/45)^(dagger)$.
|
|
|
|
#[#show math.equation: set text(size: FONT_SIZE * 0.75, gray.darken(50%))
|
|
$
|
|
dagger: inner(x^2-1/3, x^2-1/3) & = integral_(-1)^1 (x^2 - 1/3)^2 dd(x) \
|
|
& = integral_(-1)^1 (x^4 - 2/3 x^2 + 1/9) dd(x)
|
|
= 8/45
|
|
$
|
|
]
|
|
|