ozai-bot/main.py

451 lines
17 KiB
Python
Executable File

#!/usr/bin/env python3
from time import sleep
import requests
import numpy as np
import random
import argparse
ozai_url = 'http://localhost:8000/api/'
# ozai classes (some are just storing json data because i am )
class Player:
def __init__(self, name, gamedata_player_json):
self.name = name
self.ready = gamedata_player_json['ready']
self.points = gamedata_player_json['points']
self.pattern_lines = gamedata_player_json['pattern_lines'] #'pattern_lines': [{'color': None, 'number': 0}, {'color': None, 'number': 0}, {'color': None, 'number': 0}, {'color': None, 'number': 0}, {'color': None, 'number': 0}],
self.wall = gamedata_player_json['wall'] # 'wall': [[False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, False]]
self.floor = gamedata_player_json['floor']
def __str__(self):
return f"Player(name={self.name}, ready={self.ready}, points={self.points}, pattern_lines={self.pattern_lines}, wall={self.wall}, floor={self.floor})"
class Bag:
def __init__(self, bag_json):
self.blue = bag_json['blue']
self.yellow = bag_json['yellow']
self.red = bag_json['red']
self.black = bag_json['black']
self.white = bag_json['white']
def __str__(self):
return f"Bag(blue={self.blue}, yellow={self.yellow}, red={self.red}, black={self.black}, white={self.white})"
class Factory:
def __init__(self, factory_json):
self.blue = factory_json['blue']
self.yellow = factory_json['yellow']
self.red = factory_json['red']
self.black = factory_json['black']
self.white = factory_json['white']
def __str__(self):
return f"Factory(blue={self.blue}, yellow={self.yellow}, red={self.red}, black={self.black}, white={self.white})"
class Market:
def __init__(self, market_json):
self.start = market_json['start']
self.blue = market_json['blue']
self.yellow = market_json['yellow']
self.red = market_json['red']
self.black = market_json['black']
self.white = market_json['white']
def __str__(self):
return f"Market(start={self.start}, blue={self.blue}, yellow={self.yellow}, red={self.red}, black={self.black}, white={self.white})"
class PatternLine:
def __init__(self, pattern_line_json):
self.color = pattern_line_json['color']
self.number = pattern_line_json['number']
def __str__(self):
return f"PatternLine(color={self.color}, number={self.number})"
class Wall:
def __init__(self, wall_json):
self.wall = wall_json
def __str__(self):
return f"Wall(wall={self.wall})"
class Floor:
def __init__(self, floor_json):
self.start = floor_json['start']
self.blue = floor_json['blue']
self.yellow = floor_json['yellow']
self.red = floor_json['red']
self.black = floor_json['black']
self.white = floor_json['white']
def __str__(self):
return f"Floor(start={self.start}, blue={self.blue}, yellow={self.yellow}, red={self.red}, black={self.black}, white={self.white})"
class GameState:
def __init__(self, gamedata_json):
json = gamedata_json
self.n_players = json['n_players']
self.current_player = json['current_player']
self.starting_player = json['starting_player']
self.player_names = json['player_names']
self.game_end = json['game_end']
self.rounds = json['rounds']
self.days = json['days']
self.bag = Bag(json['bag'])
self.lid = Bag(json['lid']) # Assuming lid has the same structure as bag
self.factories = [Factory(factory_json) for factory_json in json['factories']]
self.market = Market(json['market'])
self.players = [Player(name, player_json) for name, player_json in json['players'].items()]
def __str__(self):
return f"GameState(n_players={self.n_players}, current_player={self.current_player}, starting_player={self.starting_player}, player_names={self.player_names}, game_end={self.game_end}, rounds={self.rounds}, days={self.days}, bag={self.bag}, lid={self.lid}, factories={self.factories}, market={self.market}, players={self.players})"
def init_game(names=["a", "b"]):
#initialize a game with the given names and return the game_id
player_names = {"player_names": names}
response = requests.post(ozai_url + 'game', json=player_names)
if response.status_code == 200:
game_id = response.json()
print("Game ID:", game_id)
#delay
sleep(7)
return game_id
else:
return None
def join_game(game_id, player_name):
#gets a initialized game and joins the game with the given player name
response = requests.get(ozai_url + 'game/' + game_id + '?player=' + player_name)
if response.status_code != 200:
return None
players = response.json().get('players')
return players
def create_game(names=["a", "b"]):
# Create a game with the players given in names, by initializing it and joining the players
game_id = init_game(names)
for name in names:
join_game(game_id, name)
return game_id
def submit_action(game_id, player_name, source=0, destination=0, color="start", policy="random"):
# Submit an action to the game. The action is a dictionary with the keys being the action type and the values being the arguments.
# Example: {"player": 0, "market": true, "factory": 0, "color": "blue", "patternLine": 0}
if source != "market":
if source < 0 or source > 4:
return False
if destination != "floor":
if destination < 0 or destination > 4:
return False
action = {
'player': str(player_name),
'policy': policy,
'color': str(color).lower(),
'source': source,
'destination': destination
}
print(f"action {action}")
response = requests.put(ozai_url + 'game/' + game_id, json=action)
print(f"response {response}")
if response.status_code != 200:
action = {
'player': str(player_name),
'policy': "loose",
'color': str(color).lower(),
'source': source,
'destination': destination
}
response = requests.put(ozai_url + 'game/' + game_id, json=action)
return response
def get_gamestate(game_id) -> GameState:
response = requests.get(ozai_url + 'game/' + game_id)
if response.status_code == 200:
game_state = response.json()
game_state = GameState(game_state)
return game_state
else:
return None
def get_score(game_id, player_name):
GameState = get_gamestate(game_id)
for player in GameState.players:
if player_name == player.name:
return player.points
def game_over(game_id):
try:
GameState = get_gamestate(game_id)
return GameState.game_end
except:
return False
def get_all_valid_moves(game_id, player_name):
# Get the game state
GameState = get_gamestate(game_id)
# Generate a list of all possible moves
sources = ["market"] + [i for i, factory in enumerate(GameState.factories) if any([factory.blue, factory.yellow, factory.red, factory.black, factory.white])]
colors = ["blue", "yellow", "red", "black", "white"]
destinations = ["floor"] + list(range(len(GameState.factories)))
valid_moves = []
for source in sources:
for color in colors:
for destination in destinations:
# Check if the source has the color we want to move
if source == "market":
amount = getattr(GameState.market, color)
if amount > 0:
valid_moves.append((source, destination, color, amount))
else:
amount = getattr(GameState.factories[source], color)
if amount > 0:
valid_moves.append((source, destination, color, amount))
# Filter out invalid destinations if the destinaiton is a pattern line, and the wall contains the color
wall_colors = [
['blue', 'yellow', 'red', 'black', 'white'],
['white', 'blue', 'yellow', 'red', 'black'],
['black', 'white', 'blue', 'yellow', 'red'],
['red', 'black', 'white', 'blue', 'yellow'],
['yellow', 'red', 'black', 'white', 'blue'],
]
moves = []
player = [player for player in GameState.players if player.name == player_name][0]
for move in valid_moves:
if move[1] == "floor":
moves.append(move)
else:
# print(player.pattern_lines[move[1]])
#if element in wall is tru convert it to the correct color
player.wall = [[wall_colors[i][j] if player.wall[i][j] else False for j in range(5)] for i in range(5)]
#check that the wall does not contain the color on the same row as the pattern line, and that the pattern line does not contain another color
if not move[2] in player.wall[move[1]]:
if player.pattern_lines[move[1]]['color'] == move[2] or player.pattern_lines[move[1]]['color'] == None:
moves.append(move)
valid_moves = moves
return valid_moves
###
# strategies for filtering in the do_move solution.
###
def strategy_1(move, GameState,player):
#strategy 1 most fit always 530points 27-3
if move[1] == 'floor':
return True
remaining_space = move[1] + 1 - player.pattern_lines[move[1]]['number']
if move[3] >= remaining_space-1 and move[3] <= remaining_space +1:
return True
else:
return False
def strategy_2(move,GameState,player):
#strategy 2 tierdoff fitting. 983 30-0
if move[1] == 'floor':
return True
remaining_space = move[1] + 1 - player.pattern_lines[move[1]]['number']
if move[1] == 4:
if move[3] <= remaining_space and move[3] >= remaining_space -2:
return True
if move[1] == 3:
if move[3] <= remaining_space and move[3] >= remaining_space -1:
return True
if move[1] < 3:
if move[3] <= remaining_space and move[3] >= remaining_space:
return True
return False
def strategy_advanced_old(move, GameState, player):
if move[1] == 'floor':
# Avoid overfilling the floor
if sum(player.floor.values()) + move[3] > 7:
return False
return True
remaining_space = move[1] + 1 - player.pattern_lines[move[1]]['number']
# Prioritize moves that fill the pattern line exactly, enabling a wall tile placement.
if move[3] == remaining_space:
return True
# Deprioritize moves that will overfill a pattern line
if move[3] > remaining_space:
return False
# Ensure that placing the tile does not block you from placing other colors on the same row
row_color_in_wall = any(player.wall[move[1]][i] == move[2] for i in range(5))
if row_color_in_wall:
return False
# Prioritize moves that fill pattern lines near completion (1 tile left)
if player.pattern_lines[move[1]]['number'] == remaining_space - 1:
return True
return True
def strategy_advanced(move, GameState, player):
# Destructure move for clarity
factory, pattern_line, tile_color, tile_count = move
# Floor management: Avoid overfilling the floor line
if pattern_line == 'floor':
if sum(player.floor.values()) + tile_count > 7:
return False
return True
# Calculate the remaining space in the selected pattern line
remaining_space = pattern_line + 1 - player.pattern_lines[pattern_line]['number']
# If the move exactly fills the pattern line, prioritize it
if tile_count == remaining_space:
return True
# Deprioritize moves that overfill a pattern line (tiles that would spill over)
if tile_count > remaining_space:
return False
# Check if placing the tile blocks placing other colors in the same row
# This prevents placing a tile in a pattern line where the corresponding wall row already has that color
if any(player.wall[pattern_line][i] == tile_color for i in range(5)):
return False
# Prioritize filling pattern lines that are close to completion (one tile away)
if remaining_space == 1:
return True
# If none of the conditions above trigger, accept the move
return True
def strategy_lookahead(move, GameState, player):
def simulate_future_state(GameState, move, player):
"""
Simulate the GameState after making the current move and return the hypothetical player's state.
"""
future_GameState = GameState # Assume deep copy or similar for actual implementation
# Apply the move
if move[1] == 'floor':
future_floor_count = sum(player.floor.values()) + move[3]
if future_floor_count > 7:
return None # Overfilling the floor is a bad move
else:
player.pattern_lines[move[1]]['number'] += move[3]
if player.pattern_lines[move[1]]['number'] == move[1] + 1:
# Tile will be placed on the wall in the next turn
player.wall[move[1]][player.wall[move[1]].index(False)] = move[2]
player.pattern_lines[move[1]]['number'] = 0 # Reset the pattern line
# Simulate scoring or any other immediate effect
# (Depending on how your game state works, update this appropriately)
return player
def evaluate_future_state(future_player):
"""
Evaluate the future state for the player and return a score.
"""
# Simple heuristic: prioritize a mix of empty spaces filled, tiles on the wall, and penalty on the floor
score = sum(sum(row) for row in future_player.wall) - sum(future_player.floor.values())
return score
# Evaluate the immediate impact
immediate_impact = strategy_advanced(move, GameState, player)
if not immediate_impact:
return False
# Simulate the game state after the current move
future_player_state = simulate_future_state(GameState, move, player)
if future_player_state is None:
return False # Avoid moves that lead to a bad future state
# Evaluate the future state
future_score = evaluate_future_state(future_player_state)
# Set a threshold or comparison logic to decide whether the move is good enough
if future_score > evaluate_future_state(player): # Basic comparison with current state
return True
return False
def strategy_random(move, GameState,player):
return True #do not filter any moves
def do_move(game_id, player_name, filter_strategy=strategy_random):
moves = get_all_valid_moves(game_id, player_name)
try:
GameState = get_gamestate(game_id)
player = [player for player in GameState.players if player.name == player_name][0]
filtered_moves = []
for move in moves:
if filter_strategy(move,GameState,player):
filtered_moves.append(move)
if len(filtered_moves) <= 1:
raise Exception("No valid moves")
# Submit a random move, of the filtered ones.
move = random.choice(filtered_moves)
return move
except:
#if filtered all moves, just submit a random move from the moves
move = random.choice(moves)
return move
def play_game(gameid, players, strategy):
print(f"Playing game {gameid} with players {players} and strategy {strategy.__name__}")
while not game_over(gameid):
for player in players:
mov = do_move(gameid, player, filter_strategy=strategy)
submit_action(gameid, player, mov[0], mov[1], mov[2])
print(f"Player {player} did move {mov}, current score: {get_score(gameid, player)}, current round {get_gamestate(gameid).rounds}")
if game_over(gameid):
#get the score of the players
score = []
for player in players:
score.append(get_score(gameid, player))
print(f"Game Over, scores: {score}")
return score
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Play a game with specified strategies.')
parser.add_argument('--game_id', type=str, default="", help='The id of the game to play.')
parser.add_argument('--players', nargs='+', default=["a", "b"], help='The names of the players.')
parser.add_argument('--strategy', type=str, default="", help='The strategy to use. Can be "1", "2", "advanced", "lookahead", or "" for random.')
parser.add_argument('--ozai_url', type=str, default='http://localhost:8000/api/', help='The url to the ozai server.')
args = parser.parse_args()
game_id = args.game_id
players = args.players
strategy = args.strategy
#use global ozai url and update it
ozai_url = args.ozai_url
if game_id == "":
game_id = create_game(names=players)
if strategy == "1":
play_game(game_id, players, strategy_1)
elif strategy == "2":
play_game(game_id, players, strategy_2)
elif strategy == "advanced":
play_game(game_id, players, strategy_advanced)
elif strategy == "lookahead":
play_game(game_id, players, strategy_lookahead)
elif strategy == "ai":
import ml
play_game(game_id, players, ml.strategy_ai)
else:
play_game(game_id, players, strategy_random)