Files
OpenGL_Intro/src/main.rs

304 lines
11 KiB
Rust

// Uncomment these following global attributes to silence most warnings of "low" interest:
/*
#![allow(dead_code)]
#![allow(non_snake_case)]
#![allow(unreachable_code)]
#![allow(unused_mut)]
#![allow(unused_unsafe)]
#![allow(unused_variables)]
*/
extern crate nalgebra_glm as glm;
use std::{ mem, ptr, os::raw::c_void };
use std::thread;
use std::sync::{Mutex, Arc, RwLock};
mod shader;
mod util;
use glutin::event::{Event, WindowEvent, DeviceEvent, KeyboardInput, ElementState::{Pressed, Released}, VirtualKeyCode::{self, *}};
use glutin::event_loop::ControlFlow;
// initial window size
const INITIAL_SCREEN_W: u32 = 800;
const INITIAL_SCREEN_H: u32 = 600;
// == // Helper functions to make interacting with OpenGL a little bit prettier. You *WILL* need these! // == //
// Get the size of an arbitrary array of numbers measured in bytes
// Example usage: pointer_to_array(my_array)
fn byte_size_of_array<T>(val: &[T]) -> isize {
std::mem::size_of_val(&val[..]) as isize
}
// Get the OpenGL-compatible pointer to an arbitrary array of numbers
// Example usage: pointer_to_array(my_array)
fn pointer_to_array<T>(val: &[T]) -> *const c_void {
&val[0] as *const T as *const c_void
}
// Get the size of the given type in bytes
// Example usage: size_of::<u64>()
fn size_of<T>() -> i32 {
mem::size_of::<T>() as i32
}
// Get an offset in bytes for n units of type T, represented as a relative pointer
// Example usage: offset::<u64>(4)
fn offset<T>(n: u32) -> *const c_void {
(n * mem::size_of::<T>() as u32) as *const T as *const c_void
}
// Get a null pointer (equivalent to an offset of 0)
// ptr::null()
// == // Generate your VAO here
unsafe fn create_vao(vertices: &Vec<f32>, indices: &Vec<u32>) -> u32 {
// Implement me!
// Also, feel free to delete comments :)
// This should:
// * Generate a VAO and bind it
// * Generate a VBO and bind it
// * Fill it with data
// * Configure a VAP for the data and enable it
// * Generate a IBO and bind it
// * Fill it with data
// * Return the ID of the VAO
0
}
fn main() {
// Set up the necessary objects to deal with windows and event handling
let el = glutin::event_loop::EventLoop::new();
let wb = glutin::window::WindowBuilder::new()
.with_title("Gloom-rs")
.with_resizable(true)
.with_inner_size(glutin::dpi::LogicalSize::new(INITIAL_SCREEN_W, INITIAL_SCREEN_H));
let cb = glutin::ContextBuilder::new()
.with_vsync(true);
let windowed_context = cb.build_windowed(wb, &el).unwrap();
// Uncomment these if you want to use the mouse for controls, but want it to be confined to the screen and/or invisible.
// windowed_context.window().set_cursor_grab(true).expect("failed to grab cursor");
// windowed_context.window().set_cursor_visible(false);
// Set up a shared vector for keeping track of currently pressed keys
let arc_pressed_keys = Arc::new(Mutex::new(Vec::<VirtualKeyCode>::with_capacity(10)));
// Make a reference of this vector to send to the render thread
let pressed_keys = Arc::clone(&arc_pressed_keys);
// Set up shared tuple for tracking mouse movement between frames
let arc_mouse_delta = Arc::new(Mutex::new((0f32, 0f32)));
// Make a reference of this tuple to send to the render thread
let mouse_delta = Arc::clone(&arc_mouse_delta);
// Set up shared tuple for tracking changes to the window size
let arc_window_size = Arc::new(Mutex::new((INITIAL_SCREEN_W, INITIAL_SCREEN_H, false)));
// Make a reference of this tuple to send to the render thread
let window_size = Arc::clone(&arc_window_size);
// Spawn a separate thread for rendering, so event handling doesn't block rendering
let render_thread = thread::spawn(move || {
// Acquire the OpenGL Context and load the function pointers.
// This has to be done inside of the rendering thread, because
// an active OpenGL context cannot safely traverse a thread boundary
let context = unsafe {
let c = windowed_context.make_current().unwrap();
gl::load_with(|symbol| c.get_proc_address(symbol) as *const _);
c
};
let mut window_aspect_ratio = INITIAL_SCREEN_W as f32 / INITIAL_SCREEN_H as f32;
// Set up openGL
unsafe {
gl::Enable(gl::DEPTH_TEST);
gl::DepthFunc(gl::LESS);
gl::Enable(gl::CULL_FACE);
gl::Disable(gl::MULTISAMPLE);
gl::Enable(gl::BLEND);
gl::BlendFunc(gl::SRC_ALPHA, gl::ONE_MINUS_SRC_ALPHA);
gl::Enable(gl::DEBUG_OUTPUT_SYNCHRONOUS);
gl::DebugMessageCallback(Some(util::debug_callback), ptr::null());
// Print some diagnostics
println!("{}: {}", util::get_gl_string(gl::VENDOR), util::get_gl_string(gl::RENDERER));
println!("OpenGL\t: {}", util::get_gl_string(gl::VERSION));
println!("GLSL\t: {}", util::get_gl_string(gl::SHADING_LANGUAGE_VERSION));
}
// == // Set up your VAO around here
let my_vao = unsafe { 1337 };
// == // Set up your shaders here
// Basic usage of shader helper:
// The example code below creates a 'shader' object.
// It which contains the field `.program_id` and the method `.activate()`.
// The `.` in the path is relative to `Cargo.toml`.
// This snippet is not enough to do the excercise, and will need to be modified (outside
// of just using the correct path), but it only needs to be called once
/*
let simple_shader = unsafe {
shader::ShaderBuilder::new()
.attach_file("./path/to/simple/shader.file")
.link()
};
*/
// Used to demonstrate keyboard handling for excercise 2.
let mut _arbitrary_number = 0.0; // feel free to remove
// The main rendering loop
let first_frame_time = std::time::Instant::now();
let mut prevous_frame_time = first_frame_time;
loop {
// Compute time passed since the previous frame and since the start of the program
let now = std::time::Instant::now();
let elapsed = now.duration_since(first_frame_time).as_secs_f32();
let delta_time = now.duration_since(prevous_frame_time).as_secs_f32();
prevous_frame_time = now;
// Handle resize events
if let Ok(mut new_size) = window_size.lock() && new_size.2 {
context.resize(glutin::dpi::PhysicalSize::new(new_size.0, new_size.1));
window_aspect_ratio = new_size.0 as f32 / new_size.1 as f32;
(*new_size).2 = false;
println!("Resized");
unsafe { gl::Viewport(0, 0, new_size.0 as i32, new_size.1 as i32); }
}
// Handle keyboard input
if let Ok(keys) = pressed_keys.lock() {
for key in keys.iter() {
match key {
// The `VirtualKeyCode` enum is defined here:
// https://docs.rs/winit/0.25.0/winit/event/enum.VirtualKeyCode.html
VirtualKeyCode::A => {
_arbitrary_number += delta_time;
}
VirtualKeyCode::D => {
_arbitrary_number -= delta_time;
}
// default handler:
_ => { }
}
}
}
// Handle mouse movement. delta contains the x and y movement of the mouse since last frame in pixels
if let Ok(mut delta) = mouse_delta.lock() {
// == // Optionally access the acumulated mouse movement between
// == // frames here with `delta.0` and `delta.1`
*delta = (0.0, 0.0); // reset when done
}
// == // Please compute camera transforms here (excercise 2 & 3)
unsafe {
// Clear the color and depth buffers
gl::ClearColor(0.035, 0.046, 0.078, 1.0); // night sky, full opacity
gl::Clear(gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT);
// == // Issue the necessary gl:: commands to draw your scene here
}
// Display the new color buffer on the display
context.swap_buffers().unwrap(); // we use "double buffering" to avoid artifacts
}
});
// == //
// == // From here on down there are only internals.
// == //
// Keep track of the health of the rendering thread
let render_thread_healthy = Arc::new(RwLock::new(true));
let render_thread_watchdog = Arc::clone(&render_thread_healthy);
thread::spawn(move || {
if !render_thread.join().is_ok() {
if let Ok(mut health) = render_thread_watchdog.write() {
println!("Render thread panicked!");
*health = false;
}
}
});
// Start the event loop -- This is where window events are initially handled
el.run(move |event, _, control_flow| {
*control_flow = ControlFlow::Wait;
// Terminate program if render thread panics
if let Ok(health) = render_thread_healthy.read() {
if *health == false {
*control_flow = ControlFlow::Exit;
}
}
match event {
Event::WindowEvent { event: WindowEvent::Resized(physical_size), .. } => {
println!("New window size! width: {}, height: {}", physical_size.width, physical_size.height);
if let Ok(mut new_size) = arc_window_size.lock() {
*new_size = (physical_size.width, physical_size.height, true);
}
}
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => {
*control_flow = ControlFlow::Exit;
}
// Keep track of currently pressed keys to send to the rendering thread
Event::WindowEvent { event: WindowEvent::KeyboardInput {
input: KeyboardInput { state: key_state, virtual_keycode: Some(keycode), .. }, .. }, .. } => {
if let Ok(mut keys) = arc_pressed_keys.lock() {
match key_state {
Released => {
if keys.contains(&keycode) {
let i = keys.iter().position(|&k| k == keycode).unwrap();
keys.remove(i);
}
},
Pressed => {
if !keys.contains(&keycode) {
keys.push(keycode);
}
}
}
}
// Handle Escape and Q keys separately
match keycode {
Escape => { *control_flow = ControlFlow::Exit; }
Q => { *control_flow = ControlFlow::Exit; }
_ => { }
}
}
Event::DeviceEvent { event: DeviceEvent::MouseMotion { delta }, .. } => {
// Accumulate mouse movement
if let Ok(mut position) = arc_mouse_delta.lock() {
*position = (position.0 + delta.0 as f32, position.1 + delta.1 as f32);
}
}
_ => { }
}
});
}