This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
worblehat-old/python/gdata/Crypto/PublicKey/RSA.py

257 lines
6.8 KiB
Python

#
# RSA.py : RSA encryption/decryption
#
# Part of the Python Cryptography Toolkit
#
# Distribute and use freely; there are no restrictions on further
# dissemination and usage except those imposed by the laws of your
# country of residence. This software is provided "as is" without
# warranty of fitness for use or suitability for any purpose, express
# or implied. Use at your own risk or not at all.
#
__revision__ = "$Id: RSA.py,v 1.20 2004/05/06 12:52:54 akuchling Exp $"
from Crypto.PublicKey import pubkey
from Crypto.Util import number
try:
from Crypto.PublicKey import _fastmath
except ImportError:
_fastmath = None
class error (Exception):
pass
def generate(bits, randfunc, progress_func=None):
"""generate(bits:int, randfunc:callable, progress_func:callable)
Generate an RSA key of length 'bits', using 'randfunc' to get
random data and 'progress_func', if present, to display
the progress of the key generation.
"""
obj=RSAobj()
# Generate the prime factors of n
if progress_func:
progress_func('p,q\n')
p = q = 1L
while number.size(p*q) < bits:
p = pubkey.getPrime(bits/2, randfunc)
q = pubkey.getPrime(bits/2, randfunc)
# p shall be smaller than q (for calc of u)
if p > q:
(p, q)=(q, p)
obj.p = p
obj.q = q
if progress_func:
progress_func('u\n')
obj.u = pubkey.inverse(obj.p, obj.q)
obj.n = obj.p*obj.q
obj.e = 65537L
if progress_func:
progress_func('d\n')
obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1))
assert bits <= 1+obj.size(), "Generated key is too small"
return obj
def construct(tuple):
"""construct(tuple:(long,) : RSAobj
Construct an RSA object from a 2-, 3-, 5-, or 6-tuple of numbers.
"""
obj=RSAobj()
if len(tuple) not in [2,3,5,6]:
raise error, 'argument for construct() wrong length'
for i in range(len(tuple)):
field = obj.keydata[i]
setattr(obj, field, tuple[i])
if len(tuple) >= 5:
# Ensure p is smaller than q
if obj.p>obj.q:
(obj.p, obj.q)=(obj.q, obj.p)
if len(tuple) == 5:
# u not supplied, so we're going to have to compute it.
obj.u=pubkey.inverse(obj.p, obj.q)
return obj
class RSAobj(pubkey.pubkey):
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
def _encrypt(self, plaintext, K=''):
if self.n<=plaintext:
raise error, 'Plaintext too large'
return (pow(plaintext, self.e, self.n),)
def _decrypt(self, ciphertext):
if (not hasattr(self, 'd')):
raise error, 'Private key not available in this object'
if self.n<=ciphertext[0]:
raise error, 'Ciphertext too large'
return pow(ciphertext[0], self.d, self.n)
def _sign(self, M, K=''):
return (self._decrypt((M,)),)
def _verify(self, M, sig):
m2=self._encrypt(sig[0])
if m2[0]==M:
return 1
else: return 0
def _blind(self, M, B):
tmp = pow(B, self.e, self.n)
return (M * tmp) % self.n
def _unblind(self, M, B):
tmp = pubkey.inverse(B, self.n)
return (M * tmp) % self.n
def can_blind (self):
"""can_blind() : bool
Return a Boolean value recording whether this algorithm can
blind data. (This does not imply that this
particular key object has the private information required to
to blind a message.)
"""
return 1
def size(self):
"""size() : int
Return the maximum number of bits that can be handled by this key.
"""
return number.size(self.n) - 1
def has_private(self):
"""has_private() : bool
Return a Boolean denoting whether the object contains
private components.
"""
if hasattr(self, 'd'):
return 1
else: return 0
def publickey(self):
"""publickey(): RSAobj
Return a new key object containing only the public key information.
"""
return construct((self.n, self.e))
class RSAobj_c(pubkey.pubkey):
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
def __init__(self, key):
self.key = key
def __getattr__(self, attr):
if attr in self.keydata:
return getattr(self.key, attr)
else:
if self.__dict__.has_key(attr):
self.__dict__[attr]
else:
raise AttributeError, '%s instance has no attribute %s' % (self.__class__, attr)
def __getstate__(self):
d = {}
for k in self.keydata:
if hasattr(self.key, k):
d[k]=getattr(self.key, k)
return d
def __setstate__(self, state):
n,e = state['n'], state['e']
if not state.has_key('d'):
self.key = _fastmath.rsa_construct(n,e)
else:
d = state['d']
if not state.has_key('q'):
self.key = _fastmath.rsa_construct(n,e,d)
else:
p, q, u = state['p'], state['q'], state['u']
self.key = _fastmath.rsa_construct(n,e,d,p,q,u)
def _encrypt(self, plain, K):
return (self.key._encrypt(plain),)
def _decrypt(self, cipher):
return self.key._decrypt(cipher[0])
def _sign(self, M, K):
return (self.key._sign(M),)
def _verify(self, M, sig):
return self.key._verify(M, sig[0])
def _blind(self, M, B):
return self.key._blind(M, B)
def _unblind(self, M, B):
return self.key._unblind(M, B)
def can_blind (self):
return 1
def size(self):
return self.key.size()
def has_private(self):
return self.key.has_private()
def publickey(self):
return construct_c((self.key.n, self.key.e))
def generate_c(bits, randfunc, progress_func = None):
# Generate the prime factors of n
if progress_func:
progress_func('p,q\n')
p = q = 1L
while number.size(p*q) < bits:
p = pubkey.getPrime(bits/2, randfunc)
q = pubkey.getPrime(bits/2, randfunc)
# p shall be smaller than q (for calc of u)
if p > q:
(p, q)=(q, p)
if progress_func:
progress_func('u\n')
u=pubkey.inverse(p, q)
n=p*q
e = 65537L
if progress_func:
progress_func('d\n')
d=pubkey.inverse(e, (p-1)*(q-1))
key = _fastmath.rsa_construct(n,e,d,p,q,u)
obj = RSAobj_c(key)
## print p
## print q
## print number.size(p), number.size(q), number.size(q*p),
## print obj.size(), bits
assert bits <= 1+obj.size(), "Generated key is too small"
return obj
def construct_c(tuple):
key = apply(_fastmath.rsa_construct, tuple)
return RSAobj_c(key)
object = RSAobj
generate_py = generate
construct_py = construct
if _fastmath:
#print "using C version of RSA"
generate = generate_c
construct = construct_c
error = _fastmath.error