faset over fra Z3950 til google books

This commit is contained in:
2010-09-23 13:57:37 +00:00
parent d173b9396e
commit 644e79f9b5
221 changed files with 60948 additions and 27273 deletions

View File

@@ -0,0 +1,120 @@
"""Base class for SharedKeyDB and VerifierDB."""
import anydbm
import thread
class BaseDB:
def __init__(self, filename, type):
self.type = type
self.filename = filename
if self.filename:
self.db = None
else:
self.db = {}
self.lock = thread.allocate_lock()
def create(self):
"""Create a new on-disk database.
@raise anydbm.error: If there's a problem creating the database.
"""
if self.filename:
self.db = anydbm.open(self.filename, "n") #raises anydbm.error
self.db["--Reserved--type"] = self.type
self.db.sync()
else:
self.db = {}
def open(self):
"""Open a pre-existing on-disk database.
@raise anydbm.error: If there's a problem opening the database.
@raise ValueError: If the database is not of the right type.
"""
if not self.filename:
raise ValueError("Can only open on-disk databases")
self.db = anydbm.open(self.filename, "w") #raises anydbm.error
try:
if self.db["--Reserved--type"] != self.type:
raise ValueError("Not a %s database" % self.type)
except KeyError:
raise ValueError("Not a recognized database")
def __getitem__(self, username):
if self.db == None:
raise AssertionError("DB not open")
self.lock.acquire()
try:
valueStr = self.db[username]
finally:
self.lock.release()
return self._getItem(username, valueStr)
def __setitem__(self, username, value):
if self.db == None:
raise AssertionError("DB not open")
valueStr = self._setItem(username, value)
self.lock.acquire()
try:
self.db[username] = valueStr
if self.filename:
self.db.sync()
finally:
self.lock.release()
def __delitem__(self, username):
if self.db == None:
raise AssertionError("DB not open")
self.lock.acquire()
try:
del(self.db[username])
if self.filename:
self.db.sync()
finally:
self.lock.release()
def __contains__(self, username):
"""Check if the database contains the specified username.
@type username: str
@param username: The username to check for.
@rtype: bool
@return: True if the database contains the username, False
otherwise.
"""
if self.db == None:
raise AssertionError("DB not open")
self.lock.acquire()
try:
return self.db.has_key(username)
finally:
self.lock.release()
def check(self, username, param):
value = self.__getitem__(username)
return self._checkItem(value, username, param)
def keys(self):
"""Return a list of usernames in the database.
@rtype: list
@return: The usernames in the database.
"""
if self.db == None:
raise AssertionError("DB not open")
self.lock.acquire()
try:
usernames = self.db.keys()
finally:
self.lock.release()
usernames = [u for u in usernames if not u.startswith("--Reserved--")]
return usernames

View File

@@ -0,0 +1,146 @@
"""Class for post-handshake certificate checking."""
from utils.cryptomath import hashAndBase64
from X509 import X509
from X509CertChain import X509CertChain
from errors import *
class Checker:
"""This class is passed to a handshake function to check the other
party's certificate chain.
If a handshake function completes successfully, but the Checker
judges the other party's certificate chain to be missing or
inadequate, a subclass of
L{tlslite.errors.TLSAuthenticationError} will be raised.
Currently, the Checker can check either an X.509 or a cryptoID
chain (for the latter, cryptoIDlib must be installed).
"""
def __init__(self, cryptoID=None, protocol=None,
x509Fingerprint=None,
x509TrustList=None, x509CommonName=None,
checkResumedSession=False):
"""Create a new Checker instance.
You must pass in one of these argument combinations:
- cryptoID[, protocol] (requires cryptoIDlib)
- x509Fingerprint
- x509TrustList[, x509CommonName] (requires cryptlib_py)
@type cryptoID: str
@param cryptoID: A cryptoID which the other party's certificate
chain must match. The cryptoIDlib module must be installed.
Mutually exclusive with all of the 'x509...' arguments.
@type protocol: str
@param protocol: A cryptoID protocol URI which the other
party's certificate chain must match. Requires the 'cryptoID'
argument.
@type x509Fingerprint: str
@param x509Fingerprint: A hex-encoded X.509 end-entity
fingerprint which the other party's end-entity certificate must
match. Mutually exclusive with the 'cryptoID' and
'x509TrustList' arguments.
@type x509TrustList: list of L{tlslite.X509.X509}
@param x509TrustList: A list of trusted root certificates. The
other party must present a certificate chain which extends to
one of these root certificates. The cryptlib_py module must be
installed. Mutually exclusive with the 'cryptoID' and
'x509Fingerprint' arguments.
@type x509CommonName: str
@param x509CommonName: The end-entity certificate's 'CN' field
must match this value. For a web server, this is typically a
server name such as 'www.amazon.com'. Mutually exclusive with
the 'cryptoID' and 'x509Fingerprint' arguments. Requires the
'x509TrustList' argument.
@type checkResumedSession: bool
@param checkResumedSession: If resumed sessions should be
checked. This defaults to False, on the theory that if the
session was checked once, we don't need to bother
re-checking it.
"""
if cryptoID and (x509Fingerprint or x509TrustList):
raise ValueError()
if x509Fingerprint and x509TrustList:
raise ValueError()
if x509CommonName and not x509TrustList:
raise ValueError()
if protocol and not cryptoID:
raise ValueError()
if cryptoID:
import cryptoIDlib #So we raise an error here
if x509TrustList:
import cryptlib_py #So we raise an error here
self.cryptoID = cryptoID
self.protocol = protocol
self.x509Fingerprint = x509Fingerprint
self.x509TrustList = x509TrustList
self.x509CommonName = x509CommonName
self.checkResumedSession = checkResumedSession
def __call__(self, connection):
"""Check a TLSConnection.
When a Checker is passed to a handshake function, this will
be called at the end of the function.
@type connection: L{tlslite.TLSConnection.TLSConnection}
@param connection: The TLSConnection to examine.
@raise tlslite.errors.TLSAuthenticationError: If the other
party's certificate chain is missing or bad.
"""
if not self.checkResumedSession and connection.resumed:
return
if self.cryptoID or self.x509Fingerprint or self.x509TrustList:
if connection._client:
chain = connection.session.serverCertChain
else:
chain = connection.session.clientCertChain
if self.x509Fingerprint or self.x509TrustList:
if isinstance(chain, X509CertChain):
if self.x509Fingerprint:
if chain.getFingerprint() != self.x509Fingerprint:
raise TLSFingerprintError(\
"X.509 fingerprint mismatch: %s, %s" % \
(chain.getFingerprint(), self.x509Fingerprint))
else: #self.x509TrustList
if not chain.validate(self.x509TrustList):
raise TLSValidationError("X.509 validation failure")
if self.x509CommonName and \
(chain.getCommonName() != self.x509CommonName):
raise TLSAuthorizationError(\
"X.509 Common Name mismatch: %s, %s" % \
(chain.getCommonName(), self.x509CommonName))
elif chain:
raise TLSAuthenticationTypeError()
else:
raise TLSNoAuthenticationError()
elif self.cryptoID:
import cryptoIDlib.CertChain
if isinstance(chain, cryptoIDlib.CertChain.CertChain):
if chain.cryptoID != self.cryptoID:
raise TLSFingerprintError(\
"cryptoID mismatch: %s, %s" % \
(chain.cryptoID, self.cryptoID))
if self.protocol:
if not chain.checkProtocol(self.protocol):
raise TLSAuthorizationError(\
"cryptoID protocol mismatch")
if not chain.validate():
raise TLSValidationError("cryptoID validation failure")
elif chain:
raise TLSAuthenticationTypeError()
else:
raise TLSNoAuthenticationError()

View File

@@ -0,0 +1,220 @@
"""Class returned by TLSConnection.makefile()."""
class FileObject:
"""This class provides a file object interface to a
L{tlslite.TLSConnection.TLSConnection}.
Call makefile() on a TLSConnection to create a FileObject instance.
This class was copied, with minor modifications, from the
_fileobject class in socket.py. Note that fileno() is not
implemented."""
default_bufsize = 16384 #TREV: changed from 8192
def __init__(self, sock, mode='rb', bufsize=-1):
self._sock = sock
self.mode = mode # Not actually used in this version
if bufsize < 0:
bufsize = self.default_bufsize
self.bufsize = bufsize
self.softspace = False
if bufsize == 0:
self._rbufsize = 1
elif bufsize == 1:
self._rbufsize = self.default_bufsize
else:
self._rbufsize = bufsize
self._wbufsize = bufsize
self._rbuf = "" # A string
self._wbuf = [] # A list of strings
def _getclosed(self):
return self._sock is not None
closed = property(_getclosed, doc="True if the file is closed")
def close(self):
try:
if self._sock:
for result in self._sock._decrefAsync(): #TREV
pass
finally:
self._sock = None
def __del__(self):
try:
self.close()
except:
# close() may fail if __init__ didn't complete
pass
def flush(self):
if self._wbuf:
buffer = "".join(self._wbuf)
self._wbuf = []
self._sock.sendall(buffer)
#def fileno(self):
# raise NotImplementedError() #TREV
def write(self, data):
data = str(data) # XXX Should really reject non-string non-buffers
if not data:
return
self._wbuf.append(data)
if (self._wbufsize == 0 or
self._wbufsize == 1 and '\n' in data or
self._get_wbuf_len() >= self._wbufsize):
self.flush()
def writelines(self, list):
# XXX We could do better here for very long lists
# XXX Should really reject non-string non-buffers
self._wbuf.extend(filter(None, map(str, list)))
if (self._wbufsize <= 1 or
self._get_wbuf_len() >= self._wbufsize):
self.flush()
def _get_wbuf_len(self):
buf_len = 0
for x in self._wbuf:
buf_len += len(x)
return buf_len
def read(self, size=-1):
data = self._rbuf
if size < 0:
# Read until EOF
buffers = []
if data:
buffers.append(data)
self._rbuf = ""
if self._rbufsize <= 1:
recv_size = self.default_bufsize
else:
recv_size = self._rbufsize
while True:
data = self._sock.recv(recv_size)
if not data:
break
buffers.append(data)
return "".join(buffers)
else:
# Read until size bytes or EOF seen, whichever comes first
buf_len = len(data)
if buf_len >= size:
self._rbuf = data[size:]
return data[:size]
buffers = []
if data:
buffers.append(data)
self._rbuf = ""
while True:
left = size - buf_len
recv_size = max(self._rbufsize, left)
data = self._sock.recv(recv_size)
if not data:
break
buffers.append(data)
n = len(data)
if n >= left:
self._rbuf = data[left:]
buffers[-1] = data[:left]
break
buf_len += n
return "".join(buffers)
def readline(self, size=-1):
data = self._rbuf
if size < 0:
# Read until \n or EOF, whichever comes first
if self._rbufsize <= 1:
# Speed up unbuffered case
assert data == ""
buffers = []
recv = self._sock.recv
while data != "\n":
data = recv(1)
if not data:
break
buffers.append(data)
return "".join(buffers)
nl = data.find('\n')
if nl >= 0:
nl += 1
self._rbuf = data[nl:]
return data[:nl]
buffers = []
if data:
buffers.append(data)
self._rbuf = ""
while True:
data = self._sock.recv(self._rbufsize)
if not data:
break
buffers.append(data)
nl = data.find('\n')
if nl >= 0:
nl += 1
self._rbuf = data[nl:]
buffers[-1] = data[:nl]
break
return "".join(buffers)
else:
# Read until size bytes or \n or EOF seen, whichever comes first
nl = data.find('\n', 0, size)
if nl >= 0:
nl += 1
self._rbuf = data[nl:]
return data[:nl]
buf_len = len(data)
if buf_len >= size:
self._rbuf = data[size:]
return data[:size]
buffers = []
if data:
buffers.append(data)
self._rbuf = ""
while True:
data = self._sock.recv(self._rbufsize)
if not data:
break
buffers.append(data)
left = size - buf_len
nl = data.find('\n', 0, left)
if nl >= 0:
nl += 1
self._rbuf = data[nl:]
buffers[-1] = data[:nl]
break
n = len(data)
if n >= left:
self._rbuf = data[left:]
buffers[-1] = data[:left]
break
buf_len += n
return "".join(buffers)
def readlines(self, sizehint=0):
total = 0
list = []
while True:
line = self.readline()
if not line:
break
list.append(line)
total += len(line)
if sizehint and total >= sizehint:
break
return list
# Iterator protocols
def __iter__(self):
return self
def next(self):
line = self.readline()
if not line:
raise StopIteration
return line

View File

@@ -0,0 +1,159 @@
"""Class for setting handshake parameters."""
from constants import CertificateType
from utils import cryptomath
from utils import cipherfactory
class HandshakeSettings:
"""This class encapsulates various parameters that can be used with
a TLS handshake.
@sort: minKeySize, maxKeySize, cipherNames, certificateTypes,
minVersion, maxVersion
@type minKeySize: int
@ivar minKeySize: The minimum bit length for asymmetric keys.
If the other party tries to use SRP, RSA, or Diffie-Hellman
parameters smaller than this length, an alert will be
signalled. The default is 1023.
@type maxKeySize: int
@ivar maxKeySize: The maximum bit length for asymmetric keys.
If the other party tries to use SRP, RSA, or Diffie-Hellman
parameters larger than this length, an alert will be signalled.
The default is 8193.
@type cipherNames: list
@ivar cipherNames: The allowed ciphers, in order of preference.
The allowed values in this list are 'aes256', 'aes128', '3des', and
'rc4'. If these settings are used with a client handshake, they
determine the order of the ciphersuites offered in the ClientHello
message.
If these settings are used with a server handshake, the server will
choose whichever ciphersuite matches the earliest entry in this
list.
NOTE: If '3des' is used in this list, but TLS Lite can't find an
add-on library that supports 3DES, then '3des' will be silently
removed.
The default value is ['aes256', 'aes128', '3des', 'rc4'].
@type certificateTypes: list
@ivar certificateTypes: The allowed certificate types, in order of
preference.
The allowed values in this list are 'x509' and 'cryptoID'. This
list is only used with a client handshake. The client will
advertise to the server which certificate types are supported, and
will check that the server uses one of the appropriate types.
NOTE: If 'cryptoID' is used in this list, but cryptoIDlib is not
installed, then 'cryptoID' will be silently removed.
@type minVersion: tuple
@ivar minVersion: The minimum allowed SSL/TLS version.
This variable can be set to (3,0) for SSL 3.0, (3,1) for
TLS 1.0, or (3,2) for TLS 1.1. If the other party wishes to
use a lower version, a protocol_version alert will be signalled.
The default is (3,0).
@type maxVersion: tuple
@ivar maxVersion: The maximum allowed SSL/TLS version.
This variable can be set to (3,0) for SSL 3.0, (3,1) for
TLS 1.0, or (3,2) for TLS 1.1. If the other party wishes to
use a higher version, a protocol_version alert will be signalled.
The default is (3,2). (WARNING: Some servers may (improperly)
reject clients which offer support for TLS 1.1. In this case,
try lowering maxVersion to (3,1)).
"""
def __init__(self):
self.minKeySize = 1023
self.maxKeySize = 8193
self.cipherNames = ["aes256", "aes128", "3des", "rc4"]
self.cipherImplementations = ["cryptlib", "openssl", "pycrypto",
"python"]
self.certificateTypes = ["x509", "cryptoID"]
self.minVersion = (3,0)
self.maxVersion = (3,2)
#Filters out options that are not supported
def _filter(self):
other = HandshakeSettings()
other.minKeySize = self.minKeySize
other.maxKeySize = self.maxKeySize
other.cipherNames = self.cipherNames
other.cipherImplementations = self.cipherImplementations
other.certificateTypes = self.certificateTypes
other.minVersion = self.minVersion
other.maxVersion = self.maxVersion
if not cipherfactory.tripleDESPresent:
other.cipherNames = [e for e in self.cipherNames if e != "3des"]
if len(other.cipherNames)==0:
raise ValueError("No supported ciphers")
try:
import cryptoIDlib
except ImportError:
other.certificateTypes = [e for e in self.certificateTypes \
if e != "cryptoID"]
if len(other.certificateTypes)==0:
raise ValueError("No supported certificate types")
if not cryptomath.cryptlibpyLoaded:
other.cipherImplementations = [e for e in \
self.cipherImplementations if e != "cryptlib"]
if not cryptomath.m2cryptoLoaded:
other.cipherImplementations = [e for e in \
other.cipherImplementations if e != "openssl"]
if not cryptomath.pycryptoLoaded:
other.cipherImplementations = [e for e in \
other.cipherImplementations if e != "pycrypto"]
if len(other.cipherImplementations)==0:
raise ValueError("No supported cipher implementations")
if other.minKeySize<512:
raise ValueError("minKeySize too small")
if other.minKeySize>16384:
raise ValueError("minKeySize too large")
if other.maxKeySize<512:
raise ValueError("maxKeySize too small")
if other.maxKeySize>16384:
raise ValueError("maxKeySize too large")
for s in other.cipherNames:
if s not in ("aes256", "aes128", "rc4", "3des"):
raise ValueError("Unknown cipher name: '%s'" % s)
for s in other.cipherImplementations:
if s not in ("cryptlib", "openssl", "python", "pycrypto"):
raise ValueError("Unknown cipher implementation: '%s'" % s)
for s in other.certificateTypes:
if s not in ("x509", "cryptoID"):
raise ValueError("Unknown certificate type: '%s'" % s)
if other.minVersion > other.maxVersion:
raise ValueError("Versions set incorrectly")
if not other.minVersion in ((3,0), (3,1), (3,2)):
raise ValueError("minVersion set incorrectly")
if not other.maxVersion in ((3,0), (3,1), (3,2)):
raise ValueError("maxVersion set incorrectly")
return other
def _getCertificateTypes(self):
l = []
for ct in self.certificateTypes:
if ct == "x509":
l.append(CertificateType.x509)
elif ct == "cryptoID":
l.append(CertificateType.cryptoID)
else:
raise AssertionError()
return l

View File

@@ -0,0 +1,131 @@
"""Class representing a TLS session."""
from utils.compat import *
from mathtls import *
from constants import *
class Session:
"""
This class represents a TLS session.
TLS distinguishes between connections and sessions. A new
handshake creates both a connection and a session. Data is
transmitted over the connection.
The session contains a more permanent record of the handshake. The
session can be inspected to determine handshake results. The
session can also be used to create a new connection through
"session resumption". If the client and server both support this,
they can create a new connection based on an old session without
the overhead of a full handshake.
The session for a L{tlslite.TLSConnection.TLSConnection} can be
retrieved from the connection's 'session' attribute.
@type srpUsername: str
@ivar srpUsername: The client's SRP username (or None).
@type sharedKeyUsername: str
@ivar sharedKeyUsername: The client's shared-key username (or
None).
@type clientCertChain: L{tlslite.X509CertChain.X509CertChain} or
L{cryptoIDlib.CertChain.CertChain}
@ivar clientCertChain: The client's certificate chain (or None).
@type serverCertChain: L{tlslite.X509CertChain.X509CertChain} or
L{cryptoIDlib.CertChain.CertChain}
@ivar serverCertChain: The server's certificate chain (or None).
"""
def __init__(self):
self.masterSecret = createByteArraySequence([])
self.sessionID = createByteArraySequence([])
self.cipherSuite = 0
self.srpUsername = None
self.sharedKeyUsername = None
self.clientCertChain = None
self.serverCertChain = None
self.resumable = False
self.sharedKey = False
def _clone(self):
other = Session()
other.masterSecret = self.masterSecret
other.sessionID = self.sessionID
other.cipherSuite = self.cipherSuite
other.srpUsername = self.srpUsername
other.sharedKeyUsername = self.sharedKeyUsername
other.clientCertChain = self.clientCertChain
other.serverCertChain = self.serverCertChain
other.resumable = self.resumable
other.sharedKey = self.sharedKey
return other
def _calcMasterSecret(self, version, premasterSecret, clientRandom,
serverRandom):
if version == (3,0):
self.masterSecret = PRF_SSL(premasterSecret,
concatArrays(clientRandom, serverRandom), 48)
elif version in ((3,1), (3,2)):
self.masterSecret = PRF(premasterSecret, "master secret",
concatArrays(clientRandom, serverRandom), 48)
else:
raise AssertionError()
def valid(self):
"""If this session can be used for session resumption.
@rtype: bool
@return: If this session can be used for session resumption.
"""
return self.resumable or self.sharedKey
def _setResumable(self, boolean):
#Only let it be set if this isn't a shared key
if not self.sharedKey:
#Only let it be set to True if the sessionID is non-null
if (not boolean) or (boolean and self.sessionID):
self.resumable = boolean
def getCipherName(self):
"""Get the name of the cipher used with this connection.
@rtype: str
@return: The name of the cipher used with this connection.
Either 'aes128', 'aes256', 'rc4', or '3des'.
"""
if self.cipherSuite in CipherSuite.aes128Suites:
return "aes128"
elif self.cipherSuite in CipherSuite.aes256Suites:
return "aes256"
elif self.cipherSuite in CipherSuite.rc4Suites:
return "rc4"
elif self.cipherSuite in CipherSuite.tripleDESSuites:
return "3des"
else:
return None
def _createSharedKey(self, sharedKeyUsername, sharedKey):
if len(sharedKeyUsername)>16:
raise ValueError()
if len(sharedKey)>47:
raise ValueError()
self.sharedKeyUsername = sharedKeyUsername
self.sessionID = createByteArrayZeros(16)
for x in range(len(sharedKeyUsername)):
self.sessionID[x] = ord(sharedKeyUsername[x])
premasterSecret = createByteArrayZeros(48)
sharedKey = chr(len(sharedKey)) + sharedKey
for x in range(48):
premasterSecret[x] = ord(sharedKey[x % len(sharedKey)])
self.masterSecret = PRF(premasterSecret, "shared secret",
createByteArraySequence([]), 48)
self.sharedKey = True
return self

View File

@@ -0,0 +1,103 @@
"""Class for caching TLS sessions."""
import thread
import time
class SessionCache:
"""This class is used by the server to cache TLS sessions.
Caching sessions allows the client to use TLS session resumption
and avoid the expense of a full handshake. To use this class,
simply pass a SessionCache instance into the server handshake
function.
This class is thread-safe.
"""
#References to these instances
#are also held by the caller, who may change the 'resumable'
#flag, so the SessionCache must return the same instances
#it was passed in.
def __init__(self, maxEntries=10000, maxAge=14400):
"""Create a new SessionCache.
@type maxEntries: int
@param maxEntries: The maximum size of the cache. When this
limit is reached, the oldest sessions will be deleted as
necessary to make room for new ones. The default is 10000.
@type maxAge: int
@param maxAge: The number of seconds before a session expires
from the cache. The default is 14400 (i.e. 4 hours)."""
self.lock = thread.allocate_lock()
# Maps sessionIDs to sessions
self.entriesDict = {}
#Circular list of (sessionID, timestamp) pairs
self.entriesList = [(None,None)] * maxEntries
self.firstIndex = 0
self.lastIndex = 0
self.maxAge = maxAge
def __getitem__(self, sessionID):
self.lock.acquire()
try:
self._purge() #Delete old items, so we're assured of a new one
session = self.entriesDict[sessionID]
#When we add sessions they're resumable, but it's possible
#for the session to be invalidated later on (if a fatal alert
#is returned), so we have to check for resumability before
#returning the session.
if session.valid():
return session
else:
raise KeyError()
finally:
self.lock.release()
def __setitem__(self, sessionID, session):
self.lock.acquire()
try:
#Add the new element
self.entriesDict[sessionID] = session
self.entriesList[self.lastIndex] = (sessionID, time.time())
self.lastIndex = (self.lastIndex+1) % len(self.entriesList)
#If the cache is full, we delete the oldest element to make an
#empty space
if self.lastIndex == self.firstIndex:
del(self.entriesDict[self.entriesList[self.firstIndex][0]])
self.firstIndex = (self.firstIndex+1) % len(self.entriesList)
finally:
self.lock.release()
#Delete expired items
def _purge(self):
currentTime = time.time()
#Search through the circular list, deleting expired elements until
#we reach a non-expired element. Since elements in list are
#ordered in time, we can break once we reach the first non-expired
#element
index = self.firstIndex
while index != self.lastIndex:
if currentTime - self.entriesList[index][1] > self.maxAge:
del(self.entriesDict[self.entriesList[index][0]])
index = (index+1) % len(self.entriesList)
else:
break
self.firstIndex = index
def _test():
import doctest, SessionCache
return doctest.testmod(SessionCache)
if __name__ == "__main__":
_test()

View File

@@ -0,0 +1,58 @@
"""Class for storing shared keys."""
from utils.cryptomath import *
from utils.compat import *
from mathtls import *
from Session import Session
from BaseDB import BaseDB
class SharedKeyDB(BaseDB):
"""This class represent an in-memory or on-disk database of shared
keys.
A SharedKeyDB can be passed to a server handshake function to
authenticate a client based on one of the shared keys.
This class is thread-safe.
"""
def __init__(self, filename=None):
"""Create a new SharedKeyDB.
@type filename: str
@param filename: Filename for an on-disk database, or None for
an in-memory database. If the filename already exists, follow
this with a call to open(). To create a new on-disk database,
follow this with a call to create().
"""
BaseDB.__init__(self, filename, "shared key")
def _getItem(self, username, valueStr):
session = Session()
session._createSharedKey(username, valueStr)
return session
def __setitem__(self, username, sharedKey):
"""Add a shared key to the database.
@type username: str
@param username: The username to associate the shared key with.
Must be less than or equal to 16 characters in length, and must
not already be in the database.
@type sharedKey: str
@param sharedKey: The shared key to add. Must be less than 48
characters in length.
"""
BaseDB.__setitem__(self, username, sharedKey)
def _setItem(self, username, value):
if len(username)>16:
raise ValueError("username too long")
if len(value)>=48:
raise ValueError("shared key too long")
return value
def _checkItem(self, value, username, param):
newSession = self._getItem(username, param)
return value.masterSecret == newSession.masterSecret

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,90 @@
"""Class for storing SRP password verifiers."""
from utils.cryptomath import *
from utils.compat import *
import mathtls
from BaseDB import BaseDB
class VerifierDB(BaseDB):
"""This class represent an in-memory or on-disk database of SRP
password verifiers.
A VerifierDB can be passed to a server handshake to authenticate
a client based on one of the verifiers.
This class is thread-safe.
"""
def __init__(self, filename=None):
"""Create a new VerifierDB instance.
@type filename: str
@param filename: Filename for an on-disk database, or None for
an in-memory database. If the filename already exists, follow
this with a call to open(). To create a new on-disk database,
follow this with a call to create().
"""
BaseDB.__init__(self, filename, "verifier")
def _getItem(self, username, valueStr):
(N, g, salt, verifier) = valueStr.split(" ")
N = base64ToNumber(N)
g = base64ToNumber(g)
salt = base64ToString(salt)
verifier = base64ToNumber(verifier)
return (N, g, salt, verifier)
def __setitem__(self, username, verifierEntry):
"""Add a verifier entry to the database.
@type username: str
@param username: The username to associate the verifier with.
Must be less than 256 characters in length. Must not already
be in the database.
@type verifierEntry: tuple
@param verifierEntry: The verifier entry to add. Use
L{tlslite.VerifierDB.VerifierDB.makeVerifier} to create a
verifier entry.
"""
BaseDB.__setitem__(self, username, verifierEntry)
def _setItem(self, username, value):
if len(username)>=256:
raise ValueError("username too long")
N, g, salt, verifier = value
N = numberToBase64(N)
g = numberToBase64(g)
salt = stringToBase64(salt)
verifier = numberToBase64(verifier)
valueStr = " ".join( (N, g, salt, verifier) )
return valueStr
def _checkItem(self, value, username, param):
(N, g, salt, verifier) = value
x = mathtls.makeX(salt, username, param)
v = powMod(g, x, N)
return (verifier == v)
def makeVerifier(username, password, bits):
"""Create a verifier entry which can be stored in a VerifierDB.
@type username: str
@param username: The username for this verifier. Must be less
than 256 characters in length.
@type password: str
@param password: The password for this verifier.
@type bits: int
@param bits: This values specifies which SRP group parameters
to use. It must be one of (1024, 1536, 2048, 3072, 4096, 6144,
8192). Larger values are more secure but slower. 2048 is a
good compromise between safety and speed.
@rtype: tuple
@return: A tuple which may be stored in a VerifierDB.
"""
return mathtls.makeVerifier(username, password, bits)
makeVerifier = staticmethod(makeVerifier)

View File

@@ -0,0 +1,133 @@
"""Class representing an X.509 certificate."""
from utils.ASN1Parser import ASN1Parser
from utils.cryptomath import *
from utils.keyfactory import _createPublicRSAKey
class X509:
"""This class represents an X.509 certificate.
@type bytes: L{array.array} of unsigned bytes
@ivar bytes: The DER-encoded ASN.1 certificate
@type publicKey: L{tlslite.utils.RSAKey.RSAKey}
@ivar publicKey: The subject public key from the certificate.
"""
def __init__(self):
self.bytes = createByteArraySequence([])
self.publicKey = None
def parse(self, s):
"""Parse a PEM-encoded X.509 certificate.
@type s: str
@param s: A PEM-encoded X.509 certificate (i.e. a base64-encoded
certificate wrapped with "-----BEGIN CERTIFICATE-----" and
"-----END CERTIFICATE-----" tags).
"""
start = s.find("-----BEGIN CERTIFICATE-----")
end = s.find("-----END CERTIFICATE-----")
if start == -1:
raise SyntaxError("Missing PEM prefix")
if end == -1:
raise SyntaxError("Missing PEM postfix")
s = s[start+len("-----BEGIN CERTIFICATE-----") : end]
bytes = base64ToBytes(s)
self.parseBinary(bytes)
return self
def parseBinary(self, bytes):
"""Parse a DER-encoded X.509 certificate.
@type bytes: str or L{array.array} of unsigned bytes
@param bytes: A DER-encoded X.509 certificate.
"""
if isinstance(bytes, type("")):
bytes = stringToBytes(bytes)
self.bytes = bytes
p = ASN1Parser(bytes)
#Get the tbsCertificate
tbsCertificateP = p.getChild(0)
#Is the optional version field present?
#This determines which index the key is at.
if tbsCertificateP.value[0]==0xA0:
subjectPublicKeyInfoIndex = 6
else:
subjectPublicKeyInfoIndex = 5
#Get the subjectPublicKeyInfo
subjectPublicKeyInfoP = tbsCertificateP.getChild(\
subjectPublicKeyInfoIndex)
#Get the algorithm
algorithmP = subjectPublicKeyInfoP.getChild(0)
rsaOID = algorithmP.value
if list(rsaOID) != [6, 9, 42, 134, 72, 134, 247, 13, 1, 1, 1, 5, 0]:
raise SyntaxError("Unrecognized AlgorithmIdentifier")
#Get the subjectPublicKey
subjectPublicKeyP = subjectPublicKeyInfoP.getChild(1)
#Adjust for BIT STRING encapsulation
if (subjectPublicKeyP.value[0] !=0):
raise SyntaxError()
subjectPublicKeyP = ASN1Parser(subjectPublicKeyP.value[1:])
#Get the modulus and exponent
modulusP = subjectPublicKeyP.getChild(0)
publicExponentP = subjectPublicKeyP.getChild(1)
#Decode them into numbers
n = bytesToNumber(modulusP.value)
e = bytesToNumber(publicExponentP.value)
#Create a public key instance
self.publicKey = _createPublicRSAKey(n, e)
def getFingerprint(self):
"""Get the hex-encoded fingerprint of this certificate.
@rtype: str
@return: A hex-encoded fingerprint.
"""
return sha.sha(self.bytes).hexdigest()
def getCommonName(self):
"""Get the Subject's Common Name from the certificate.
The cryptlib_py module must be installed in order to use this
function.
@rtype: str or None
@return: The CN component of the certificate's subject DN, if
present.
"""
import cryptlib_py
import array
c = cryptlib_py.cryptImportCert(self.bytes, cryptlib_py.CRYPT_UNUSED)
name = cryptlib_py.CRYPT_CERTINFO_COMMONNAME
try:
try:
length = cryptlib_py.cryptGetAttributeString(c, name, None)
returnVal = array.array('B', [0] * length)
cryptlib_py.cryptGetAttributeString(c, name, returnVal)
returnVal = returnVal.tostring()
except cryptlib_py.CryptException, e:
if e[0] == cryptlib_py.CRYPT_ERROR_NOTFOUND:
returnVal = None
return returnVal
finally:
cryptlib_py.cryptDestroyCert(c)
def writeBytes(self):
return self.bytes

View File

@@ -0,0 +1,181 @@
"""Class representing an X.509 certificate chain."""
from utils import cryptomath
class X509CertChain:
"""This class represents a chain of X.509 certificates.
@type x509List: list
@ivar x509List: A list of L{tlslite.X509.X509} instances,
starting with the end-entity certificate and with every
subsequent certificate certifying the previous.
"""
def __init__(self, x509List=None):
"""Create a new X509CertChain.
@type x509List: list
@param x509List: A list of L{tlslite.X509.X509} instances,
starting with the end-entity certificate and with every
subsequent certificate certifying the previous.
"""
if x509List:
self.x509List = x509List
else:
self.x509List = []
def getNumCerts(self):
"""Get the number of certificates in this chain.
@rtype: int
"""
return len(self.x509List)
def getEndEntityPublicKey(self):
"""Get the public key from the end-entity certificate.
@rtype: L{tlslite.utils.RSAKey.RSAKey}
"""
if self.getNumCerts() == 0:
raise AssertionError()
return self.x509List[0].publicKey
def getFingerprint(self):
"""Get the hex-encoded fingerprint of the end-entity certificate.
@rtype: str
@return: A hex-encoded fingerprint.
"""
if self.getNumCerts() == 0:
raise AssertionError()
return self.x509List[0].getFingerprint()
def getCommonName(self):
"""Get the Subject's Common Name from the end-entity certificate.
The cryptlib_py module must be installed in order to use this
function.
@rtype: str or None
@return: The CN component of the certificate's subject DN, if
present.
"""
if self.getNumCerts() == 0:
raise AssertionError()
return self.x509List[0].getCommonName()
def validate(self, x509TrustList):
"""Check the validity of the certificate chain.
This checks that every certificate in the chain validates with
the subsequent one, until some certificate validates with (or
is identical to) one of the passed-in root certificates.
The cryptlib_py module must be installed in order to use this
function.
@type x509TrustList: list of L{tlslite.X509.X509}
@param x509TrustList: A list of trusted root certificates. The
certificate chain must extend to one of these certificates to
be considered valid.
"""
import cryptlib_py
c1 = None
c2 = None
lastC = None
rootC = None
try:
rootFingerprints = [c.getFingerprint() for c in x509TrustList]
#Check that every certificate in the chain validates with the
#next one
for cert1, cert2 in zip(self.x509List, self.x509List[1:]):
#If we come upon a root certificate, we're done.
if cert1.getFingerprint() in rootFingerprints:
return True
c1 = cryptlib_py.cryptImportCert(cert1.writeBytes(),
cryptlib_py.CRYPT_UNUSED)
c2 = cryptlib_py.cryptImportCert(cert2.writeBytes(),
cryptlib_py.CRYPT_UNUSED)
try:
cryptlib_py.cryptCheckCert(c1, c2)
except:
return False
cryptlib_py.cryptDestroyCert(c1)
c1 = None
cryptlib_py.cryptDestroyCert(c2)
c2 = None
#If the last certificate is one of the root certificates, we're
#done.
if self.x509List[-1].getFingerprint() in rootFingerprints:
return True
#Otherwise, find a root certificate that the last certificate
#chains to, and validate them.
lastC = cryptlib_py.cryptImportCert(self.x509List[-1].writeBytes(),
cryptlib_py.CRYPT_UNUSED)
for rootCert in x509TrustList:
rootC = cryptlib_py.cryptImportCert(rootCert.writeBytes(),
cryptlib_py.CRYPT_UNUSED)
if self._checkChaining(lastC, rootC):
try:
cryptlib_py.cryptCheckCert(lastC, rootC)
return True
except:
return False
return False
finally:
if not (c1 is None):
cryptlib_py.cryptDestroyCert(c1)
if not (c2 is None):
cryptlib_py.cryptDestroyCert(c2)
if not (lastC is None):
cryptlib_py.cryptDestroyCert(lastC)
if not (rootC is None):
cryptlib_py.cryptDestroyCert(rootC)
def _checkChaining(self, lastC, rootC):
import cryptlib_py
import array
def compareNames(name):
try:
length = cryptlib_py.cryptGetAttributeString(lastC, name, None)
lastName = array.array('B', [0] * length)
cryptlib_py.cryptGetAttributeString(lastC, name, lastName)
lastName = lastName.tostring()
except cryptlib_py.CryptException, e:
if e[0] == cryptlib_py.CRYPT_ERROR_NOTFOUND:
lastName = None
try:
length = cryptlib_py.cryptGetAttributeString(rootC, name, None)
rootName = array.array('B', [0] * length)
cryptlib_py.cryptGetAttributeString(rootC, name, rootName)
rootName = rootName.tostring()
except cryptlib_py.CryptException, e:
if e[0] == cryptlib_py.CRYPT_ERROR_NOTFOUND:
rootName = None
return lastName == rootName
cryptlib_py.cryptSetAttribute(lastC,
cryptlib_py.CRYPT_CERTINFO_ISSUERNAME,
cryptlib_py.CRYPT_UNUSED)
if not compareNames(cryptlib_py.CRYPT_CERTINFO_COUNTRYNAME):
return False
if not compareNames(cryptlib_py.CRYPT_CERTINFO_LOCALITYNAME):
return False
if not compareNames(cryptlib_py.CRYPT_CERTINFO_ORGANIZATIONNAME):
return False
if not compareNames(cryptlib_py.CRYPT_CERTINFO_ORGANIZATIONALUNITNAME):
return False
if not compareNames(cryptlib_py.CRYPT_CERTINFO_COMMONNAME):
return False
return True

View File

@@ -0,0 +1,39 @@
"""
TLS Lite is a free python library that implements SSL v3, TLS v1, and
TLS v1.1. TLS Lite supports non-traditional authentication methods
such as SRP, shared keys, and cryptoIDs, in addition to X.509
certificates. TLS Lite is pure python, however it can access OpenSSL,
cryptlib, pycrypto, and GMPY for faster crypto operations. TLS Lite
integrates with httplib, xmlrpclib, poplib, imaplib, smtplib,
SocketServer, asyncore, and Twisted.
To use, do::
from tlslite.api import *
Then use the L{tlslite.TLSConnection.TLSConnection} class with a socket,
or use one of the integration classes in L{tlslite.integration}.
@version: 0.3.8
"""
__version__ = "0.3.8"
__all__ = ["api",
"BaseDB",
"Checker",
"constants",
"errors",
"FileObject",
"HandshakeSettings",
"mathtls",
"messages",
"Session",
"SessionCache",
"SharedKeyDB",
"TLSConnection",
"TLSRecordLayer",
"VerifierDB",
"X509",
"X509CertChain",
"integration",
"utils"]

View File

@@ -0,0 +1,75 @@
"""Import this module for easy access to TLS Lite objects.
The TLS Lite API consists of classes, functions, and variables spread
throughout this package. Instead of importing them individually with::
from tlslite.TLSConnection import TLSConnection
from tlslite.HandshakeSettings import HandshakeSettings
from tlslite.errors import *
.
.
It's easier to do::
from tlslite.api import *
This imports all the important objects (TLSConnection, Checker,
HandshakeSettings, etc.) into the global namespace. In particular, it
imports::
from constants import AlertLevel, AlertDescription, Fault
from errors import *
from Checker import Checker
from HandshakeSettings import HandshakeSettings
from Session import Session
from SessionCache import SessionCache
from SharedKeyDB import SharedKeyDB
from TLSConnection import TLSConnection
from VerifierDB import VerifierDB
from X509 import X509
from X509CertChain import X509CertChain
from integration.HTTPTLSConnection import HTTPTLSConnection
from integration.POP3_TLS import POP3_TLS
from integration.IMAP4_TLS import IMAP4_TLS
from integration.SMTP_TLS import SMTP_TLS
from integration.XMLRPCTransport import XMLRPCTransport
from integration.TLSSocketServerMixIn import TLSSocketServerMixIn
from integration.TLSAsyncDispatcherMixIn import TLSAsyncDispatcherMixIn
from integration.TLSTwistedProtocolWrapper import TLSTwistedProtocolWrapper
from utils.cryptomath import cryptlibpyLoaded, m2cryptoLoaded,
gmpyLoaded, pycryptoLoaded, prngName
from utils.keyfactory import generateRSAKey, parsePEMKey, parseXMLKey,
parseAsPublicKey, parsePrivateKey
"""
from constants import AlertLevel, AlertDescription, Fault
from errors import *
from Checker import Checker
from HandshakeSettings import HandshakeSettings
from Session import Session
from SessionCache import SessionCache
from SharedKeyDB import SharedKeyDB
from TLSConnection import TLSConnection
from VerifierDB import VerifierDB
from X509 import X509
from X509CertChain import X509CertChain
from integration.HTTPTLSConnection import HTTPTLSConnection
from integration.TLSSocketServerMixIn import TLSSocketServerMixIn
from integration.TLSAsyncDispatcherMixIn import TLSAsyncDispatcherMixIn
from integration.POP3_TLS import POP3_TLS
from integration.IMAP4_TLS import IMAP4_TLS
from integration.SMTP_TLS import SMTP_TLS
from integration.XMLRPCTransport import XMLRPCTransport
try:
import twisted
del(twisted)
from integration.TLSTwistedProtocolWrapper import TLSTwistedProtocolWrapper
except ImportError:
pass
from utils.cryptomath import cryptlibpyLoaded, m2cryptoLoaded, gmpyLoaded, \
pycryptoLoaded, prngName
from utils.keyfactory import generateRSAKey, parsePEMKey, parseXMLKey, \
parseAsPublicKey, parsePrivateKey

View File

@@ -0,0 +1,225 @@
"""Constants used in various places."""
class CertificateType:
x509 = 0
openpgp = 1
cryptoID = 2
class HandshakeType:
hello_request = 0
client_hello = 1
server_hello = 2
certificate = 11
server_key_exchange = 12
certificate_request = 13
server_hello_done = 14
certificate_verify = 15
client_key_exchange = 16
finished = 20
class ContentType:
change_cipher_spec = 20
alert = 21
handshake = 22
application_data = 23
all = (20,21,22,23)
class AlertLevel:
warning = 1
fatal = 2
class AlertDescription:
"""
@cvar bad_record_mac: A TLS record failed to decrypt properly.
If this occurs during a shared-key or SRP handshake it most likely
indicates a bad password. It may also indicate an implementation
error, or some tampering with the data in transit.
This alert will be signalled by the server if the SRP password is bad. It
may also be signalled by the server if the SRP username is unknown to the
server, but it doesn't wish to reveal that fact.
This alert will be signalled by the client if the shared-key username is
bad.
@cvar handshake_failure: A problem occurred while handshaking.
This typically indicates a lack of common ciphersuites between client and
server, or some other disagreement (about SRP parameters or key sizes,
for example).
@cvar protocol_version: The other party's SSL/TLS version was unacceptable.
This indicates that the client and server couldn't agree on which version
of SSL or TLS to use.
@cvar user_canceled: The handshake is being cancelled for some reason.
"""
close_notify = 0
unexpected_message = 10
bad_record_mac = 20
decryption_failed = 21
record_overflow = 22
decompression_failure = 30
handshake_failure = 40
no_certificate = 41 #SSLv3
bad_certificate = 42
unsupported_certificate = 43
certificate_revoked = 44
certificate_expired = 45
certificate_unknown = 46
illegal_parameter = 47
unknown_ca = 48
access_denied = 49
decode_error = 50
decrypt_error = 51
export_restriction = 60
protocol_version = 70
insufficient_security = 71
internal_error = 80
user_canceled = 90
no_renegotiation = 100
unknown_srp_username = 120
missing_srp_username = 121
untrusted_srp_parameters = 122
class CipherSuite:
TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = 0x0050
TLS_SRP_SHA_WITH_AES_128_CBC_SHA = 0x0053
TLS_SRP_SHA_WITH_AES_256_CBC_SHA = 0x0056
TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = 0x0051
TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = 0x0054
TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = 0x0057
TLS_RSA_WITH_3DES_EDE_CBC_SHA = 0x000A
TLS_RSA_WITH_AES_128_CBC_SHA = 0x002F
TLS_RSA_WITH_AES_256_CBC_SHA = 0x0035
TLS_RSA_WITH_RC4_128_SHA = 0x0005
srpSuites = []
srpSuites.append(TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA)
srpSuites.append(TLS_SRP_SHA_WITH_AES_128_CBC_SHA)
srpSuites.append(TLS_SRP_SHA_WITH_AES_256_CBC_SHA)
def getSrpSuites(ciphers):
suites = []
for cipher in ciphers:
if cipher == "aes128":
suites.append(CipherSuite.TLS_SRP_SHA_WITH_AES_128_CBC_SHA)
elif cipher == "aes256":
suites.append(CipherSuite.TLS_SRP_SHA_WITH_AES_256_CBC_SHA)
elif cipher == "3des":
suites.append(CipherSuite.TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA)
return suites
getSrpSuites = staticmethod(getSrpSuites)
srpRsaSuites = []
srpRsaSuites.append(TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA)
srpRsaSuites.append(TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA)
srpRsaSuites.append(TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA)
def getSrpRsaSuites(ciphers):
suites = []
for cipher in ciphers:
if cipher == "aes128":
suites.append(CipherSuite.TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA)
elif cipher == "aes256":
suites.append(CipherSuite.TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA)
elif cipher == "3des":
suites.append(CipherSuite.TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA)
return suites
getSrpRsaSuites = staticmethod(getSrpRsaSuites)
rsaSuites = []
rsaSuites.append(TLS_RSA_WITH_3DES_EDE_CBC_SHA)
rsaSuites.append(TLS_RSA_WITH_AES_128_CBC_SHA)
rsaSuites.append(TLS_RSA_WITH_AES_256_CBC_SHA)
rsaSuites.append(TLS_RSA_WITH_RC4_128_SHA)
def getRsaSuites(ciphers):
suites = []
for cipher in ciphers:
if cipher == "aes128":
suites.append(CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA)
elif cipher == "aes256":
suites.append(CipherSuite.TLS_RSA_WITH_AES_256_CBC_SHA)
elif cipher == "rc4":
suites.append(CipherSuite.TLS_RSA_WITH_RC4_128_SHA)
elif cipher == "3des":
suites.append(CipherSuite.TLS_RSA_WITH_3DES_EDE_CBC_SHA)
return suites
getRsaSuites = staticmethod(getRsaSuites)
tripleDESSuites = []
tripleDESSuites.append(TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA)
tripleDESSuites.append(TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA)
tripleDESSuites.append(TLS_RSA_WITH_3DES_EDE_CBC_SHA)
aes128Suites = []
aes128Suites.append(TLS_SRP_SHA_WITH_AES_128_CBC_SHA)
aes128Suites.append(TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA)
aes128Suites.append(TLS_RSA_WITH_AES_128_CBC_SHA)
aes256Suites = []
aes256Suites.append(TLS_SRP_SHA_WITH_AES_256_CBC_SHA)
aes256Suites.append(TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA)
aes256Suites.append(TLS_RSA_WITH_AES_256_CBC_SHA)
rc4Suites = []
rc4Suites.append(TLS_RSA_WITH_RC4_128_SHA)
class Fault:
badUsername = 101
badPassword = 102
badA = 103
clientSrpFaults = range(101,104)
badVerifyMessage = 601
clientCertFaults = range(601,602)
badPremasterPadding = 501
shortPremasterSecret = 502
clientNoAuthFaults = range(501,503)
badIdentifier = 401
badSharedKey = 402
clientSharedKeyFaults = range(401,403)
badB = 201
serverFaults = range(201,202)
badFinished = 300
badMAC = 301
badPadding = 302
genericFaults = range(300,303)
faultAlerts = {\
badUsername: (AlertDescription.unknown_srp_username, \
AlertDescription.bad_record_mac),\
badPassword: (AlertDescription.bad_record_mac,),\
badA: (AlertDescription.illegal_parameter,),\
badIdentifier: (AlertDescription.handshake_failure,),\
badSharedKey: (AlertDescription.bad_record_mac,),\
badPremasterPadding: (AlertDescription.bad_record_mac,),\
shortPremasterSecret: (AlertDescription.bad_record_mac,),\
badVerifyMessage: (AlertDescription.decrypt_error,),\
badFinished: (AlertDescription.decrypt_error,),\
badMAC: (AlertDescription.bad_record_mac,),\
badPadding: (AlertDescription.bad_record_mac,)
}
faultNames = {\
badUsername: "bad username",\
badPassword: "bad password",\
badA: "bad A",\
badIdentifier: "bad identifier",\
badSharedKey: "bad sharedkey",\
badPremasterPadding: "bad premaster padding",\
shortPremasterSecret: "short premaster secret",\
badVerifyMessage: "bad verify message",\
badFinished: "bad finished message",\
badMAC: "bad MAC",\
badPadding: "bad padding"
}

View File

@@ -0,0 +1,149 @@
"""Exception classes.
@sort: TLSError, TLSAbruptCloseError, TLSAlert, TLSLocalAlert, TLSRemoteAlert,
TLSAuthenticationError, TLSNoAuthenticationError, TLSAuthenticationTypeError,
TLSFingerprintError, TLSAuthorizationError, TLSValidationError, TLSFaultError
"""
from constants import AlertDescription, AlertLevel
class TLSError(Exception):
"""Base class for all TLS Lite exceptions."""
pass
class TLSAbruptCloseError(TLSError):
"""The socket was closed without a proper TLS shutdown.
The TLS specification mandates that an alert of some sort
must be sent before the underlying socket is closed. If the socket
is closed without this, it could signify that an attacker is trying
to truncate the connection. It could also signify a misbehaving
TLS implementation, or a random network failure.
"""
pass
class TLSAlert(TLSError):
"""A TLS alert has been signalled."""
pass
_descriptionStr = {\
AlertDescription.close_notify: "close_notify",\
AlertDescription.unexpected_message: "unexpected_message",\
AlertDescription.bad_record_mac: "bad_record_mac",\
AlertDescription.decryption_failed: "decryption_failed",\
AlertDescription.record_overflow: "record_overflow",\
AlertDescription.decompression_failure: "decompression_failure",\
AlertDescription.handshake_failure: "handshake_failure",\
AlertDescription.no_certificate: "no certificate",\
AlertDescription.bad_certificate: "bad_certificate",\
AlertDescription.unsupported_certificate: "unsupported_certificate",\
AlertDescription.certificate_revoked: "certificate_revoked",\
AlertDescription.certificate_expired: "certificate_expired",\
AlertDescription.certificate_unknown: "certificate_unknown",\
AlertDescription.illegal_parameter: "illegal_parameter",\
AlertDescription.unknown_ca: "unknown_ca",\
AlertDescription.access_denied: "access_denied",\
AlertDescription.decode_error: "decode_error",\
AlertDescription.decrypt_error: "decrypt_error",\
AlertDescription.export_restriction: "export_restriction",\
AlertDescription.protocol_version: "protocol_version",\
AlertDescription.insufficient_security: "insufficient_security",\
AlertDescription.internal_error: "internal_error",\
AlertDescription.user_canceled: "user_canceled",\
AlertDescription.no_renegotiation: "no_renegotiation",\
AlertDescription.unknown_srp_username: "unknown_srp_username",\
AlertDescription.missing_srp_username: "missing_srp_username"}
class TLSLocalAlert(TLSAlert):
"""A TLS alert has been signalled by the local implementation.
@type description: int
@ivar description: Set to one of the constants in
L{tlslite.constants.AlertDescription}
@type level: int
@ivar level: Set to one of the constants in
L{tlslite.constants.AlertLevel}
@type message: str
@ivar message: Description of what went wrong.
"""
def __init__(self, alert, message=None):
self.description = alert.description
self.level = alert.level
self.message = message
def __str__(self):
alertStr = TLSAlert._descriptionStr.get(self.description)
if alertStr == None:
alertStr = str(self.description)
if self.message:
return alertStr + ": " + self.message
else:
return alertStr
class TLSRemoteAlert(TLSAlert):
"""A TLS alert has been signalled by the remote implementation.
@type description: int
@ivar description: Set to one of the constants in
L{tlslite.constants.AlertDescription}
@type level: int
@ivar level: Set to one of the constants in
L{tlslite.constants.AlertLevel}
"""
def __init__(self, alert):
self.description = alert.description
self.level = alert.level
def __str__(self):
alertStr = TLSAlert._descriptionStr.get(self.description)
if alertStr == None:
alertStr = str(self.description)
return alertStr
class TLSAuthenticationError(TLSError):
"""The handshake succeeded, but the other party's authentication
was inadequate.
This exception will only be raised when a
L{tlslite.Checker.Checker} has been passed to a handshake function.
The Checker will be invoked once the handshake completes, and if
the Checker objects to how the other party authenticated, a
subclass of this exception will be raised.
"""
pass
class TLSNoAuthenticationError(TLSAuthenticationError):
"""The Checker was expecting the other party to authenticate with a
certificate chain, but this did not occur."""
pass
class TLSAuthenticationTypeError(TLSAuthenticationError):
"""The Checker was expecting the other party to authenticate with a
different type of certificate chain."""
pass
class TLSFingerprintError(TLSAuthenticationError):
"""The Checker was expecting the other party to authenticate with a
certificate chain that matches a different fingerprint."""
pass
class TLSAuthorizationError(TLSAuthenticationError):
"""The Checker was expecting the other party to authenticate with a
certificate chain that has a different authorization."""
pass
class TLSValidationError(TLSAuthenticationError):
"""The Checker has determined that the other party's certificate
chain is invalid."""
pass
class TLSFaultError(TLSError):
"""The other party responded incorrectly to an induced fault.
This exception will only occur during fault testing, when a
TLSConnection's fault variable is set to induce some sort of
faulty behavior, and the other party doesn't respond appropriately.
"""
pass

View File

@@ -0,0 +1,235 @@
"""
A state machine for using TLS Lite with asynchronous I/O.
"""
class AsyncStateMachine:
"""
This is an abstract class that's used to integrate TLS Lite with
asyncore and Twisted.
This class signals wantsReadsEvent() and wantsWriteEvent(). When
the underlying socket has become readable or writeable, the event
should be passed to this class by calling inReadEvent() or
inWriteEvent(). This class will then try to read or write through
the socket, and will update its state appropriately.
This class will forward higher-level events to its subclass. For
example, when a complete TLS record has been received,
outReadEvent() will be called with the decrypted data.
"""
def __init__(self):
self._clear()
def _clear(self):
#These store the various asynchronous operations (i.e.
#generators). Only one of them, at most, is ever active at a
#time.
self.handshaker = None
self.closer = None
self.reader = None
self.writer = None
#This stores the result from the last call to the
#currently active operation. If 0 it indicates that the
#operation wants to read, if 1 it indicates that the
#operation wants to write. If None, there is no active
#operation.
self.result = None
def _checkAssert(self, maxActive=1):
#This checks that only one operation, at most, is
#active, and that self.result is set appropriately.
activeOps = 0
if self.handshaker:
activeOps += 1
if self.closer:
activeOps += 1
if self.reader:
activeOps += 1
if self.writer:
activeOps += 1
if self.result == None:
if activeOps != 0:
raise AssertionError()
elif self.result in (0,1):
if activeOps != 1:
raise AssertionError()
else:
raise AssertionError()
if activeOps > maxActive:
raise AssertionError()
def wantsReadEvent(self):
"""If the state machine wants to read.
If an operation is active, this returns whether or not the
operation wants to read from the socket. If an operation is
not active, this returns None.
@rtype: bool or None
@return: If the state machine wants to read.
"""
if self.result != None:
return self.result == 0
return None
def wantsWriteEvent(self):
"""If the state machine wants to write.
If an operation is active, this returns whether or not the
operation wants to write to the socket. If an operation is
not active, this returns None.
@rtype: bool or None
@return: If the state machine wants to write.
"""
if self.result != None:
return self.result == 1
return None
def outConnectEvent(self):
"""Called when a handshake operation completes.
May be overridden in subclass.
"""
pass
def outCloseEvent(self):
"""Called when a close operation completes.
May be overridden in subclass.
"""
pass
def outReadEvent(self, readBuffer):
"""Called when a read operation completes.
May be overridden in subclass."""
pass
def outWriteEvent(self):
"""Called when a write operation completes.
May be overridden in subclass."""
pass
def inReadEvent(self):
"""Tell the state machine it can read from the socket."""
try:
self._checkAssert()
if self.handshaker:
self._doHandshakeOp()
elif self.closer:
self._doCloseOp()
elif self.reader:
self._doReadOp()
elif self.writer:
self._doWriteOp()
else:
self.reader = self.tlsConnection.readAsync(16384)
self._doReadOp()
except:
self._clear()
raise
def inWriteEvent(self):
"""Tell the state machine it can write to the socket."""
try:
self._checkAssert()
if self.handshaker:
self._doHandshakeOp()
elif self.closer:
self._doCloseOp()
elif self.reader:
self._doReadOp()
elif self.writer:
self._doWriteOp()
else:
self.outWriteEvent()
except:
self._clear()
raise
def _doHandshakeOp(self):
try:
self.result = self.handshaker.next()
except StopIteration:
self.handshaker = None
self.result = None
self.outConnectEvent()
def _doCloseOp(self):
try:
self.result = self.closer.next()
except StopIteration:
self.closer = None
self.result = None
self.outCloseEvent()
def _doReadOp(self):
self.result = self.reader.next()
if not self.result in (0,1):
readBuffer = self.result
self.reader = None
self.result = None
self.outReadEvent(readBuffer)
def _doWriteOp(self):
try:
self.result = self.writer.next()
except StopIteration:
self.writer = None
self.result = None
def setHandshakeOp(self, handshaker):
"""Start a handshake operation.
@type handshaker: generator
@param handshaker: A generator created by using one of the
asynchronous handshake functions (i.e. handshakeServerAsync, or
handshakeClientxxx(..., async=True).
"""
try:
self._checkAssert(0)
self.handshaker = handshaker
self._doHandshakeOp()
except:
self._clear()
raise
def setServerHandshakeOp(self, **args):
"""Start a handshake operation.
The arguments passed to this function will be forwarded to
L{tlslite.TLSConnection.TLSConnection.handshakeServerAsync}.
"""
handshaker = self.tlsConnection.handshakeServerAsync(**args)
self.setHandshakeOp(handshaker)
def setCloseOp(self):
"""Start a close operation.
"""
try:
self._checkAssert(0)
self.closer = self.tlsConnection.closeAsync()
self._doCloseOp()
except:
self._clear()
raise
def setWriteOp(self, writeBuffer):
"""Start a write operation.
@type writeBuffer: str
@param writeBuffer: The string to transmit.
"""
try:
self._checkAssert(0)
self.writer = self.tlsConnection.writeAsync(writeBuffer)
self._doWriteOp()
except:
self._clear()
raise

View File

@@ -0,0 +1,163 @@
"""
A helper class for using TLS Lite with stdlib clients
(httplib, xmlrpclib, imaplib, poplib).
"""
from gdata.tlslite.Checker import Checker
class ClientHelper:
"""This is a helper class used to integrate TLS Lite with various
TLS clients (e.g. poplib, smtplib, httplib, etc.)"""
def __init__(self,
username=None, password=None, sharedKey=None,
certChain=None, privateKey=None,
cryptoID=None, protocol=None,
x509Fingerprint=None,
x509TrustList=None, x509CommonName=None,
settings = None):
"""
For client authentication, use one of these argument
combinations:
- username, password (SRP)
- username, sharedKey (shared-key)
- certChain, privateKey (certificate)
For server authentication, you can either rely on the
implicit mutual authentication performed by SRP or
shared-keys, or you can do certificate-based server
authentication with one of these argument combinations:
- cryptoID[, protocol] (requires cryptoIDlib)
- x509Fingerprint
- x509TrustList[, x509CommonName] (requires cryptlib_py)
Certificate-based server authentication is compatible with
SRP or certificate-based client authentication. It is
not compatible with shared-keys.
The constructor does not perform the TLS handshake itself, but
simply stores these arguments for later. The handshake is
performed only when this class needs to connect with the
server. Then you should be prepared to handle TLS-specific
exceptions. See the client handshake functions in
L{tlslite.TLSConnection.TLSConnection} for details on which
exceptions might be raised.
@type username: str
@param username: SRP or shared-key username. Requires the
'password' or 'sharedKey' argument.
@type password: str
@param password: SRP password for mutual authentication.
Requires the 'username' argument.
@type sharedKey: str
@param sharedKey: Shared key for mutual authentication.
Requires the 'username' argument.
@type certChain: L{tlslite.X509CertChain.X509CertChain} or
L{cryptoIDlib.CertChain.CertChain}
@param certChain: Certificate chain for client authentication.
Requires the 'privateKey' argument. Excludes the SRP or
shared-key related arguments.
@type privateKey: L{tlslite.utils.RSAKey.RSAKey}
@param privateKey: Private key for client authentication.
Requires the 'certChain' argument. Excludes the SRP or
shared-key related arguments.
@type cryptoID: str
@param cryptoID: cryptoID for server authentication. Mutually
exclusive with the 'x509...' arguments.
@type protocol: str
@param protocol: cryptoID protocol URI for server
authentication. Requires the 'cryptoID' argument.
@type x509Fingerprint: str
@param x509Fingerprint: Hex-encoded X.509 fingerprint for
server authentication. Mutually exclusive with the 'cryptoID'
and 'x509TrustList' arguments.
@type x509TrustList: list of L{tlslite.X509.X509}
@param x509TrustList: A list of trusted root certificates. The
other party must present a certificate chain which extends to
one of these root certificates. The cryptlib_py module must be
installed to use this parameter. Mutually exclusive with the
'cryptoID' and 'x509Fingerprint' arguments.
@type x509CommonName: str
@param x509CommonName: The end-entity certificate's 'CN' field
must match this value. For a web server, this is typically a
server name such as 'www.amazon.com'. Mutually exclusive with
the 'cryptoID' and 'x509Fingerprint' arguments. Requires the
'x509TrustList' argument.
@type settings: L{tlslite.HandshakeSettings.HandshakeSettings}
@param settings: Various settings which can be used to control
the ciphersuites, certificate types, and SSL/TLS versions
offered by the client.
"""
self.username = None
self.password = None
self.sharedKey = None
self.certChain = None
self.privateKey = None
self.checker = None
#SRP Authentication
if username and password and not \
(sharedKey or certChain or privateKey):
self.username = username
self.password = password
#Shared Key Authentication
elif username and sharedKey and not \
(password or certChain or privateKey):
self.username = username
self.sharedKey = sharedKey
#Certificate Chain Authentication
elif certChain and privateKey and not \
(username or password or sharedKey):
self.certChain = certChain
self.privateKey = privateKey
#No Authentication
elif not password and not username and not \
sharedKey and not certChain and not privateKey:
pass
else:
raise ValueError("Bad parameters")
#Authenticate the server based on its cryptoID or fingerprint
if sharedKey and (cryptoID or protocol or x509Fingerprint):
raise ValueError("Can't use shared keys with other forms of"\
"authentication")
self.checker = Checker(cryptoID, protocol, x509Fingerprint,
x509TrustList, x509CommonName)
self.settings = settings
self.tlsSession = None
def _handshake(self, tlsConnection):
if self.username and self.password:
tlsConnection.handshakeClientSRP(username=self.username,
password=self.password,
checker=self.checker,
settings=self.settings,
session=self.tlsSession)
elif self.username and self.sharedKey:
tlsConnection.handshakeClientSharedKey(username=self.username,
sharedKey=self.sharedKey,
settings=self.settings)
else:
tlsConnection.handshakeClientCert(certChain=self.certChain,
privateKey=self.privateKey,
checker=self.checker,
settings=self.settings,
session=self.tlsSession)
self.tlsSession = tlsConnection.session

View File

@@ -0,0 +1,169 @@
"""TLS Lite + httplib."""
import socket
import httplib
from gdata.tlslite.TLSConnection import TLSConnection
from gdata.tlslite.integration.ClientHelper import ClientHelper
class HTTPBaseTLSConnection(httplib.HTTPConnection):
"""This abstract class provides a framework for adding TLS support
to httplib."""
default_port = 443
def __init__(self, host, port=None, strict=None):
if strict == None:
#Python 2.2 doesn't support strict
httplib.HTTPConnection.__init__(self, host, port)
else:
httplib.HTTPConnection.__init__(self, host, port, strict)
def connect(self):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
if hasattr(sock, 'settimeout'):
sock.settimeout(10)
sock.connect((self.host, self.port))
#Use a TLSConnection to emulate a socket
self.sock = TLSConnection(sock)
#When httplib closes this, close the socket
self.sock.closeSocket = True
self._handshake(self.sock)
def _handshake(self, tlsConnection):
"""Called to perform some sort of handshake.
This method must be overridden in a subclass to do some type of
handshake. This method will be called after the socket has
been connected but before any data has been sent. If this
method does not raise an exception, the TLS connection will be
considered valid.
This method may (or may not) be called every time an HTTP
request is performed, depending on whether the underlying HTTP
connection is persistent.
@type tlsConnection: L{tlslite.TLSConnection.TLSConnection}
@param tlsConnection: The connection to perform the handshake
on.
"""
raise NotImplementedError()
class HTTPTLSConnection(HTTPBaseTLSConnection, ClientHelper):
"""This class extends L{HTTPBaseTLSConnection} to support the
common types of handshaking."""
def __init__(self, host, port=None,
username=None, password=None, sharedKey=None,
certChain=None, privateKey=None,
cryptoID=None, protocol=None,
x509Fingerprint=None,
x509TrustList=None, x509CommonName=None,
settings = None):
"""Create a new HTTPTLSConnection.
For client authentication, use one of these argument
combinations:
- username, password (SRP)
- username, sharedKey (shared-key)
- certChain, privateKey (certificate)
For server authentication, you can either rely on the
implicit mutual authentication performed by SRP or
shared-keys, or you can do certificate-based server
authentication with one of these argument combinations:
- cryptoID[, protocol] (requires cryptoIDlib)
- x509Fingerprint
- x509TrustList[, x509CommonName] (requires cryptlib_py)
Certificate-based server authentication is compatible with
SRP or certificate-based client authentication. It is
not compatible with shared-keys.
The constructor does not perform the TLS handshake itself, but
simply stores these arguments for later. The handshake is
performed only when this class needs to connect with the
server. Thus you should be prepared to handle TLS-specific
exceptions when calling methods inherited from
L{httplib.HTTPConnection} such as request(), connect(), and
send(). See the client handshake functions in
L{tlslite.TLSConnection.TLSConnection} for details on which
exceptions might be raised.
@type host: str
@param host: Server to connect to.
@type port: int
@param port: Port to connect to.
@type username: str
@param username: SRP or shared-key username. Requires the
'password' or 'sharedKey' argument.
@type password: str
@param password: SRP password for mutual authentication.
Requires the 'username' argument.
@type sharedKey: str
@param sharedKey: Shared key for mutual authentication.
Requires the 'username' argument.
@type certChain: L{tlslite.X509CertChain.X509CertChain} or
L{cryptoIDlib.CertChain.CertChain}
@param certChain: Certificate chain for client authentication.
Requires the 'privateKey' argument. Excludes the SRP or
shared-key related arguments.
@type privateKey: L{tlslite.utils.RSAKey.RSAKey}
@param privateKey: Private key for client authentication.
Requires the 'certChain' argument. Excludes the SRP or
shared-key related arguments.
@type cryptoID: str
@param cryptoID: cryptoID for server authentication. Mutually
exclusive with the 'x509...' arguments.
@type protocol: str
@param protocol: cryptoID protocol URI for server
authentication. Requires the 'cryptoID' argument.
@type x509Fingerprint: str
@param x509Fingerprint: Hex-encoded X.509 fingerprint for
server authentication. Mutually exclusive with the 'cryptoID'
and 'x509TrustList' arguments.
@type x509TrustList: list of L{tlslite.X509.X509}
@param x509TrustList: A list of trusted root certificates. The
other party must present a certificate chain which extends to
one of these root certificates. The cryptlib_py module must be
installed to use this parameter. Mutually exclusive with the
'cryptoID' and 'x509Fingerprint' arguments.
@type x509CommonName: str
@param x509CommonName: The end-entity certificate's 'CN' field
must match this value. For a web server, this is typically a
server name such as 'www.amazon.com'. Mutually exclusive with
the 'cryptoID' and 'x509Fingerprint' arguments. Requires the
'x509TrustList' argument.
@type settings: L{tlslite.HandshakeSettings.HandshakeSettings}
@param settings: Various settings which can be used to control
the ciphersuites, certificate types, and SSL/TLS versions
offered by the client.
"""
HTTPBaseTLSConnection.__init__(self, host, port)
ClientHelper.__init__(self,
username, password, sharedKey,
certChain, privateKey,
cryptoID, protocol,
x509Fingerprint,
x509TrustList, x509CommonName,
settings)
def _handshake(self, tlsConnection):
ClientHelper._handshake(self, tlsConnection)

View File

@@ -0,0 +1,132 @@
"""TLS Lite + imaplib."""
import socket
from imaplib import IMAP4
from gdata.tlslite.TLSConnection import TLSConnection
from gdata.tlslite.integration.ClientHelper import ClientHelper
# IMAP TLS PORT
IMAP4_TLS_PORT = 993
class IMAP4_TLS(IMAP4, ClientHelper):
"""This class extends L{imaplib.IMAP4} with TLS support."""
def __init__(self, host = '', port = IMAP4_TLS_PORT,
username=None, password=None, sharedKey=None,
certChain=None, privateKey=None,
cryptoID=None, protocol=None,
x509Fingerprint=None,
x509TrustList=None, x509CommonName=None,
settings=None):
"""Create a new IMAP4_TLS.
For client authentication, use one of these argument
combinations:
- username, password (SRP)
- username, sharedKey (shared-key)
- certChain, privateKey (certificate)
For server authentication, you can either rely on the
implicit mutual authentication performed by SRP or
shared-keys, or you can do certificate-based server
authentication with one of these argument combinations:
- cryptoID[, protocol] (requires cryptoIDlib)
- x509Fingerprint
- x509TrustList[, x509CommonName] (requires cryptlib_py)
Certificate-based server authentication is compatible with
SRP or certificate-based client authentication. It is
not compatible with shared-keys.
The caller should be prepared to handle TLS-specific
exceptions. See the client handshake functions in
L{tlslite.TLSConnection.TLSConnection} for details on which
exceptions might be raised.
@type host: str
@param host: Server to connect to.
@type port: int
@param port: Port to connect to.
@type username: str
@param username: SRP or shared-key username. Requires the
'password' or 'sharedKey' argument.
@type password: str
@param password: SRP password for mutual authentication.
Requires the 'username' argument.
@type sharedKey: str
@param sharedKey: Shared key for mutual authentication.
Requires the 'username' argument.
@type certChain: L{tlslite.X509CertChain.X509CertChain} or
L{cryptoIDlib.CertChain.CertChain}
@param certChain: Certificate chain for client authentication.
Requires the 'privateKey' argument. Excludes the SRP or
shared-key related arguments.
@type privateKey: L{tlslite.utils.RSAKey.RSAKey}
@param privateKey: Private key for client authentication.
Requires the 'certChain' argument. Excludes the SRP or
shared-key related arguments.
@type cryptoID: str
@param cryptoID: cryptoID for server authentication. Mutually
exclusive with the 'x509...' arguments.
@type protocol: str
@param protocol: cryptoID protocol URI for server
authentication. Requires the 'cryptoID' argument.
@type x509Fingerprint: str
@param x509Fingerprint: Hex-encoded X.509 fingerprint for
server authentication. Mutually exclusive with the 'cryptoID'
and 'x509TrustList' arguments.
@type x509TrustList: list of L{tlslite.X509.X509}
@param x509TrustList: A list of trusted root certificates. The
other party must present a certificate chain which extends to
one of these root certificates. The cryptlib_py module must be
installed to use this parameter. Mutually exclusive with the
'cryptoID' and 'x509Fingerprint' arguments.
@type x509CommonName: str
@param x509CommonName: The end-entity certificate's 'CN' field
must match this value. For a web server, this is typically a
server name such as 'www.amazon.com'. Mutually exclusive with
the 'cryptoID' and 'x509Fingerprint' arguments. Requires the
'x509TrustList' argument.
@type settings: L{tlslite.HandshakeSettings.HandshakeSettings}
@param settings: Various settings which can be used to control
the ciphersuites, certificate types, and SSL/TLS versions
offered by the client.
"""
ClientHelper.__init__(self,
username, password, sharedKey,
certChain, privateKey,
cryptoID, protocol,
x509Fingerprint,
x509TrustList, x509CommonName,
settings)
IMAP4.__init__(self, host, port)
def open(self, host = '', port = IMAP4_TLS_PORT):
"""Setup connection to remote server on "host:port".
This connection will be used by the routines:
read, readline, send, shutdown.
"""
self.host = host
self.port = port
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.sock.connect((host, port))
self.sock = TLSConnection(self.sock)
self.sock.closeSocket = True
ClientHelper._handshake(self, self.sock)
self.file = self.sock.makefile('rb')

View File

@@ -0,0 +1,52 @@
class IntegrationHelper:
def __init__(self,
username=None, password=None, sharedKey=None,
certChain=None, privateKey=None,
cryptoID=None, protocol=None,
x509Fingerprint=None,
x509TrustList=None, x509CommonName=None,
settings = None):
self.username = None
self.password = None
self.sharedKey = None
self.certChain = None
self.privateKey = None
self.checker = None
#SRP Authentication
if username and password and not \
(sharedKey or certChain or privateKey):
self.username = username
self.password = password
#Shared Key Authentication
elif username and sharedKey and not \
(password or certChain or privateKey):
self.username = username
self.sharedKey = sharedKey
#Certificate Chain Authentication
elif certChain and privateKey and not \
(username or password or sharedKey):
self.certChain = certChain
self.privateKey = privateKey
#No Authentication
elif not password and not username and not \
sharedKey and not certChain and not privateKey:
pass
else:
raise ValueError("Bad parameters")
#Authenticate the server based on its cryptoID or fingerprint
if sharedKey and (cryptoID or protocol or x509Fingerprint):
raise ValueError("Can't use shared keys with other forms of"\
"authentication")
self.checker = Checker(cryptoID, protocol, x509Fingerprint,
x509TrustList, x509CommonName)
self.settings = settings

View File

@@ -0,0 +1,142 @@
"""TLS Lite + poplib."""
import socket
from poplib import POP3
from gdata.tlslite.TLSConnection import TLSConnection
from gdata.tlslite.integration.ClientHelper import ClientHelper
# POP TLS PORT
POP3_TLS_PORT = 995
class POP3_TLS(POP3, ClientHelper):
"""This class extends L{poplib.POP3} with TLS support."""
def __init__(self, host, port = POP3_TLS_PORT,
username=None, password=None, sharedKey=None,
certChain=None, privateKey=None,
cryptoID=None, protocol=None,
x509Fingerprint=None,
x509TrustList=None, x509CommonName=None,
settings=None):
"""Create a new POP3_TLS.
For client authentication, use one of these argument
combinations:
- username, password (SRP)
- username, sharedKey (shared-key)
- certChain, privateKey (certificate)
For server authentication, you can either rely on the
implicit mutual authentication performed by SRP or
shared-keys, or you can do certificate-based server
authentication with one of these argument combinations:
- cryptoID[, protocol] (requires cryptoIDlib)
- x509Fingerprint
- x509TrustList[, x509CommonName] (requires cryptlib_py)
Certificate-based server authentication is compatible with
SRP or certificate-based client authentication. It is
not compatible with shared-keys.
The caller should be prepared to handle TLS-specific
exceptions. See the client handshake functions in
L{tlslite.TLSConnection.TLSConnection} for details on which
exceptions might be raised.
@type host: str
@param host: Server to connect to.
@type port: int
@param port: Port to connect to.
@type username: str
@param username: SRP or shared-key username. Requires the
'password' or 'sharedKey' argument.
@type password: str
@param password: SRP password for mutual authentication.
Requires the 'username' argument.
@type sharedKey: str
@param sharedKey: Shared key for mutual authentication.
Requires the 'username' argument.
@type certChain: L{tlslite.X509CertChain.X509CertChain} or
L{cryptoIDlib.CertChain.CertChain}
@param certChain: Certificate chain for client authentication.
Requires the 'privateKey' argument. Excludes the SRP or
shared-key related arguments.
@type privateKey: L{tlslite.utils.RSAKey.RSAKey}
@param privateKey: Private key for client authentication.
Requires the 'certChain' argument. Excludes the SRP or
shared-key related arguments.
@type cryptoID: str
@param cryptoID: cryptoID for server authentication. Mutually
exclusive with the 'x509...' arguments.
@type protocol: str
@param protocol: cryptoID protocol URI for server
authentication. Requires the 'cryptoID' argument.
@type x509Fingerprint: str
@param x509Fingerprint: Hex-encoded X.509 fingerprint for
server authentication. Mutually exclusive with the 'cryptoID'
and 'x509TrustList' arguments.
@type x509TrustList: list of L{tlslite.X509.X509}
@param x509TrustList: A list of trusted root certificates. The
other party must present a certificate chain which extends to
one of these root certificates. The cryptlib_py module must be
installed to use this parameter. Mutually exclusive with the
'cryptoID' and 'x509Fingerprint' arguments.
@type x509CommonName: str
@param x509CommonName: The end-entity certificate's 'CN' field
must match this value. For a web server, this is typically a
server name such as 'www.amazon.com'. Mutually exclusive with
the 'cryptoID' and 'x509Fingerprint' arguments. Requires the
'x509TrustList' argument.
@type settings: L{tlslite.HandshakeSettings.HandshakeSettings}
@param settings: Various settings which can be used to control
the ciphersuites, certificate types, and SSL/TLS versions
offered by the client.
"""
self.host = host
self.port = port
msg = "getaddrinfo returns an empty list"
self.sock = None
for res in socket.getaddrinfo(self.host, self.port, 0, socket.SOCK_STREAM):
af, socktype, proto, canonname, sa = res
try:
self.sock = socket.socket(af, socktype, proto)
self.sock.connect(sa)
except socket.error, msg:
if self.sock:
self.sock.close()
self.sock = None
continue
break
if not self.sock:
raise socket.error, msg
### New code below (all else copied from poplib)
ClientHelper.__init__(self,
username, password, sharedKey,
certChain, privateKey,
cryptoID, protocol,
x509Fingerprint,
x509TrustList, x509CommonName,
settings)
self.sock = TLSConnection(self.sock)
self.sock.closeSocket = True
ClientHelper._handshake(self, self.sock)
###
self.file = self.sock.makefile('rb')
self._debugging = 0
self.welcome = self._getresp()

View File

@@ -0,0 +1,114 @@
"""TLS Lite + smtplib."""
from smtplib import SMTP
from gdata.tlslite.TLSConnection import TLSConnection
from gdata.tlslite.integration.ClientHelper import ClientHelper
class SMTP_TLS(SMTP):
"""This class extends L{smtplib.SMTP} with TLS support."""
def starttls(self,
username=None, password=None, sharedKey=None,
certChain=None, privateKey=None,
cryptoID=None, protocol=None,
x509Fingerprint=None,
x509TrustList=None, x509CommonName=None,
settings=None):
"""Puts the connection to the SMTP server into TLS mode.
If the server supports TLS, this will encrypt the rest of the SMTP
session.
For client authentication, use one of these argument
combinations:
- username, password (SRP)
- username, sharedKey (shared-key)
- certChain, privateKey (certificate)
For server authentication, you can either rely on the
implicit mutual authentication performed by SRP or
shared-keys, or you can do certificate-based server
authentication with one of these argument combinations:
- cryptoID[, protocol] (requires cryptoIDlib)
- x509Fingerprint
- x509TrustList[, x509CommonName] (requires cryptlib_py)
Certificate-based server authentication is compatible with
SRP or certificate-based client authentication. It is
not compatible with shared-keys.
The caller should be prepared to handle TLS-specific
exceptions. See the client handshake functions in
L{tlslite.TLSConnection.TLSConnection} for details on which
exceptions might be raised.
@type username: str
@param username: SRP or shared-key username. Requires the
'password' or 'sharedKey' argument.
@type password: str
@param password: SRP password for mutual authentication.
Requires the 'username' argument.
@type sharedKey: str
@param sharedKey: Shared key for mutual authentication.
Requires the 'username' argument.
@type certChain: L{tlslite.X509CertChain.X509CertChain} or
L{cryptoIDlib.CertChain.CertChain}
@param certChain: Certificate chain for client authentication.
Requires the 'privateKey' argument. Excludes the SRP or
shared-key related arguments.
@type privateKey: L{tlslite.utils.RSAKey.RSAKey}
@param privateKey: Private key for client authentication.
Requires the 'certChain' argument. Excludes the SRP or
shared-key related arguments.
@type cryptoID: str
@param cryptoID: cryptoID for server authentication. Mutually
exclusive with the 'x509...' arguments.
@type protocol: str
@param protocol: cryptoID protocol URI for server
authentication. Requires the 'cryptoID' argument.
@type x509Fingerprint: str
@param x509Fingerprint: Hex-encoded X.509 fingerprint for
server authentication. Mutually exclusive with the 'cryptoID'
and 'x509TrustList' arguments.
@type x509TrustList: list of L{tlslite.X509.X509}
@param x509TrustList: A list of trusted root certificates. The
other party must present a certificate chain which extends to
one of these root certificates. The cryptlib_py module must be
installed to use this parameter. Mutually exclusive with the
'cryptoID' and 'x509Fingerprint' arguments.
@type x509CommonName: str
@param x509CommonName: The end-entity certificate's 'CN' field
must match this value. For a web server, this is typically a
server name such as 'www.amazon.com'. Mutually exclusive with
the 'cryptoID' and 'x509Fingerprint' arguments. Requires the
'x509TrustList' argument.
@type settings: L{tlslite.HandshakeSettings.HandshakeSettings}
@param settings: Various settings which can be used to control
the ciphersuites, certificate types, and SSL/TLS versions
offered by the client.
"""
(resp, reply) = self.docmd("STARTTLS")
if resp == 220:
helper = ClientHelper(
username, password, sharedKey,
certChain, privateKey,
cryptoID, protocol,
x509Fingerprint,
x509TrustList, x509CommonName,
settings)
conn = TLSConnection(self.sock)
conn.closeSocket = True
helper._handshake(conn)
self.sock = conn
self.file = conn.makefile('rb')
return (resp, reply)

View File

@@ -0,0 +1,139 @@
"""TLS Lite + asyncore."""
import asyncore
from gdata.tlslite.TLSConnection import TLSConnection
from AsyncStateMachine import AsyncStateMachine
class TLSAsyncDispatcherMixIn(AsyncStateMachine):
"""This class can be "mixed in" with an
L{asyncore.dispatcher} to add TLS support.
This class essentially sits between the dispatcher and the select
loop, intercepting events and only calling the dispatcher when
applicable.
In the case of handle_read(), a read operation will be activated,
and when it completes, the bytes will be placed in a buffer where
the dispatcher can retrieve them by calling recv(), and the
dispatcher's handle_read() will be called.
In the case of handle_write(), the dispatcher's handle_write() will
be called, and when it calls send(), a write operation will be
activated.
To use this class, you must combine it with an asyncore.dispatcher,
and pass in a handshake operation with setServerHandshakeOp().
Below is an example of using this class with medusa. This class is
mixed in with http_channel to create http_tls_channel. Note:
1. the mix-in is listed first in the inheritance list
2. the input buffer size must be at least 16K, otherwise the
dispatcher might not read all the bytes from the TLS layer,
leaving some bytes in limbo.
3. IE seems to have a problem receiving a whole HTTP response in a
single TLS record, so HTML pages containing '\\r\\n\\r\\n' won't
be displayed on IE.
Add the following text into 'start_medusa.py', in the 'HTTP Server'
section::
from tlslite.api import *
s = open("./serverX509Cert.pem").read()
x509 = X509()
x509.parse(s)
certChain = X509CertChain([x509])
s = open("./serverX509Key.pem").read()
privateKey = parsePEMKey(s, private=True)
class http_tls_channel(TLSAsyncDispatcherMixIn,
http_server.http_channel):
ac_in_buffer_size = 16384
def __init__ (self, server, conn, addr):
http_server.http_channel.__init__(self, server, conn, addr)
TLSAsyncDispatcherMixIn.__init__(self, conn)
self.tlsConnection.ignoreAbruptClose = True
self.setServerHandshakeOp(certChain=certChain,
privateKey=privateKey)
hs.channel_class = http_tls_channel
If the TLS layer raises an exception, the exception will be caught
in asyncore.dispatcher, which will call close() on this class. The
TLS layer always closes the TLS connection before raising an
exception, so the close operation will complete right away, causing
asyncore.dispatcher.close() to be called, which closes the socket
and removes this instance from the asyncore loop.
"""
def __init__(self, sock=None):
AsyncStateMachine.__init__(self)
if sock:
self.tlsConnection = TLSConnection(sock)
#Calculate the sibling I'm being mixed in with.
#This is necessary since we override functions
#like readable(), handle_read(), etc., but we
#also want to call the sibling's versions.
for cl in self.__class__.__bases__:
if cl != TLSAsyncDispatcherMixIn and cl != AsyncStateMachine:
self.siblingClass = cl
break
else:
raise AssertionError()
def readable(self):
result = self.wantsReadEvent()
if result != None:
return result
return self.siblingClass.readable(self)
def writable(self):
result = self.wantsWriteEvent()
if result != None:
return result
return self.siblingClass.writable(self)
def handle_read(self):
self.inReadEvent()
def handle_write(self):
self.inWriteEvent()
def outConnectEvent(self):
self.siblingClass.handle_connect(self)
def outCloseEvent(self):
asyncore.dispatcher.close(self)
def outReadEvent(self, readBuffer):
self.readBuffer = readBuffer
self.siblingClass.handle_read(self)
def outWriteEvent(self):
self.siblingClass.handle_write(self)
def recv(self, bufferSize=16384):
if bufferSize < 16384 or self.readBuffer == None:
raise AssertionError()
returnValue = self.readBuffer
self.readBuffer = None
return returnValue
def send(self, writeBuffer):
self.setWriteOp(writeBuffer)
return len(writeBuffer)
def close(self):
if hasattr(self, "tlsConnection"):
self.setCloseOp()
else:
asyncore.dispatcher.close(self)

View File

@@ -0,0 +1,59 @@
"""TLS Lite + SocketServer."""
from gdata.tlslite.TLSConnection import TLSConnection
class TLSSocketServerMixIn:
"""
This class can be mixed in with any L{SocketServer.TCPServer} to
add TLS support.
To use this class, define a new class that inherits from it and
some L{SocketServer.TCPServer} (with the mix-in first). Then
implement the handshake() method, doing some sort of server
handshake on the connection argument. If the handshake method
returns True, the RequestHandler will be triggered. Below is a
complete example of a threaded HTTPS server::
from SocketServer import *
from BaseHTTPServer import *
from SimpleHTTPServer import *
from tlslite.api import *
s = open("./serverX509Cert.pem").read()
x509 = X509()
x509.parse(s)
certChain = X509CertChain([x509])
s = open("./serverX509Key.pem").read()
privateKey = parsePEMKey(s, private=True)
sessionCache = SessionCache()
class MyHTTPServer(ThreadingMixIn, TLSSocketServerMixIn,
HTTPServer):
def handshake(self, tlsConnection):
try:
tlsConnection.handshakeServer(certChain=certChain,
privateKey=privateKey,
sessionCache=sessionCache)
tlsConnection.ignoreAbruptClose = True
return True
except TLSError, error:
print "Handshake failure:", str(error)
return False
httpd = MyHTTPServer(('localhost', 443), SimpleHTTPRequestHandler)
httpd.serve_forever()
"""
def finish_request(self, sock, client_address):
tlsConnection = TLSConnection(sock)
if self.handshake(tlsConnection) == True:
self.RequestHandlerClass(tlsConnection, client_address, self)
tlsConnection.close()
#Implement this method to do some form of handshaking. Return True
#if the handshake finishes properly and the request is authorized.
def handshake(self, tlsConnection):
raise NotImplementedError()

View File

@@ -0,0 +1,196 @@
"""TLS Lite + Twisted."""
from twisted.protocols.policies import ProtocolWrapper, WrappingFactory
from twisted.python.failure import Failure
from AsyncStateMachine import AsyncStateMachine
from gdata.tlslite.TLSConnection import TLSConnection
from gdata.tlslite.errors import *
import socket
import errno
#The TLSConnection is created around a "fake socket" that
#plugs it into the underlying Twisted transport
class _FakeSocket:
def __init__(self, wrapper):
self.wrapper = wrapper
self.data = ""
def send(self, data):
ProtocolWrapper.write(self.wrapper, data)
return len(data)
def recv(self, numBytes):
if self.data == "":
raise socket.error, (errno.EWOULDBLOCK, "")
returnData = self.data[:numBytes]
self.data = self.data[numBytes:]
return returnData
class TLSTwistedProtocolWrapper(ProtocolWrapper, AsyncStateMachine):
"""This class can wrap Twisted protocols to add TLS support.
Below is a complete example of using TLS Lite with a Twisted echo
server.
There are two server implementations below. Echo is the original
protocol, which is oblivious to TLS. Echo1 subclasses Echo and
negotiates TLS when the client connects. Echo2 subclasses Echo and
negotiates TLS when the client sends "STARTTLS"::
from twisted.internet.protocol import Protocol, Factory
from twisted.internet import reactor
from twisted.protocols.policies import WrappingFactory
from twisted.protocols.basic import LineReceiver
from twisted.python import log
from twisted.python.failure import Failure
import sys
from tlslite.api import *
s = open("./serverX509Cert.pem").read()
x509 = X509()
x509.parse(s)
certChain = X509CertChain([x509])
s = open("./serverX509Key.pem").read()
privateKey = parsePEMKey(s, private=True)
verifierDB = VerifierDB("verifierDB")
verifierDB.open()
class Echo(LineReceiver):
def connectionMade(self):
self.transport.write("Welcome to the echo server!\\r\\n")
def lineReceived(self, line):
self.transport.write(line + "\\r\\n")
class Echo1(Echo):
def connectionMade(self):
if not self.transport.tlsStarted:
self.transport.setServerHandshakeOp(certChain=certChain,
privateKey=privateKey,
verifierDB=verifierDB)
else:
Echo.connectionMade(self)
def connectionLost(self, reason):
pass #Handle any TLS exceptions here
class Echo2(Echo):
def lineReceived(self, data):
if data == "STARTTLS":
self.transport.setServerHandshakeOp(certChain=certChain,
privateKey=privateKey,
verifierDB=verifierDB)
else:
Echo.lineReceived(self, data)
def connectionLost(self, reason):
pass #Handle any TLS exceptions here
factory = Factory()
factory.protocol = Echo1
#factory.protocol = Echo2
wrappingFactory = WrappingFactory(factory)
wrappingFactory.protocol = TLSTwistedProtocolWrapper
log.startLogging(sys.stdout)
reactor.listenTCP(1079, wrappingFactory)
reactor.run()
This class works as follows:
Data comes in and is given to the AsyncStateMachine for handling.
AsyncStateMachine will forward events to this class, and we'll
pass them on to the ProtocolHandler, which will proxy them to the
wrapped protocol. The wrapped protocol may then call back into
this class, and these calls will be proxied into the
AsyncStateMachine.
The call graph looks like this:
- self.dataReceived
- AsyncStateMachine.inReadEvent
- self.out(Connect|Close|Read)Event
- ProtocolWrapper.(connectionMade|loseConnection|dataReceived)
- self.(loseConnection|write|writeSequence)
- AsyncStateMachine.(setCloseOp|setWriteOp)
"""
#WARNING: IF YOU COPY-AND-PASTE THE ABOVE CODE, BE SURE TO REMOVE
#THE EXTRA ESCAPING AROUND "\\r\\n"
def __init__(self, factory, wrappedProtocol):
ProtocolWrapper.__init__(self, factory, wrappedProtocol)
AsyncStateMachine.__init__(self)
self.fakeSocket = _FakeSocket(self)
self.tlsConnection = TLSConnection(self.fakeSocket)
self.tlsStarted = False
self.connectionLostCalled = False
def connectionMade(self):
try:
ProtocolWrapper.connectionMade(self)
except TLSError, e:
self.connectionLost(Failure(e))
ProtocolWrapper.loseConnection(self)
def dataReceived(self, data):
try:
if not self.tlsStarted:
ProtocolWrapper.dataReceived(self, data)
else:
self.fakeSocket.data += data
while self.fakeSocket.data:
AsyncStateMachine.inReadEvent(self)
except TLSError, e:
self.connectionLost(Failure(e))
ProtocolWrapper.loseConnection(self)
def connectionLost(self, reason):
if not self.connectionLostCalled:
ProtocolWrapper.connectionLost(self, reason)
self.connectionLostCalled = True
def outConnectEvent(self):
ProtocolWrapper.connectionMade(self)
def outCloseEvent(self):
ProtocolWrapper.loseConnection(self)
def outReadEvent(self, data):
if data == "":
ProtocolWrapper.loseConnection(self)
else:
ProtocolWrapper.dataReceived(self, data)
def setServerHandshakeOp(self, **args):
self.tlsStarted = True
AsyncStateMachine.setServerHandshakeOp(self, **args)
def loseConnection(self):
if not self.tlsStarted:
ProtocolWrapper.loseConnection(self)
else:
AsyncStateMachine.setCloseOp(self)
def write(self, data):
if not self.tlsStarted:
ProtocolWrapper.write(self, data)
else:
#Because of the FakeSocket, write operations are guaranteed to
#terminate immediately.
AsyncStateMachine.setWriteOp(self, data)
def writeSequence(self, seq):
if not self.tlsStarted:
ProtocolWrapper.writeSequence(self, seq)
else:
#Because of the FakeSocket, write operations are guaranteed to
#terminate immediately.
AsyncStateMachine.setWriteOp(self, "".join(seq))

View File

@@ -0,0 +1,137 @@
"""TLS Lite + xmlrpclib."""
import xmlrpclib
import httplib
from gdata.tlslite.integration.HTTPTLSConnection import HTTPTLSConnection
from gdata.tlslite.integration.ClientHelper import ClientHelper
class XMLRPCTransport(xmlrpclib.Transport, ClientHelper):
"""Handles an HTTPS transaction to an XML-RPC server."""
def __init__(self,
username=None, password=None, sharedKey=None,
certChain=None, privateKey=None,
cryptoID=None, protocol=None,
x509Fingerprint=None,
x509TrustList=None, x509CommonName=None,
settings=None):
"""Create a new XMLRPCTransport.
An instance of this class can be passed to L{xmlrpclib.ServerProxy}
to use TLS with XML-RPC calls::
from tlslite.api import XMLRPCTransport
from xmlrpclib import ServerProxy
transport = XMLRPCTransport(user="alice", password="abra123")
server = ServerProxy("https://localhost", transport)
For client authentication, use one of these argument
combinations:
- username, password (SRP)
- username, sharedKey (shared-key)
- certChain, privateKey (certificate)
For server authentication, you can either rely on the
implicit mutual authentication performed by SRP or
shared-keys, or you can do certificate-based server
authentication with one of these argument combinations:
- cryptoID[, protocol] (requires cryptoIDlib)
- x509Fingerprint
- x509TrustList[, x509CommonName] (requires cryptlib_py)
Certificate-based server authentication is compatible with
SRP or certificate-based client authentication. It is
not compatible with shared-keys.
The constructor does not perform the TLS handshake itself, but
simply stores these arguments for later. The handshake is
performed only when this class needs to connect with the
server. Thus you should be prepared to handle TLS-specific
exceptions when calling methods of L{xmlrpclib.ServerProxy}. See the
client handshake functions in
L{tlslite.TLSConnection.TLSConnection} for details on which
exceptions might be raised.
@type username: str
@param username: SRP or shared-key username. Requires the
'password' or 'sharedKey' argument.
@type password: str
@param password: SRP password for mutual authentication.
Requires the 'username' argument.
@type sharedKey: str
@param sharedKey: Shared key for mutual authentication.
Requires the 'username' argument.
@type certChain: L{tlslite.X509CertChain.X509CertChain} or
L{cryptoIDlib.CertChain.CertChain}
@param certChain: Certificate chain for client authentication.
Requires the 'privateKey' argument. Excludes the SRP or
shared-key related arguments.
@type privateKey: L{tlslite.utils.RSAKey.RSAKey}
@param privateKey: Private key for client authentication.
Requires the 'certChain' argument. Excludes the SRP or
shared-key related arguments.
@type cryptoID: str
@param cryptoID: cryptoID for server authentication. Mutually
exclusive with the 'x509...' arguments.
@type protocol: str
@param protocol: cryptoID protocol URI for server
authentication. Requires the 'cryptoID' argument.
@type x509Fingerprint: str
@param x509Fingerprint: Hex-encoded X.509 fingerprint for
server authentication. Mutually exclusive with the 'cryptoID'
and 'x509TrustList' arguments.
@type x509TrustList: list of L{tlslite.X509.X509}
@param x509TrustList: A list of trusted root certificates. The
other party must present a certificate chain which extends to
one of these root certificates. The cryptlib_py module must be
installed to use this parameter. Mutually exclusive with the
'cryptoID' and 'x509Fingerprint' arguments.
@type x509CommonName: str
@param x509CommonName: The end-entity certificate's 'CN' field
must match this value. For a web server, this is typically a
server name such as 'www.amazon.com'. Mutually exclusive with
the 'cryptoID' and 'x509Fingerprint' arguments. Requires the
'x509TrustList' argument.
@type settings: L{tlslite.HandshakeSettings.HandshakeSettings}
@param settings: Various settings which can be used to control
the ciphersuites, certificate types, and SSL/TLS versions
offered by the client.
"""
ClientHelper.__init__(self,
username, password, sharedKey,
certChain, privateKey,
cryptoID, protocol,
x509Fingerprint,
x509TrustList, x509CommonName,
settings)
def make_connection(self, host):
# create a HTTPS connection object from a host descriptor
host, extra_headers, x509 = self.get_host_info(host)
http = HTTPTLSConnection(host, None,
self.username, self.password,
self.sharedKey,
self.certChain, self.privateKey,
self.checker.cryptoID,
self.checker.protocol,
self.checker.x509Fingerprint,
self.checker.x509TrustList,
self.checker.x509CommonName,
self.settings)
http2 = httplib.HTTP()
http2._setup(http)
return http2

View File

@@ -0,0 +1,17 @@
"""Classes for integrating TLS Lite with other packages."""
__all__ = ["AsyncStateMachine",
"HTTPTLSConnection",
"POP3_TLS",
"IMAP4_TLS",
"SMTP_TLS",
"XMLRPCTransport",
"TLSSocketServerMixIn",
"TLSAsyncDispatcherMixIn",
"TLSTwistedProtocolWrapper"]
try:
import twisted
del twisted
except ImportError:
del __all__[__all__.index("TLSTwistedProtocolWrapper")]

View File

@@ -0,0 +1,170 @@
"""Miscellaneous helper functions."""
from utils.compat import *
from utils.cryptomath import *
import hmac
import md5
import sha
#1024, 1536, 2048, 3072, 4096, 6144, and 8192 bit groups]
goodGroupParameters = [(2,0xEEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C9C256576D674DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE48E495C1D6089DAD15DC7D7B46154D6B6CE8EF4AD69B15D4982559B297BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976EAA9AFD5138FE8376435B9FC61D2FC0EB06E3),\
(2,0x9DEF3CAFB939277AB1F12A8617A47BBBDBA51DF499AC4C80BEEEA9614B19CC4D5F4F5F556E27CBDE51C6A94BE4607A291558903BA0D0F84380B655BB9A22E8DCDF028A7CEC67F0D08134B1C8B97989149B609E0BE3BAB63D47548381DBC5B1FC764E3F4B53DD9DA1158BFD3E2B9C8CF56EDF019539349627DB2FD53D24B7C48665772E437D6C7F8CE442734AF7CCB7AE837C264AE3A9BEB87F8A2FE9B8B5292E5A021FFF5E91479E8CE7A28C2442C6F315180F93499A234DCF76E3FED135F9BB),\
(2,0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF73),\
(2,0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF),\
(5,0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199FFFFFFFFFFFFFFFF),\
(5,0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C93402849236C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AACC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E6DCC4024FFFFFFFFFFFFFFFF),\
(5,0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C93402849236C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AACC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E438777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F5683423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD922222E04A4037C0713EB57A81A23F0C73473FC646CEA306B4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A364597E899A0255DC164F31CC50846851DF9AB48195DED7EA1B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F924009438B481C6CD7889A002ED5EE382BC9190DA6FC026E479558E4475677E9AA9E3050E2765694DFC81F56E880B96E7160C980DD98EDD3DFFFFFFFFFFFFFFFFF)]
def P_hash(hashModule, secret, seed, length):
bytes = createByteArrayZeros(length)
secret = bytesToString(secret)
seed = bytesToString(seed)
A = seed
index = 0
while 1:
A = hmac.HMAC(secret, A, hashModule).digest()
output = hmac.HMAC(secret, A+seed, hashModule).digest()
for c in output:
if index >= length:
return bytes
bytes[index] = ord(c)
index += 1
return bytes
def PRF(secret, label, seed, length):
#Split the secret into left and right halves
S1 = secret[ : int(math.ceil(len(secret)/2.0))]
S2 = secret[ int(math.floor(len(secret)/2.0)) : ]
#Run the left half through P_MD5 and the right half through P_SHA1
p_md5 = P_hash(md5, S1, concatArrays(stringToBytes(label), seed), length)
p_sha1 = P_hash(sha, S2, concatArrays(stringToBytes(label), seed), length)
#XOR the output values and return the result
for x in range(length):
p_md5[x] ^= p_sha1[x]
return p_md5
def PRF_SSL(secret, seed, length):
secretStr = bytesToString(secret)
seedStr = bytesToString(seed)
bytes = createByteArrayZeros(length)
index = 0
for x in range(26):
A = chr(ord('A')+x) * (x+1) # 'A', 'BB', 'CCC', etc..
input = secretStr + sha.sha(A + secretStr + seedStr).digest()
output = md5.md5(input).digest()
for c in output:
if index >= length:
return bytes
bytes[index] = ord(c)
index += 1
return bytes
def makeX(salt, username, password):
if len(username)>=256:
raise ValueError("username too long")
if len(salt)>=256:
raise ValueError("salt too long")
return stringToNumber(sha.sha(salt + sha.sha(username + ":" + password)\
.digest()).digest())
#This function is used by VerifierDB.makeVerifier
def makeVerifier(username, password, bits):
bitsIndex = {1024:0, 1536:1, 2048:2, 3072:3, 4096:4, 6144:5, 8192:6}[bits]
g,N = goodGroupParameters[bitsIndex]
salt = bytesToString(getRandomBytes(16))
x = makeX(salt, username, password)
verifier = powMod(g, x, N)
return N, g, salt, verifier
def PAD(n, x):
nLength = len(numberToString(n))
s = numberToString(x)
if len(s) < nLength:
s = ("\0" * (nLength-len(s))) + s
return s
def makeU(N, A, B):
return stringToNumber(sha.sha(PAD(N, A) + PAD(N, B)).digest())
def makeK(N, g):
return stringToNumber(sha.sha(numberToString(N) + PAD(N, g)).digest())
"""
MAC_SSL
Modified from Python HMAC by Trevor
"""
class MAC_SSL:
"""MAC_SSL class.
This supports the API for Cryptographic Hash Functions (PEP 247).
"""
def __init__(self, key, msg = None, digestmod = None):
"""Create a new MAC_SSL object.
key: key for the keyed hash object.
msg: Initial input for the hash, if provided.
digestmod: A module supporting PEP 247. Defaults to the md5 module.
"""
if digestmod is None:
import md5
digestmod = md5
if key == None: #TREVNEW - for faster copying
return #TREVNEW
self.digestmod = digestmod
self.outer = digestmod.new()
self.inner = digestmod.new()
self.digest_size = digestmod.digest_size
ipad = "\x36" * 40
opad = "\x5C" * 40
self.inner.update(key)
self.inner.update(ipad)
self.outer.update(key)
self.outer.update(opad)
if msg is not None:
self.update(msg)
def update(self, msg):
"""Update this hashing object with the string msg.
"""
self.inner.update(msg)
def copy(self):
"""Return a separate copy of this hashing object.
An update to this copy won't affect the original object.
"""
other = MAC_SSL(None) #TREVNEW - for faster copying
other.digest_size = self.digest_size #TREVNEW
other.digestmod = self.digestmod
other.inner = self.inner.copy()
other.outer = self.outer.copy()
return other
def digest(self):
"""Return the hash value of this hashing object.
This returns a string containing 8-bit data. The object is
not altered in any way by this function; you can continue
updating the object after calling this function.
"""
h = self.outer.copy()
h.update(self.inner.digest())
return h.digest()
def hexdigest(self):
"""Like digest(), but returns a string of hexadecimal digits instead.
"""
return "".join([hex(ord(x))[2:].zfill(2)
for x in tuple(self.digest())])

View File

@@ -0,0 +1,561 @@
"""Classes representing TLS messages."""
from utils.compat import *
from utils.cryptomath import *
from errors import *
from utils.codec import *
from constants import *
from X509 import X509
from X509CertChain import X509CertChain
import sha
import md5
class RecordHeader3:
def __init__(self):
self.type = 0
self.version = (0,0)
self.length = 0
self.ssl2 = False
def create(self, version, type, length):
self.type = type
self.version = version
self.length = length
return self
def write(self):
w = Writer(5)
w.add(self.type, 1)
w.add(self.version[0], 1)
w.add(self.version[1], 1)
w.add(self.length, 2)
return w.bytes
def parse(self, p):
self.type = p.get(1)
self.version = (p.get(1), p.get(1))
self.length = p.get(2)
self.ssl2 = False
return self
class RecordHeader2:
def __init__(self):
self.type = 0
self.version = (0,0)
self.length = 0
self.ssl2 = True
def parse(self, p):
if p.get(1)!=128:
raise SyntaxError()
self.type = ContentType.handshake
self.version = (2,0)
#We don't support 2-byte-length-headers; could be a problem
self.length = p.get(1)
return self
class Msg:
def preWrite(self, trial):
if trial:
w = Writer()
else:
length = self.write(True)
w = Writer(length)
return w
def postWrite(self, w, trial):
if trial:
return w.index
else:
return w.bytes
class Alert(Msg):
def __init__(self):
self.contentType = ContentType.alert
self.level = 0
self.description = 0
def create(self, description, level=AlertLevel.fatal):
self.level = level
self.description = description
return self
def parse(self, p):
p.setLengthCheck(2)
self.level = p.get(1)
self.description = p.get(1)
p.stopLengthCheck()
return self
def write(self):
w = Writer(2)
w.add(self.level, 1)
w.add(self.description, 1)
return w.bytes
class HandshakeMsg(Msg):
def preWrite(self, handshakeType, trial):
if trial:
w = Writer()
w.add(handshakeType, 1)
w.add(0, 3)
else:
length = self.write(True)
w = Writer(length)
w.add(handshakeType, 1)
w.add(length-4, 3)
return w
class ClientHello(HandshakeMsg):
def __init__(self, ssl2=False):
self.contentType = ContentType.handshake
self.ssl2 = ssl2
self.client_version = (0,0)
self.random = createByteArrayZeros(32)
self.session_id = createByteArraySequence([])
self.cipher_suites = [] # a list of 16-bit values
self.certificate_types = [CertificateType.x509]
self.compression_methods = [] # a list of 8-bit values
self.srp_username = None # a string
def create(self, version, random, session_id, cipher_suites,
certificate_types=None, srp_username=None):
self.client_version = version
self.random = random
self.session_id = session_id
self.cipher_suites = cipher_suites
self.certificate_types = certificate_types
self.compression_methods = [0]
self.srp_username = srp_username
return self
def parse(self, p):
if self.ssl2:
self.client_version = (p.get(1), p.get(1))
cipherSpecsLength = p.get(2)
sessionIDLength = p.get(2)
randomLength = p.get(2)
self.cipher_suites = p.getFixList(3, int(cipherSpecsLength/3))
self.session_id = p.getFixBytes(sessionIDLength)
self.random = p.getFixBytes(randomLength)
if len(self.random) < 32:
zeroBytes = 32-len(self.random)
self.random = createByteArrayZeros(zeroBytes) + self.random
self.compression_methods = [0]#Fake this value
#We're not doing a stopLengthCheck() for SSLv2, oh well..
else:
p.startLengthCheck(3)
self.client_version = (p.get(1), p.get(1))
self.random = p.getFixBytes(32)
self.session_id = p.getVarBytes(1)
self.cipher_suites = p.getVarList(2, 2)
self.compression_methods = p.getVarList(1, 1)
if not p.atLengthCheck():
totalExtLength = p.get(2)
soFar = 0
while soFar != totalExtLength:
extType = p.get(2)
extLength = p.get(2)
if extType == 6:
self.srp_username = bytesToString(p.getVarBytes(1))
elif extType == 7:
self.certificate_types = p.getVarList(1, 1)
else:
p.getFixBytes(extLength)
soFar += 4 + extLength
p.stopLengthCheck()
return self
def write(self, trial=False):
w = HandshakeMsg.preWrite(self, HandshakeType.client_hello, trial)
w.add(self.client_version[0], 1)
w.add(self.client_version[1], 1)
w.addFixSeq(self.random, 1)
w.addVarSeq(self.session_id, 1, 1)
w.addVarSeq(self.cipher_suites, 2, 2)
w.addVarSeq(self.compression_methods, 1, 1)
extLength = 0
if self.certificate_types and self.certificate_types != \
[CertificateType.x509]:
extLength += 5 + len(self.certificate_types)
if self.srp_username:
extLength += 5 + len(self.srp_username)
if extLength > 0:
w.add(extLength, 2)
if self.certificate_types and self.certificate_types != \
[CertificateType.x509]:
w.add(7, 2)
w.add(len(self.certificate_types)+1, 2)
w.addVarSeq(self.certificate_types, 1, 1)
if self.srp_username:
w.add(6, 2)
w.add(len(self.srp_username)+1, 2)
w.addVarSeq(stringToBytes(self.srp_username), 1, 1)
return HandshakeMsg.postWrite(self, w, trial)
class ServerHello(HandshakeMsg):
def __init__(self):
self.contentType = ContentType.handshake
self.server_version = (0,0)
self.random = createByteArrayZeros(32)
self.session_id = createByteArraySequence([])
self.cipher_suite = 0
self.certificate_type = CertificateType.x509
self.compression_method = 0
def create(self, version, random, session_id, cipher_suite,
certificate_type):
self.server_version = version
self.random = random
self.session_id = session_id
self.cipher_suite = cipher_suite
self.certificate_type = certificate_type
self.compression_method = 0
return self
def parse(self, p):
p.startLengthCheck(3)
self.server_version = (p.get(1), p.get(1))
self.random = p.getFixBytes(32)
self.session_id = p.getVarBytes(1)
self.cipher_suite = p.get(2)
self.compression_method = p.get(1)
if not p.atLengthCheck():
totalExtLength = p.get(2)
soFar = 0
while soFar != totalExtLength:
extType = p.get(2)
extLength = p.get(2)
if extType == 7:
self.certificate_type = p.get(1)
else:
p.getFixBytes(extLength)
soFar += 4 + extLength
p.stopLengthCheck()
return self
def write(self, trial=False):
w = HandshakeMsg.preWrite(self, HandshakeType.server_hello, trial)
w.add(self.server_version[0], 1)
w.add(self.server_version[1], 1)
w.addFixSeq(self.random, 1)
w.addVarSeq(self.session_id, 1, 1)
w.add(self.cipher_suite, 2)
w.add(self.compression_method, 1)
extLength = 0
if self.certificate_type and self.certificate_type != \
CertificateType.x509:
extLength += 5
if extLength != 0:
w.add(extLength, 2)
if self.certificate_type and self.certificate_type != \
CertificateType.x509:
w.add(7, 2)
w.add(1, 2)
w.add(self.certificate_type, 1)
return HandshakeMsg.postWrite(self, w, trial)
class Certificate(HandshakeMsg):
def __init__(self, certificateType):
self.certificateType = certificateType
self.contentType = ContentType.handshake
self.certChain = None
def create(self, certChain):
self.certChain = certChain
return self
def parse(self, p):
p.startLengthCheck(3)
if self.certificateType == CertificateType.x509:
chainLength = p.get(3)
index = 0
certificate_list = []
while index != chainLength:
certBytes = p.getVarBytes(3)
x509 = X509()
x509.parseBinary(certBytes)
certificate_list.append(x509)
index += len(certBytes)+3
if certificate_list:
self.certChain = X509CertChain(certificate_list)
elif self.certificateType == CertificateType.cryptoID:
s = bytesToString(p.getVarBytes(2))
if s:
try:
import cryptoIDlib.CertChain
except ImportError:
raise SyntaxError(\
"cryptoID cert chain received, cryptoIDlib not present")
self.certChain = cryptoIDlib.CertChain.CertChain().parse(s)
else:
raise AssertionError()
p.stopLengthCheck()
return self
def write(self, trial=False):
w = HandshakeMsg.preWrite(self, HandshakeType.certificate, trial)
if self.certificateType == CertificateType.x509:
chainLength = 0
if self.certChain:
certificate_list = self.certChain.x509List
else:
certificate_list = []
#determine length
for cert in certificate_list:
bytes = cert.writeBytes()
chainLength += len(bytes)+3
#add bytes
w.add(chainLength, 3)
for cert in certificate_list:
bytes = cert.writeBytes()
w.addVarSeq(bytes, 1, 3)
elif self.certificateType == CertificateType.cryptoID:
if self.certChain:
bytes = stringToBytes(self.certChain.write())
else:
bytes = createByteArraySequence([])
w.addVarSeq(bytes, 1, 2)
else:
raise AssertionError()
return HandshakeMsg.postWrite(self, w, trial)
class CertificateRequest(HandshakeMsg):
def __init__(self):
self.contentType = ContentType.handshake
self.certificate_types = []
#treat as opaque bytes for now
self.certificate_authorities = createByteArraySequence([])
def create(self, certificate_types, certificate_authorities):
self.certificate_types = certificate_types
self.certificate_authorities = certificate_authorities
return self
def parse(self, p):
p.startLengthCheck(3)
self.certificate_types = p.getVarList(1, 1)
self.certificate_authorities = p.getVarBytes(2)
p.stopLengthCheck()
return self
def write(self, trial=False):
w = HandshakeMsg.preWrite(self, HandshakeType.certificate_request,
trial)
w.addVarSeq(self.certificate_types, 1, 1)
w.addVarSeq(self.certificate_authorities, 1, 2)
return HandshakeMsg.postWrite(self, w, trial)
class ServerKeyExchange(HandshakeMsg):
def __init__(self, cipherSuite):
self.cipherSuite = cipherSuite
self.contentType = ContentType.handshake
self.srp_N = 0L
self.srp_g = 0L
self.srp_s = createByteArraySequence([])
self.srp_B = 0L
self.signature = createByteArraySequence([])
def createSRP(self, srp_N, srp_g, srp_s, srp_B):
self.srp_N = srp_N
self.srp_g = srp_g
self.srp_s = srp_s
self.srp_B = srp_B
return self
def parse(self, p):
p.startLengthCheck(3)
self.srp_N = bytesToNumber(p.getVarBytes(2))
self.srp_g = bytesToNumber(p.getVarBytes(2))
self.srp_s = p.getVarBytes(1)
self.srp_B = bytesToNumber(p.getVarBytes(2))
if self.cipherSuite in CipherSuite.srpRsaSuites:
self.signature = p.getVarBytes(2)
p.stopLengthCheck()
return self
def write(self, trial=False):
w = HandshakeMsg.preWrite(self, HandshakeType.server_key_exchange,
trial)
w.addVarSeq(numberToBytes(self.srp_N), 1, 2)
w.addVarSeq(numberToBytes(self.srp_g), 1, 2)
w.addVarSeq(self.srp_s, 1, 1)
w.addVarSeq(numberToBytes(self.srp_B), 1, 2)
if self.cipherSuite in CipherSuite.srpRsaSuites:
w.addVarSeq(self.signature, 1, 2)
return HandshakeMsg.postWrite(self, w, trial)
def hash(self, clientRandom, serverRandom):
oldCipherSuite = self.cipherSuite
self.cipherSuite = None
try:
bytes = clientRandom + serverRandom + self.write()[4:]
s = bytesToString(bytes)
return stringToBytes(md5.md5(s).digest() + sha.sha(s).digest())
finally:
self.cipherSuite = oldCipherSuite
class ServerHelloDone(HandshakeMsg):
def __init__(self):
self.contentType = ContentType.handshake
def create(self):
return self
def parse(self, p):
p.startLengthCheck(3)
p.stopLengthCheck()
return self
def write(self, trial=False):
w = HandshakeMsg.preWrite(self, HandshakeType.server_hello_done, trial)
return HandshakeMsg.postWrite(self, w, trial)
class ClientKeyExchange(HandshakeMsg):
def __init__(self, cipherSuite, version=None):
self.cipherSuite = cipherSuite
self.version = version
self.contentType = ContentType.handshake
self.srp_A = 0
self.encryptedPreMasterSecret = createByteArraySequence([])
def createSRP(self, srp_A):
self.srp_A = srp_A
return self
def createRSA(self, encryptedPreMasterSecret):
self.encryptedPreMasterSecret = encryptedPreMasterSecret
return self
def parse(self, p):
p.startLengthCheck(3)
if self.cipherSuite in CipherSuite.srpSuites + \
CipherSuite.srpRsaSuites:
self.srp_A = bytesToNumber(p.getVarBytes(2))
elif self.cipherSuite in CipherSuite.rsaSuites:
if self.version in ((3,1), (3,2)):
self.encryptedPreMasterSecret = p.getVarBytes(2)
elif self.version == (3,0):
self.encryptedPreMasterSecret = \
p.getFixBytes(len(p.bytes)-p.index)
else:
raise AssertionError()
else:
raise AssertionError()
p.stopLengthCheck()
return self
def write(self, trial=False):
w = HandshakeMsg.preWrite(self, HandshakeType.client_key_exchange,
trial)
if self.cipherSuite in CipherSuite.srpSuites + \
CipherSuite.srpRsaSuites:
w.addVarSeq(numberToBytes(self.srp_A), 1, 2)
elif self.cipherSuite in CipherSuite.rsaSuites:
if self.version in ((3,1), (3,2)):
w.addVarSeq(self.encryptedPreMasterSecret, 1, 2)
elif self.version == (3,0):
w.addFixSeq(self.encryptedPreMasterSecret, 1)
else:
raise AssertionError()
else:
raise AssertionError()
return HandshakeMsg.postWrite(self, w, trial)
class CertificateVerify(HandshakeMsg):
def __init__(self):
self.contentType = ContentType.handshake
self.signature = createByteArraySequence([])
def create(self, signature):
self.signature = signature
return self
def parse(self, p):
p.startLengthCheck(3)
self.signature = p.getVarBytes(2)
p.stopLengthCheck()
return self
def write(self, trial=False):
w = HandshakeMsg.preWrite(self, HandshakeType.certificate_verify,
trial)
w.addVarSeq(self.signature, 1, 2)
return HandshakeMsg.postWrite(self, w, trial)
class ChangeCipherSpec(Msg):
def __init__(self):
self.contentType = ContentType.change_cipher_spec
self.type = 1
def create(self):
self.type = 1
return self
def parse(self, p):
p.setLengthCheck(1)
self.type = p.get(1)
p.stopLengthCheck()
return self
def write(self, trial=False):
w = Msg.preWrite(self, trial)
w.add(self.type,1)
return Msg.postWrite(self, w, trial)
class Finished(HandshakeMsg):
def __init__(self, version):
self.contentType = ContentType.handshake
self.version = version
self.verify_data = createByteArraySequence([])
def create(self, verify_data):
self.verify_data = verify_data
return self
def parse(self, p):
p.startLengthCheck(3)
if self.version == (3,0):
self.verify_data = p.getFixBytes(36)
elif self.version in ((3,1), (3,2)):
self.verify_data = p.getFixBytes(12)
else:
raise AssertionError()
p.stopLengthCheck()
return self
def write(self, trial=False):
w = HandshakeMsg.preWrite(self, HandshakeType.finished, trial)
w.addFixSeq(self.verify_data, 1)
return HandshakeMsg.postWrite(self, w, trial)
class ApplicationData(Msg):
def __init__(self):
self.contentType = ContentType.application_data
self.bytes = createByteArraySequence([])
def create(self, bytes):
self.bytes = bytes
return self
def parse(self, p):
self.bytes = p.bytes
return self
def write(self):
return self.bytes

View File

@@ -0,0 +1,31 @@
"""Abstract class for AES."""
class AES:
def __init__(self, key, mode, IV, implementation):
if len(key) not in (16, 24, 32):
raise AssertionError()
if mode != 2:
raise AssertionError()
if len(IV) != 16:
raise AssertionError()
self.isBlockCipher = True
self.block_size = 16
self.implementation = implementation
if len(key)==16:
self.name = "aes128"
elif len(key)==24:
self.name = "aes192"
elif len(key)==32:
self.name = "aes256"
else:
raise AssertionError()
#CBC-Mode encryption, returns ciphertext
#WARNING: *MAY* modify the input as well
def encrypt(self, plaintext):
assert(len(plaintext) % 16 == 0)
#CBC-Mode decryption, returns plaintext
#WARNING: *MAY* modify the input as well
def decrypt(self, ciphertext):
assert(len(ciphertext) % 16 == 0)

View File

@@ -0,0 +1,34 @@
"""Class for parsing ASN.1"""
from compat import *
from codec import *
#Takes a byte array which has a DER TLV field at its head
class ASN1Parser:
def __init__(self, bytes):
p = Parser(bytes)
p.get(1) #skip Type
#Get Length
self.length = self._getASN1Length(p)
#Get Value
self.value = p.getFixBytes(self.length)
#Assuming this is a sequence...
def getChild(self, which):
p = Parser(self.value)
for x in range(which+1):
markIndex = p.index
p.get(1) #skip Type
length = self._getASN1Length(p)
p.getFixBytes(length)
return ASN1Parser(p.bytes[markIndex : p.index])
#Decode the ASN.1 DER length field
def _getASN1Length(self, p):
firstLength = p.get(1)
if firstLength<=127:
return firstLength
else:
lengthLength = firstLength & 0x7F
return p.get(lengthLength)

View File

@@ -0,0 +1,34 @@
"""Cryptlib AES implementation."""
from cryptomath import *
from AES import *
if cryptlibpyLoaded:
def new(key, mode, IV):
return Cryptlib_AES(key, mode, IV)
class Cryptlib_AES(AES):
def __init__(self, key, mode, IV):
AES.__init__(self, key, mode, IV, "cryptlib")
self.context = cryptlib_py.cryptCreateContext(cryptlib_py.CRYPT_UNUSED, cryptlib_py.CRYPT_ALGO_AES)
cryptlib_py.cryptSetAttribute(self.context, cryptlib_py.CRYPT_CTXINFO_MODE, cryptlib_py.CRYPT_MODE_CBC)
cryptlib_py.cryptSetAttribute(self.context, cryptlib_py.CRYPT_CTXINFO_KEYSIZE, len(key))
cryptlib_py.cryptSetAttributeString(self.context, cryptlib_py.CRYPT_CTXINFO_KEY, key)
cryptlib_py.cryptSetAttributeString(self.context, cryptlib_py.CRYPT_CTXINFO_IV, IV)
def __del__(self):
cryptlib_py.cryptDestroyContext(self.context)
def encrypt(self, plaintext):
AES.encrypt(self, plaintext)
bytes = stringToBytes(plaintext)
cryptlib_py.cryptEncrypt(self.context, bytes)
return bytesToString(bytes)
def decrypt(self, ciphertext):
AES.decrypt(self, ciphertext)
bytes = stringToBytes(ciphertext)
cryptlib_py.cryptDecrypt(self.context, bytes)
return bytesToString(bytes)

View File

@@ -0,0 +1,28 @@
"""Cryptlib RC4 implementation."""
from cryptomath import *
from RC4 import RC4
if cryptlibpyLoaded:
def new(key):
return Cryptlib_RC4(key)
class Cryptlib_RC4(RC4):
def __init__(self, key):
RC4.__init__(self, key, "cryptlib")
self.context = cryptlib_py.cryptCreateContext(cryptlib_py.CRYPT_UNUSED, cryptlib_py.CRYPT_ALGO_RC4)
cryptlib_py.cryptSetAttribute(self.context, cryptlib_py.CRYPT_CTXINFO_KEYSIZE, len(key))
cryptlib_py.cryptSetAttributeString(self.context, cryptlib_py.CRYPT_CTXINFO_KEY, key)
def __del__(self):
cryptlib_py.cryptDestroyContext(self.context)
def encrypt(self, plaintext):
bytes = stringToBytes(plaintext)
cryptlib_py.cryptEncrypt(self.context, bytes)
return bytesToString(bytes)
def decrypt(self, ciphertext):
return self.encrypt(ciphertext)

View File

@@ -0,0 +1,35 @@
"""Cryptlib 3DES implementation."""
from cryptomath import *
from TripleDES import *
if cryptlibpyLoaded:
def new(key, mode, IV):
return Cryptlib_TripleDES(key, mode, IV)
class Cryptlib_TripleDES(TripleDES):
def __init__(self, key, mode, IV):
TripleDES.__init__(self, key, mode, IV, "cryptlib")
self.context = cryptlib_py.cryptCreateContext(cryptlib_py.CRYPT_UNUSED, cryptlib_py.CRYPT_ALGO_3DES)
cryptlib_py.cryptSetAttribute(self.context, cryptlib_py.CRYPT_CTXINFO_MODE, cryptlib_py.CRYPT_MODE_CBC)
cryptlib_py.cryptSetAttribute(self.context, cryptlib_py.CRYPT_CTXINFO_KEYSIZE, len(key))
cryptlib_py.cryptSetAttributeString(self.context, cryptlib_py.CRYPT_CTXINFO_KEY, key)
cryptlib_py.cryptSetAttributeString(self.context, cryptlib_py.CRYPT_CTXINFO_IV, IV)
def __del__(self):
cryptlib_py.cryptDestroyContext(self.context)
def encrypt(self, plaintext):
TripleDES.encrypt(self, plaintext)
bytes = stringToBytes(plaintext)
cryptlib_py.cryptEncrypt(self.context, bytes)
return bytesToString(bytes)
def decrypt(self, ciphertext):
TripleDES.decrypt(self, ciphertext)
bytes = stringToBytes(ciphertext)
cryptlib_py.cryptDecrypt(self.context, bytes)
return bytesToString(bytes)

View File

@@ -0,0 +1,49 @@
"""OpenSSL/M2Crypto AES implementation."""
from cryptomath import *
from AES import *
if m2cryptoLoaded:
def new(key, mode, IV):
return OpenSSL_AES(key, mode, IV)
class OpenSSL_AES(AES):
def __init__(self, key, mode, IV):
AES.__init__(self, key, mode, IV, "openssl")
self.key = key
self.IV = IV
def _createContext(self, encrypt):
context = m2.cipher_ctx_new()
if len(self.key)==16:
cipherType = m2.aes_128_cbc()
if len(self.key)==24:
cipherType = m2.aes_192_cbc()
if len(self.key)==32:
cipherType = m2.aes_256_cbc()
m2.cipher_init(context, cipherType, self.key, self.IV, encrypt)
return context
def encrypt(self, plaintext):
AES.encrypt(self, plaintext)
context = self._createContext(1)
ciphertext = m2.cipher_update(context, plaintext)
m2.cipher_ctx_free(context)
self.IV = ciphertext[-self.block_size:]
return ciphertext
def decrypt(self, ciphertext):
AES.decrypt(self, ciphertext)
context = self._createContext(0)
#I think M2Crypto has a bug - it fails to decrypt and return the last block passed in.
#To work around this, we append sixteen zeros to the string, below:
plaintext = m2.cipher_update(context, ciphertext+('\0'*16))
#If this bug is ever fixed, then plaintext will end up having a garbage
#plaintext block on the end. That's okay - the below code will discard it.
plaintext = plaintext[:len(ciphertext)]
m2.cipher_ctx_free(context)
self.IV = ciphertext[-self.block_size:]
return plaintext

View File

@@ -0,0 +1,25 @@
"""OpenSSL/M2Crypto RC4 implementation."""
from cryptomath import *
from RC4 import RC4
if m2cryptoLoaded:
def new(key):
return OpenSSL_RC4(key)
class OpenSSL_RC4(RC4):
def __init__(self, key):
RC4.__init__(self, key, "openssl")
self.rc4 = m2.rc4_new()
m2.rc4_set_key(self.rc4, key)
def __del__(self):
m2.rc4_free(self.rc4)
def encrypt(self, plaintext):
return m2.rc4_update(self.rc4, plaintext)
def decrypt(self, ciphertext):
return self.encrypt(ciphertext)

View File

@@ -0,0 +1,148 @@
"""OpenSSL/M2Crypto RSA implementation."""
from cryptomath import *
from RSAKey import *
from Python_RSAKey import Python_RSAKey
#copied from M2Crypto.util.py, so when we load the local copy of m2
#we can still use it
def password_callback(v, prompt1='Enter private key passphrase:',
prompt2='Verify passphrase:'):
from getpass import getpass
while 1:
try:
p1=getpass(prompt1)
if v:
p2=getpass(prompt2)
if p1==p2:
break
else:
break
except KeyboardInterrupt:
return None
return p1
if m2cryptoLoaded:
class OpenSSL_RSAKey(RSAKey):
def __init__(self, n=0, e=0):
self.rsa = None
self._hasPrivateKey = False
if (n and not e) or (e and not n):
raise AssertionError()
if n and e:
self.rsa = m2.rsa_new()
m2.rsa_set_n(self.rsa, numberToMPI(n))
m2.rsa_set_e(self.rsa, numberToMPI(e))
def __del__(self):
if self.rsa:
m2.rsa_free(self.rsa)
def __getattr__(self, name):
if name == 'e':
if not self.rsa:
return 0
return mpiToNumber(m2.rsa_get_e(self.rsa))
elif name == 'n':
if not self.rsa:
return 0
return mpiToNumber(m2.rsa_get_n(self.rsa))
else:
raise AttributeError
def hasPrivateKey(self):
return self._hasPrivateKey
def hash(self):
return Python_RSAKey(self.n, self.e).hash()
def _rawPrivateKeyOp(self, m):
s = numberToString(m)
byteLength = numBytes(self.n)
if len(s)== byteLength:
pass
elif len(s) == byteLength-1:
s = '\0' + s
else:
raise AssertionError()
c = stringToNumber(m2.rsa_private_encrypt(self.rsa, s,
m2.no_padding))
return c
def _rawPublicKeyOp(self, c):
s = numberToString(c)
byteLength = numBytes(self.n)
if len(s)== byteLength:
pass
elif len(s) == byteLength-1:
s = '\0' + s
else:
raise AssertionError()
m = stringToNumber(m2.rsa_public_decrypt(self.rsa, s,
m2.no_padding))
return m
def acceptsPassword(self): return True
def write(self, password=None):
bio = m2.bio_new(m2.bio_s_mem())
if self._hasPrivateKey:
if password:
def f(v): return password
m2.rsa_write_key(self.rsa, bio, m2.des_ede_cbc(), f)
else:
def f(): pass
m2.rsa_write_key_no_cipher(self.rsa, bio, f)
else:
if password:
raise AssertionError()
m2.rsa_write_pub_key(self.rsa, bio)
s = m2.bio_read(bio, m2.bio_ctrl_pending(bio))
m2.bio_free(bio)
return s
def writeXMLPublicKey(self, indent=''):
return Python_RSAKey(self.n, self.e).write(indent)
def generate(bits):
key = OpenSSL_RSAKey()
def f():pass
key.rsa = m2.rsa_generate_key(bits, 3, f)
key._hasPrivateKey = True
return key
generate = staticmethod(generate)
def parse(s, passwordCallback=None):
if s.startswith("-----BEGIN "):
if passwordCallback==None:
callback = password_callback
else:
def f(v, prompt1=None, prompt2=None):
return passwordCallback()
callback = f
bio = m2.bio_new(m2.bio_s_mem())
try:
m2.bio_write(bio, s)
key = OpenSSL_RSAKey()
if s.startswith("-----BEGIN RSA PRIVATE KEY-----"):
def f():pass
key.rsa = m2.rsa_read_key(bio, callback)
if key.rsa == None:
raise SyntaxError()
key._hasPrivateKey = True
elif s.startswith("-----BEGIN PUBLIC KEY-----"):
key.rsa = m2.rsa_read_pub_key(bio)
if key.rsa == None:
raise SyntaxError()
key._hasPrivateKey = False
else:
raise SyntaxError()
return key
finally:
m2.bio_free(bio)
else:
raise SyntaxError()
parse = staticmethod(parse)

View File

@@ -0,0 +1,44 @@
"""OpenSSL/M2Crypto 3DES implementation."""
from cryptomath import *
from TripleDES import *
if m2cryptoLoaded:
def new(key, mode, IV):
return OpenSSL_TripleDES(key, mode, IV)
class OpenSSL_TripleDES(TripleDES):
def __init__(self, key, mode, IV):
TripleDES.__init__(self, key, mode, IV, "openssl")
self.key = key
self.IV = IV
def _createContext(self, encrypt):
context = m2.cipher_ctx_new()
cipherType = m2.des_ede3_cbc()
m2.cipher_init(context, cipherType, self.key, self.IV, encrypt)
return context
def encrypt(self, plaintext):
TripleDES.encrypt(self, plaintext)
context = self._createContext(1)
ciphertext = m2.cipher_update(context, plaintext)
m2.cipher_ctx_free(context)
self.IV = ciphertext[-self.block_size:]
return ciphertext
def decrypt(self, ciphertext):
TripleDES.decrypt(self, ciphertext)
context = self._createContext(0)
#I think M2Crypto has a bug - it fails to decrypt and return the last block passed in.
#To work around this, we append sixteen zeros to the string, below:
plaintext = m2.cipher_update(context, ciphertext+('\0'*16))
#If this bug is ever fixed, then plaintext will end up having a garbage
#plaintext block on the end. That's okay - the below code will ignore it.
plaintext = plaintext[:len(ciphertext)]
m2.cipher_ctx_free(context)
self.IV = ciphertext[-self.block_size:]
return plaintext

View File

@@ -0,0 +1,22 @@
"""PyCrypto AES implementation."""
from cryptomath import *
from AES import *
if pycryptoLoaded:
import Crypto.Cipher.AES
def new(key, mode, IV):
return PyCrypto_AES(key, mode, IV)
class PyCrypto_AES(AES):
def __init__(self, key, mode, IV):
AES.__init__(self, key, mode, IV, "pycrypto")
self.context = Crypto.Cipher.AES.new(key, mode, IV)
def encrypt(self, plaintext):
return self.context.encrypt(plaintext)
def decrypt(self, ciphertext):
return self.context.decrypt(ciphertext)

View File

@@ -0,0 +1,22 @@
"""PyCrypto RC4 implementation."""
from cryptomath import *
from RC4 import *
if pycryptoLoaded:
import Crypto.Cipher.ARC4
def new(key):
return PyCrypto_RC4(key)
class PyCrypto_RC4(RC4):
def __init__(self, key):
RC4.__init__(self, key, "pycrypto")
self.context = Crypto.Cipher.ARC4.new(key)
def encrypt(self, plaintext):
return self.context.encrypt(plaintext)
def decrypt(self, ciphertext):
return self.context.decrypt(ciphertext)

View File

@@ -0,0 +1,61 @@
"""PyCrypto RSA implementation."""
from cryptomath import *
from RSAKey import *
from Python_RSAKey import Python_RSAKey
if pycryptoLoaded:
from Crypto.PublicKey import RSA
class PyCrypto_RSAKey(RSAKey):
def __init__(self, n=0, e=0, d=0, p=0, q=0, dP=0, dQ=0, qInv=0):
if not d:
self.rsa = RSA.construct( (n, e) )
else:
self.rsa = RSA.construct( (n, e, d, p, q) )
def __getattr__(self, name):
return getattr(self.rsa, name)
def hasPrivateKey(self):
return self.rsa.has_private()
def hash(self):
return Python_RSAKey(self.n, self.e).hash()
def _rawPrivateKeyOp(self, m):
s = numberToString(m)
byteLength = numBytes(self.n)
if len(s)== byteLength:
pass
elif len(s) == byteLength-1:
s = '\0' + s
else:
raise AssertionError()
c = stringToNumber(self.rsa.decrypt((s,)))
return c
def _rawPublicKeyOp(self, c):
s = numberToString(c)
byteLength = numBytes(self.n)
if len(s)== byteLength:
pass
elif len(s) == byteLength-1:
s = '\0' + s
else:
raise AssertionError()
m = stringToNumber(self.rsa.encrypt(s, None)[0])
return m
def writeXMLPublicKey(self, indent=''):
return Python_RSAKey(self.n, self.e).write(indent)
def generate(bits):
key = PyCrypto_RSAKey()
def f(numBytes):
return bytesToString(getRandomBytes(numBytes))
key.rsa = RSA.generate(bits, f)
return key
generate = staticmethod(generate)

View File

@@ -0,0 +1,22 @@
"""PyCrypto 3DES implementation."""
from cryptomath import *
from TripleDES import *
if pycryptoLoaded:
import Crypto.Cipher.DES3
def new(key, mode, IV):
return PyCrypto_TripleDES(key, mode, IV)
class PyCrypto_TripleDES(TripleDES):
def __init__(self, key, mode, IV):
TripleDES.__init__(self, key, mode, IV, "pycrypto")
self.context = Crypto.Cipher.DES3.new(key, mode, IV)
def encrypt(self, plaintext):
return self.context.encrypt(plaintext)
def decrypt(self, ciphertext):
return self.context.decrypt(ciphertext)

View File

@@ -0,0 +1,68 @@
"""Pure-Python AES implementation."""
from cryptomath import *
from AES import *
from rijndael import rijndael
def new(key, mode, IV):
return Python_AES(key, mode, IV)
class Python_AES(AES):
def __init__(self, key, mode, IV):
AES.__init__(self, key, mode, IV, "python")
self.rijndael = rijndael(key, 16)
self.IV = IV
def encrypt(self, plaintext):
AES.encrypt(self, plaintext)
plaintextBytes = stringToBytes(plaintext)
chainBytes = stringToBytes(self.IV)
#CBC Mode: For each block...
for x in range(len(plaintextBytes)/16):
#XOR with the chaining block
blockBytes = plaintextBytes[x*16 : (x*16)+16]
for y in range(16):
blockBytes[y] ^= chainBytes[y]
blockString = bytesToString(blockBytes)
#Encrypt it
encryptedBytes = stringToBytes(self.rijndael.encrypt(blockString))
#Overwrite the input with the output
for y in range(16):
plaintextBytes[(x*16)+y] = encryptedBytes[y]
#Set the next chaining block
chainBytes = encryptedBytes
self.IV = bytesToString(chainBytes)
return bytesToString(plaintextBytes)
def decrypt(self, ciphertext):
AES.decrypt(self, ciphertext)
ciphertextBytes = stringToBytes(ciphertext)
chainBytes = stringToBytes(self.IV)
#CBC Mode: For each block...
for x in range(len(ciphertextBytes)/16):
#Decrypt it
blockBytes = ciphertextBytes[x*16 : (x*16)+16]
blockString = bytesToString(blockBytes)
decryptedBytes = stringToBytes(self.rijndael.decrypt(blockString))
#XOR with the chaining block and overwrite the input with output
for y in range(16):
decryptedBytes[y] ^= chainBytes[y]
ciphertextBytes[(x*16)+y] = decryptedBytes[y]
#Set the next chaining block
chainBytes = blockBytes
self.IV = bytesToString(chainBytes)
return bytesToString(ciphertextBytes)

View File

@@ -0,0 +1,39 @@
"""Pure-Python RC4 implementation."""
from RC4 import RC4
from cryptomath import *
def new(key):
return Python_RC4(key)
class Python_RC4(RC4):
def __init__(self, key):
RC4.__init__(self, key, "python")
keyBytes = stringToBytes(key)
S = [i for i in range(256)]
j = 0
for i in range(256):
j = (j + S[i] + keyBytes[i % len(keyBytes)]) % 256
S[i], S[j] = S[j], S[i]
self.S = S
self.i = 0
self.j = 0
def encrypt(self, plaintext):
plaintextBytes = stringToBytes(plaintext)
S = self.S
i = self.i
j = self.j
for x in range(len(plaintextBytes)):
i = (i + 1) % 256
j = (j + S[i]) % 256
S[i], S[j] = S[j], S[i]
t = (S[i] + S[j]) % 256
plaintextBytes[x] ^= S[t]
self.i = i
self.j = j
return bytesToString(plaintextBytes)
def decrypt(self, ciphertext):
return self.encrypt(ciphertext)

View File

@@ -0,0 +1,209 @@
"""Pure-Python RSA implementation."""
from cryptomath import *
import xmltools
from ASN1Parser import ASN1Parser
from RSAKey import *
class Python_RSAKey(RSAKey):
def __init__(self, n=0, e=0, d=0, p=0, q=0, dP=0, dQ=0, qInv=0):
if (n and not e) or (e and not n):
raise AssertionError()
self.n = n
self.e = e
self.d = d
self.p = p
self.q = q
self.dP = dP
self.dQ = dQ
self.qInv = qInv
self.blinder = 0
self.unblinder = 0
def hasPrivateKey(self):
return self.d != 0
def hash(self):
s = self.writeXMLPublicKey('\t\t')
return hashAndBase64(s.strip())
def _rawPrivateKeyOp(self, m):
#Create blinding values, on the first pass:
if not self.blinder:
self.unblinder = getRandomNumber(2, self.n)
self.blinder = powMod(invMod(self.unblinder, self.n), self.e,
self.n)
#Blind the input
m = (m * self.blinder) % self.n
#Perform the RSA operation
c = self._rawPrivateKeyOpHelper(m)
#Unblind the output
c = (c * self.unblinder) % self.n
#Update blinding values
self.blinder = (self.blinder * self.blinder) % self.n
self.unblinder = (self.unblinder * self.unblinder) % self.n
#Return the output
return c
def _rawPrivateKeyOpHelper(self, m):
#Non-CRT version
#c = powMod(m, self.d, self.n)
#CRT version (~3x faster)
s1 = powMod(m, self.dP, self.p)
s2 = powMod(m, self.dQ, self.q)
h = ((s1 - s2) * self.qInv) % self.p
c = s2 + self.q * h
return c
def _rawPublicKeyOp(self, c):
m = powMod(c, self.e, self.n)
return m
def acceptsPassword(self): return False
def write(self, indent=''):
if self.d:
s = indent+'<privateKey xmlns="http://trevp.net/rsa">\n'
else:
s = indent+'<publicKey xmlns="http://trevp.net/rsa">\n'
s += indent+'\t<n>%s</n>\n' % numberToBase64(self.n)
s += indent+'\t<e>%s</e>\n' % numberToBase64(self.e)
if self.d:
s += indent+'\t<d>%s</d>\n' % numberToBase64(self.d)
s += indent+'\t<p>%s</p>\n' % numberToBase64(self.p)
s += indent+'\t<q>%s</q>\n' % numberToBase64(self.q)
s += indent+'\t<dP>%s</dP>\n' % numberToBase64(self.dP)
s += indent+'\t<dQ>%s</dQ>\n' % numberToBase64(self.dQ)
s += indent+'\t<qInv>%s</qInv>\n' % numberToBase64(self.qInv)
s += indent+'</privateKey>'
else:
s += indent+'</publicKey>'
#Only add \n if part of a larger structure
if indent != '':
s += '\n'
return s
def writeXMLPublicKey(self, indent=''):
return Python_RSAKey(self.n, self.e).write(indent)
def generate(bits):
key = Python_RSAKey()
p = getRandomPrime(bits/2, False)
q = getRandomPrime(bits/2, False)
t = lcm(p-1, q-1)
key.n = p * q
key.e = 3L #Needed to be long, for Java
key.d = invMod(key.e, t)
key.p = p
key.q = q
key.dP = key.d % (p-1)
key.dQ = key.d % (q-1)
key.qInv = invMod(q, p)
return key
generate = staticmethod(generate)
def parsePEM(s, passwordCallback=None):
"""Parse a string containing a <privateKey> or <publicKey>, or
PEM-encoded key."""
start = s.find("-----BEGIN PRIVATE KEY-----")
if start != -1:
end = s.find("-----END PRIVATE KEY-----")
if end == -1:
raise SyntaxError("Missing PEM Postfix")
s = s[start+len("-----BEGIN PRIVATE KEY -----") : end]
bytes = base64ToBytes(s)
return Python_RSAKey._parsePKCS8(bytes)
else:
start = s.find("-----BEGIN RSA PRIVATE KEY-----")
if start != -1:
end = s.find("-----END RSA PRIVATE KEY-----")
if end == -1:
raise SyntaxError("Missing PEM Postfix")
s = s[start+len("-----BEGIN RSA PRIVATE KEY -----") : end]
bytes = base64ToBytes(s)
return Python_RSAKey._parseSSLeay(bytes)
raise SyntaxError("Missing PEM Prefix")
parsePEM = staticmethod(parsePEM)
def parseXML(s):
element = xmltools.parseAndStripWhitespace(s)
return Python_RSAKey._parseXML(element)
parseXML = staticmethod(parseXML)
def _parsePKCS8(bytes):
p = ASN1Parser(bytes)
version = p.getChild(0).value[0]
if version != 0:
raise SyntaxError("Unrecognized PKCS8 version")
rsaOID = p.getChild(1).value
if list(rsaOID) != [6, 9, 42, 134, 72, 134, 247, 13, 1, 1, 1, 5, 0]:
raise SyntaxError("Unrecognized AlgorithmIdentifier")
#Get the privateKey
privateKeyP = p.getChild(2)
#Adjust for OCTET STRING encapsulation
privateKeyP = ASN1Parser(privateKeyP.value)
return Python_RSAKey._parseASN1PrivateKey(privateKeyP)
_parsePKCS8 = staticmethod(_parsePKCS8)
def _parseSSLeay(bytes):
privateKeyP = ASN1Parser(bytes)
return Python_RSAKey._parseASN1PrivateKey(privateKeyP)
_parseSSLeay = staticmethod(_parseSSLeay)
def _parseASN1PrivateKey(privateKeyP):
version = privateKeyP.getChild(0).value[0]
if version != 0:
raise SyntaxError("Unrecognized RSAPrivateKey version")
n = bytesToNumber(privateKeyP.getChild(1).value)
e = bytesToNumber(privateKeyP.getChild(2).value)
d = bytesToNumber(privateKeyP.getChild(3).value)
p = bytesToNumber(privateKeyP.getChild(4).value)
q = bytesToNumber(privateKeyP.getChild(5).value)
dP = bytesToNumber(privateKeyP.getChild(6).value)
dQ = bytesToNumber(privateKeyP.getChild(7).value)
qInv = bytesToNumber(privateKeyP.getChild(8).value)
return Python_RSAKey(n, e, d, p, q, dP, dQ, qInv)
_parseASN1PrivateKey = staticmethod(_parseASN1PrivateKey)
def _parseXML(element):
try:
xmltools.checkName(element, "privateKey")
except SyntaxError:
xmltools.checkName(element, "publicKey")
#Parse attributes
xmltools.getReqAttribute(element, "xmlns", "http://trevp.net/rsa\Z")
xmltools.checkNoMoreAttributes(element)
#Parse public values (<n> and <e>)
n = base64ToNumber(xmltools.getText(xmltools.getChild(element, 0, "n"), xmltools.base64RegEx))
e = base64ToNumber(xmltools.getText(xmltools.getChild(element, 1, "e"), xmltools.base64RegEx))
d = 0
p = 0
q = 0
dP = 0
dQ = 0
qInv = 0
#Parse private values, if present
if element.childNodes.length>=3:
d = base64ToNumber(xmltools.getText(xmltools.getChild(element, 2, "d"), xmltools.base64RegEx))
p = base64ToNumber(xmltools.getText(xmltools.getChild(element, 3, "p"), xmltools.base64RegEx))
q = base64ToNumber(xmltools.getText(xmltools.getChild(element, 4, "q"), xmltools.base64RegEx))
dP = base64ToNumber(xmltools.getText(xmltools.getChild(element, 5, "dP"), xmltools.base64RegEx))
dQ = base64ToNumber(xmltools.getText(xmltools.getChild(element, 6, "dQ"), xmltools.base64RegEx))
qInv = base64ToNumber(xmltools.getText(xmltools.getLastChild(element, 7, "qInv"), xmltools.base64RegEx))
return Python_RSAKey(n, e, d, p, q, dP, dQ, qInv)
_parseXML = staticmethod(_parseXML)

View File

@@ -0,0 +1,17 @@
"""Abstract class for RC4."""
from compat import * #For False
class RC4:
def __init__(self, keyBytes, implementation):
if len(keyBytes) < 16 or len(keyBytes) > 256:
raise ValueError()
self.isBlockCipher = False
self.name = "rc4"
self.implementation = implementation
def encrypt(self, plaintext):
raise NotImplementedError()
def decrypt(self, ciphertext):
raise NotImplementedError()

View File

@@ -0,0 +1,264 @@
"""Abstract class for RSA."""
from cryptomath import *
class RSAKey:
"""This is an abstract base class for RSA keys.
Particular implementations of RSA keys, such as
L{OpenSSL_RSAKey.OpenSSL_RSAKey},
L{Python_RSAKey.Python_RSAKey}, and
L{PyCrypto_RSAKey.PyCrypto_RSAKey},
inherit from this.
To create or parse an RSA key, don't use one of these classes
directly. Instead, use the factory functions in
L{tlslite.utils.keyfactory}.
"""
def __init__(self, n=0, e=0):
"""Create a new RSA key.
If n and e are passed in, the new key will be initialized.
@type n: int
@param n: RSA modulus.
@type e: int
@param e: RSA public exponent.
"""
raise NotImplementedError()
def __len__(self):
"""Return the length of this key in bits.
@rtype: int
"""
return numBits(self.n)
def hasPrivateKey(self):
"""Return whether or not this key has a private component.
@rtype: bool
"""
raise NotImplementedError()
def hash(self):
"""Return the cryptoID <keyHash> value corresponding to this
key.
@rtype: str
"""
raise NotImplementedError()
def getSigningAlgorithm(self):
"""Return the cryptoID sigAlgo value corresponding to this key.
@rtype: str
"""
return "pkcs1-sha1"
def hashAndSign(self, bytes):
"""Hash and sign the passed-in bytes.
This requires the key to have a private component. It performs
a PKCS1-SHA1 signature on the passed-in data.
@type bytes: str or L{array.array} of unsigned bytes
@param bytes: The value which will be hashed and signed.
@rtype: L{array.array} of unsigned bytes.
@return: A PKCS1-SHA1 signature on the passed-in data.
"""
if not isinstance(bytes, type("")):
bytes = bytesToString(bytes)
hashBytes = stringToBytes(sha1(bytes).digest())
prefixedHashBytes = self._addPKCS1SHA1Prefix(hashBytes)
sigBytes = self.sign(prefixedHashBytes)
return sigBytes
def hashAndVerify(self, sigBytes, bytes):
"""Hash and verify the passed-in bytes with the signature.
This verifies a PKCS1-SHA1 signature on the passed-in data.
@type sigBytes: L{array.array} of unsigned bytes
@param sigBytes: A PKCS1-SHA1 signature.
@type bytes: str or L{array.array} of unsigned bytes
@param bytes: The value which will be hashed and verified.
@rtype: bool
@return: Whether the signature matches the passed-in data.
"""
if not isinstance(bytes, type("")):
bytes = bytesToString(bytes)
hashBytes = stringToBytes(sha1(bytes).digest())
prefixedHashBytes = self._addPKCS1SHA1Prefix(hashBytes)
return self.verify(sigBytes, prefixedHashBytes)
def sign(self, bytes):
"""Sign the passed-in bytes.
This requires the key to have a private component. It performs
a PKCS1 signature on the passed-in data.
@type bytes: L{array.array} of unsigned bytes
@param bytes: The value which will be signed.
@rtype: L{array.array} of unsigned bytes.
@return: A PKCS1 signature on the passed-in data.
"""
if not self.hasPrivateKey():
raise AssertionError()
paddedBytes = self._addPKCS1Padding(bytes, 1)
m = bytesToNumber(paddedBytes)
if m >= self.n:
raise ValueError()
c = self._rawPrivateKeyOp(m)
sigBytes = numberToBytes(c)
return sigBytes
def verify(self, sigBytes, bytes):
"""Verify the passed-in bytes with the signature.
This verifies a PKCS1 signature on the passed-in data.
@type sigBytes: L{array.array} of unsigned bytes
@param sigBytes: A PKCS1 signature.
@type bytes: L{array.array} of unsigned bytes
@param bytes: The value which will be verified.
@rtype: bool
@return: Whether the signature matches the passed-in data.
"""
paddedBytes = self._addPKCS1Padding(bytes, 1)
c = bytesToNumber(sigBytes)
if c >= self.n:
return False
m = self._rawPublicKeyOp(c)
checkBytes = numberToBytes(m)
return checkBytes == paddedBytes
def encrypt(self, bytes):
"""Encrypt the passed-in bytes.
This performs PKCS1 encryption of the passed-in data.
@type bytes: L{array.array} of unsigned bytes
@param bytes: The value which will be encrypted.
@rtype: L{array.array} of unsigned bytes.
@return: A PKCS1 encryption of the passed-in data.
"""
paddedBytes = self._addPKCS1Padding(bytes, 2)
m = bytesToNumber(paddedBytes)
if m >= self.n:
raise ValueError()
c = self._rawPublicKeyOp(m)
encBytes = numberToBytes(c)
return encBytes
def decrypt(self, encBytes):
"""Decrypt the passed-in bytes.
This requires the key to have a private component. It performs
PKCS1 decryption of the passed-in data.
@type encBytes: L{array.array} of unsigned bytes
@param encBytes: The value which will be decrypted.
@rtype: L{array.array} of unsigned bytes or None.
@return: A PKCS1 decryption of the passed-in data or None if
the data is not properly formatted.
"""
if not self.hasPrivateKey():
raise AssertionError()
c = bytesToNumber(encBytes)
if c >= self.n:
return None
m = self._rawPrivateKeyOp(c)
decBytes = numberToBytes(m)
if (len(decBytes) != numBytes(self.n)-1): #Check first byte
return None
if decBytes[0] != 2: #Check second byte
return None
for x in range(len(decBytes)-1): #Scan through for zero separator
if decBytes[x]== 0:
break
else:
return None
return decBytes[x+1:] #Return everything after the separator
def _rawPrivateKeyOp(self, m):
raise NotImplementedError()
def _rawPublicKeyOp(self, c):
raise NotImplementedError()
def acceptsPassword(self):
"""Return True if the write() method accepts a password for use
in encrypting the private key.
@rtype: bool
"""
raise NotImplementedError()
def write(self, password=None):
"""Return a string containing the key.
@rtype: str
@return: A string describing the key, in whichever format (PEM
or XML) is native to the implementation.
"""
raise NotImplementedError()
def writeXMLPublicKey(self, indent=''):
"""Return a string containing the key.
@rtype: str
@return: A string describing the public key, in XML format.
"""
return Python_RSAKey(self.n, self.e).write(indent)
def generate(bits):
"""Generate a new key with the specified bit length.
@rtype: L{tlslite.utils.RSAKey.RSAKey}
"""
raise NotImplementedError()
generate = staticmethod(generate)
# **************************************************************************
# Helper Functions for RSA Keys
# **************************************************************************
def _addPKCS1SHA1Prefix(self, bytes):
prefixBytes = createByteArraySequence(\
[48,33,48,9,6,5,43,14,3,2,26,5,0,4,20])
prefixedBytes = prefixBytes + bytes
return prefixedBytes
def _addPKCS1Padding(self, bytes, blockType):
padLength = (numBytes(self.n) - (len(bytes)+3))
if blockType == 1: #Signature padding
pad = [0xFF] * padLength
elif blockType == 2: #Encryption padding
pad = createByteArraySequence([])
while len(pad) < padLength:
padBytes = getRandomBytes(padLength * 2)
pad = [b for b in padBytes if b != 0]
pad = pad[:padLength]
else:
raise AssertionError()
#NOTE: To be proper, we should add [0,blockType]. However,
#the zero is lost when the returned padding is converted
#to a number, so we don't even bother with it. Also,
#adding it would cause a misalignment in verify()
padding = createByteArraySequence([blockType] + pad + [0])
paddedBytes = padding + bytes
return paddedBytes

View File

@@ -0,0 +1,26 @@
"""Abstract class for 3DES."""
from compat import * #For True
class TripleDES:
def __init__(self, key, mode, IV, implementation):
if len(key) != 24:
raise ValueError()
if mode != 2:
raise ValueError()
if len(IV) != 8:
raise ValueError()
self.isBlockCipher = True
self.block_size = 8
self.implementation = implementation
self.name = "3des"
#CBC-Mode encryption, returns ciphertext
#WARNING: *MAY* modify the input as well
def encrypt(self, plaintext):
assert(len(plaintext) % 8 == 0)
#CBC-Mode decryption, returns plaintext
#WARNING: *MAY* modify the input as well
def decrypt(self, ciphertext):
assert(len(ciphertext) % 8 == 0)

View File

@@ -0,0 +1,31 @@
"""Toolkit for crypto and other stuff."""
__all__ = ["AES",
"ASN1Parser",
"cipherfactory",
"codec",
"Cryptlib_AES",
"Cryptlib_RC4",
"Cryptlib_TripleDES",
"cryptomath: cryptomath module",
"dateFuncs",
"hmac",
"JCE_RSAKey",
"compat",
"keyfactory",
"OpenSSL_AES",
"OpenSSL_RC4",
"OpenSSL_RSAKey",
"OpenSSL_TripleDES",
"PyCrypto_AES",
"PyCrypto_RC4",
"PyCrypto_RSAKey",
"PyCrypto_TripleDES",
"Python_AES",
"Python_RC4",
"Python_RSAKey",
"RC4",
"rijndael",
"RSAKey",
"TripleDES",
"xmltools"]

View File

@@ -0,0 +1,111 @@
"""Factory functions for symmetric cryptography."""
import os
import Python_AES
import Python_RC4
import cryptomath
tripleDESPresent = False
if cryptomath.m2cryptoLoaded:
import OpenSSL_AES
import OpenSSL_RC4
import OpenSSL_TripleDES
tripleDESPresent = True
if cryptomath.cryptlibpyLoaded:
import Cryptlib_AES
import Cryptlib_RC4
import Cryptlib_TripleDES
tripleDESPresent = True
if cryptomath.pycryptoLoaded:
import PyCrypto_AES
import PyCrypto_RC4
import PyCrypto_TripleDES
tripleDESPresent = True
# **************************************************************************
# Factory Functions for AES
# **************************************************************************
def createAES(key, IV, implList=None):
"""Create a new AES object.
@type key: str
@param key: A 16, 24, or 32 byte string.
@type IV: str
@param IV: A 16 byte string
@rtype: L{tlslite.utils.AES}
@return: An AES object.
"""
if implList == None:
implList = ["cryptlib", "openssl", "pycrypto", "python"]
for impl in implList:
if impl == "cryptlib" and cryptomath.cryptlibpyLoaded:
return Cryptlib_AES.new(key, 2, IV)
elif impl == "openssl" and cryptomath.m2cryptoLoaded:
return OpenSSL_AES.new(key, 2, IV)
elif impl == "pycrypto" and cryptomath.pycryptoLoaded:
return PyCrypto_AES.new(key, 2, IV)
elif impl == "python":
return Python_AES.new(key, 2, IV)
raise NotImplementedError()
def createRC4(key, IV, implList=None):
"""Create a new RC4 object.
@type key: str
@param key: A 16 to 32 byte string.
@type IV: object
@param IV: Ignored, whatever it is.
@rtype: L{tlslite.utils.RC4}
@return: An RC4 object.
"""
if implList == None:
implList = ["cryptlib", "openssl", "pycrypto", "python"]
if len(IV) != 0:
raise AssertionError()
for impl in implList:
if impl == "cryptlib" and cryptomath.cryptlibpyLoaded:
return Cryptlib_RC4.new(key)
elif impl == "openssl" and cryptomath.m2cryptoLoaded:
return OpenSSL_RC4.new(key)
elif impl == "pycrypto" and cryptomath.pycryptoLoaded:
return PyCrypto_RC4.new(key)
elif impl == "python":
return Python_RC4.new(key)
raise NotImplementedError()
#Create a new TripleDES instance
def createTripleDES(key, IV, implList=None):
"""Create a new 3DES object.
@type key: str
@param key: A 24 byte string.
@type IV: str
@param IV: An 8 byte string
@rtype: L{tlslite.utils.TripleDES}
@return: A 3DES object.
"""
if implList == None:
implList = ["cryptlib", "openssl", "pycrypto"]
for impl in implList:
if impl == "cryptlib" and cryptomath.cryptlibpyLoaded:
return Cryptlib_TripleDES.new(key, 2, IV)
elif impl == "openssl" and cryptomath.m2cryptoLoaded:
return OpenSSL_TripleDES.new(key, 2, IV)
elif impl == "pycrypto" and cryptomath.pycryptoLoaded:
return PyCrypto_TripleDES.new(key, 2, IV)
raise NotImplementedError()

View File

@@ -0,0 +1,94 @@
"""Classes for reading/writing binary data (such as TLS records)."""
from compat import *
class Writer:
def __init__(self, length=0):
#If length is zero, then this is just a "trial run" to determine length
self.index = 0
self.bytes = createByteArrayZeros(length)
def add(self, x, length):
if self.bytes:
newIndex = self.index+length-1
while newIndex >= self.index:
self.bytes[newIndex] = x & 0xFF
x >>= 8
newIndex -= 1
self.index += length
def addFixSeq(self, seq, length):
if self.bytes:
for e in seq:
self.add(e, length)
else:
self.index += len(seq)*length
def addVarSeq(self, seq, length, lengthLength):
if self.bytes:
self.add(len(seq)*length, lengthLength)
for e in seq:
self.add(e, length)
else:
self.index += lengthLength + (len(seq)*length)
class Parser:
def __init__(self, bytes):
self.bytes = bytes
self.index = 0
def get(self, length):
if self.index + length > len(self.bytes):
raise SyntaxError()
x = 0
for count in range(length):
x <<= 8
x |= self.bytes[self.index]
self.index += 1
return x
def getFixBytes(self, lengthBytes):
bytes = self.bytes[self.index : self.index+lengthBytes]
self.index += lengthBytes
return bytes
def getVarBytes(self, lengthLength):
lengthBytes = self.get(lengthLength)
return self.getFixBytes(lengthBytes)
def getFixList(self, length, lengthList):
l = [0] * lengthList
for x in range(lengthList):
l[x] = self.get(length)
return l
def getVarList(self, length, lengthLength):
lengthList = self.get(lengthLength)
if lengthList % length != 0:
raise SyntaxError()
lengthList = int(lengthList/length)
l = [0] * lengthList
for x in range(lengthList):
l[x] = self.get(length)
return l
def startLengthCheck(self, lengthLength):
self.lengthCheck = self.get(lengthLength)
self.indexCheck = self.index
def setLengthCheck(self, length):
self.lengthCheck = length
self.indexCheck = self.index
def stopLengthCheck(self):
if (self.index - self.indexCheck) != self.lengthCheck:
raise SyntaxError()
def atLengthCheck(self):
if (self.index - self.indexCheck) < self.lengthCheck:
return False
elif (self.index - self.indexCheck) == self.lengthCheck:
return True
else:
raise SyntaxError()

View File

@@ -0,0 +1,140 @@
"""Miscellaneous functions to mask Python version differences."""
import sys
import os
if sys.version_info < (2,2):
raise AssertionError("Python 2.2 or later required")
if sys.version_info < (2,3):
def enumerate(collection):
return zip(range(len(collection)), collection)
class Set:
def __init__(self, seq=None):
self.values = {}
if seq:
for e in seq:
self.values[e] = None
def add(self, e):
self.values[e] = None
def discard(self, e):
if e in self.values.keys():
del(self.values[e])
def union(self, s):
ret = Set()
for e in self.values.keys():
ret.values[e] = None
for e in s.values.keys():
ret.values[e] = None
return ret
def issubset(self, other):
for e in self.values.keys():
if e not in other.values.keys():
return False
return True
def __nonzero__( self):
return len(self.values.keys())
def __contains__(self, e):
return e in self.values.keys()
def __iter__(self):
return iter(set.values.keys())
if os.name != "java":
import array
def createByteArraySequence(seq):
return array.array('B', seq)
def createByteArrayZeros(howMany):
return array.array('B', [0] * howMany)
def concatArrays(a1, a2):
return a1+a2
def bytesToString(bytes):
return bytes.tostring()
def stringToBytes(s):
bytes = createByteArrayZeros(0)
bytes.fromstring(s)
return bytes
import math
def numBits(n):
if n==0:
return 0
s = "%x" % n
return ((len(s)-1)*4) + \
{'0':0, '1':1, '2':2, '3':2,
'4':3, '5':3, '6':3, '7':3,
'8':4, '9':4, 'a':4, 'b':4,
'c':4, 'd':4, 'e':4, 'f':4,
}[s[0]]
return int(math.floor(math.log(n, 2))+1)
BaseException = Exception
import sys
import traceback
def formatExceptionTrace(e):
newStr = "".join(traceback.format_exception(sys.exc_type, sys.exc_value, sys.exc_traceback))
return newStr
else:
#Jython 2.1 is missing lots of python 2.3 stuff,
#which we have to emulate here:
#NOTE: JYTHON SUPPORT NO LONGER WORKS, DUE TO USE OF GENERATORS.
#THIS CODE IS LEFT IN SO THAT ONE JYTHON UPDATES TO 2.2, IT HAS A
#CHANCE OF WORKING AGAIN.
import java
import jarray
def createByteArraySequence(seq):
if isinstance(seq, type("")): #If it's a string, convert
seq = [ord(c) for c in seq]
return jarray.array(seq, 'h') #use short instead of bytes, cause bytes are signed
def createByteArrayZeros(howMany):
return jarray.zeros(howMany, 'h') #use short instead of bytes, cause bytes are signed
def concatArrays(a1, a2):
l = list(a1)+list(a2)
return createByteArraySequence(l)
#WAY TOO SLOW - MUST BE REPLACED------------
def bytesToString(bytes):
return "".join([chr(b) for b in bytes])
def stringToBytes(s):
bytes = createByteArrayZeros(len(s))
for count, c in enumerate(s):
bytes[count] = ord(c)
return bytes
#WAY TOO SLOW - MUST BE REPLACED------------
def numBits(n):
if n==0:
return 0
n= 1L * n; #convert to long, if it isn't already
return n.__tojava__(java.math.BigInteger).bitLength()
#Adjust the string to an array of bytes
def stringToJavaByteArray(s):
bytes = jarray.zeros(len(s), 'b')
for count, c in enumerate(s):
x = ord(c)
if x >= 128: x -= 256
bytes[count] = x
return bytes
BaseException = java.lang.Exception
import sys
import traceback
def formatExceptionTrace(e):
newStr = "".join(traceback.format_exception(sys.exc_type, sys.exc_value, sys.exc_traceback))
return newStr

View File

@@ -0,0 +1,404 @@
"""cryptomath module
This module has basic math/crypto code."""
import os
import sys
import math
import base64
import binascii
if sys.version_info[:2] <= (2, 4):
from sha import sha as sha1
else:
from hashlib import sha1
from compat import *
# **************************************************************************
# Load Optional Modules
# **************************************************************************
# Try to load M2Crypto/OpenSSL
try:
from M2Crypto import m2
m2cryptoLoaded = True
except ImportError:
m2cryptoLoaded = False
# Try to load cryptlib
try:
import cryptlib_py
try:
cryptlib_py.cryptInit()
except cryptlib_py.CryptException, e:
#If tlslite and cryptoIDlib are both present,
#they might each try to re-initialize this,
#so we're tolerant of that.
if e[0] != cryptlib_py.CRYPT_ERROR_INITED:
raise
cryptlibpyLoaded = True
except ImportError:
cryptlibpyLoaded = False
#Try to load GMPY
try:
import gmpy
gmpyLoaded = True
except ImportError:
gmpyLoaded = False
#Try to load pycrypto
try:
import Crypto.Cipher.AES
pycryptoLoaded = True
except ImportError:
pycryptoLoaded = False
# **************************************************************************
# PRNG Functions
# **************************************************************************
# Get os.urandom PRNG
try:
os.urandom(1)
def getRandomBytes(howMany):
return stringToBytes(os.urandom(howMany))
prngName = "os.urandom"
except:
# Else get cryptlib PRNG
if cryptlibpyLoaded:
def getRandomBytes(howMany):
randomKey = cryptlib_py.cryptCreateContext(cryptlib_py.CRYPT_UNUSED,
cryptlib_py.CRYPT_ALGO_AES)
cryptlib_py.cryptSetAttribute(randomKey,
cryptlib_py.CRYPT_CTXINFO_MODE,
cryptlib_py.CRYPT_MODE_OFB)
cryptlib_py.cryptGenerateKey(randomKey)
bytes = createByteArrayZeros(howMany)
cryptlib_py.cryptEncrypt(randomKey, bytes)
return bytes
prngName = "cryptlib"
else:
#Else get UNIX /dev/urandom PRNG
try:
devRandomFile = open("/dev/urandom", "rb")
def getRandomBytes(howMany):
return stringToBytes(devRandomFile.read(howMany))
prngName = "/dev/urandom"
except IOError:
#Else get Win32 CryptoAPI PRNG
try:
import win32prng
def getRandomBytes(howMany):
s = win32prng.getRandomBytes(howMany)
if len(s) != howMany:
raise AssertionError()
return stringToBytes(s)
prngName ="CryptoAPI"
except ImportError:
#Else no PRNG :-(
def getRandomBytes(howMany):
raise NotImplementedError("No Random Number Generator "\
"available.")
prngName = "None"
# **************************************************************************
# Converter Functions
# **************************************************************************
def bytesToNumber(bytes):
total = 0L
multiplier = 1L
for count in range(len(bytes)-1, -1, -1):
byte = bytes[count]
total += multiplier * byte
multiplier *= 256
return total
def numberToBytes(n):
howManyBytes = numBytes(n)
bytes = createByteArrayZeros(howManyBytes)
for count in range(howManyBytes-1, -1, -1):
bytes[count] = int(n % 256)
n >>= 8
return bytes
def bytesToBase64(bytes):
s = bytesToString(bytes)
return stringToBase64(s)
def base64ToBytes(s):
s = base64ToString(s)
return stringToBytes(s)
def numberToBase64(n):
bytes = numberToBytes(n)
return bytesToBase64(bytes)
def base64ToNumber(s):
bytes = base64ToBytes(s)
return bytesToNumber(bytes)
def stringToNumber(s):
bytes = stringToBytes(s)
return bytesToNumber(bytes)
def numberToString(s):
bytes = numberToBytes(s)
return bytesToString(bytes)
def base64ToString(s):
try:
return base64.decodestring(s)
except binascii.Error, e:
raise SyntaxError(e)
except binascii.Incomplete, e:
raise SyntaxError(e)
def stringToBase64(s):
return base64.encodestring(s).replace("\n", "")
def mpiToNumber(mpi): #mpi is an openssl-format bignum string
if (ord(mpi[4]) & 0x80) !=0: #Make sure this is a positive number
raise AssertionError()
bytes = stringToBytes(mpi[4:])
return bytesToNumber(bytes)
def numberToMPI(n):
bytes = numberToBytes(n)
ext = 0
#If the high-order bit is going to be set,
#add an extra byte of zeros
if (numBits(n) & 0x7)==0:
ext = 1
length = numBytes(n) + ext
bytes = concatArrays(createByteArrayZeros(4+ext), bytes)
bytes[0] = (length >> 24) & 0xFF
bytes[1] = (length >> 16) & 0xFF
bytes[2] = (length >> 8) & 0xFF
bytes[3] = length & 0xFF
return bytesToString(bytes)
# **************************************************************************
# Misc. Utility Functions
# **************************************************************************
def numBytes(n):
if n==0:
return 0
bits = numBits(n)
return int(math.ceil(bits / 8.0))
def hashAndBase64(s):
return stringToBase64(sha1(s).digest())
def getBase64Nonce(numChars=22): #defaults to an 132 bit nonce
bytes = getRandomBytes(numChars)
bytesStr = "".join([chr(b) for b in bytes])
return stringToBase64(bytesStr)[:numChars]
# **************************************************************************
# Big Number Math
# **************************************************************************
def getRandomNumber(low, high):
if low >= high:
raise AssertionError()
howManyBits = numBits(high)
howManyBytes = numBytes(high)
lastBits = howManyBits % 8
while 1:
bytes = getRandomBytes(howManyBytes)
if lastBits:
bytes[0] = bytes[0] % (1 << lastBits)
n = bytesToNumber(bytes)
if n >= low and n < high:
return n
def gcd(a,b):
a, b = max(a,b), min(a,b)
while b:
a, b = b, a % b
return a
def lcm(a, b):
#This will break when python division changes, but we can't use // cause
#of Jython
return (a * b) / gcd(a, b)
#Returns inverse of a mod b, zero if none
#Uses Extended Euclidean Algorithm
def invMod(a, b):
c, d = a, b
uc, ud = 1, 0
while c != 0:
#This will break when python division changes, but we can't use //
#cause of Jython
q = d / c
c, d = d-(q*c), c
uc, ud = ud - (q * uc), uc
if d == 1:
return ud % b
return 0
if gmpyLoaded:
def powMod(base, power, modulus):
base = gmpy.mpz(base)
power = gmpy.mpz(power)
modulus = gmpy.mpz(modulus)
result = pow(base, power, modulus)
return long(result)
else:
#Copied from Bryan G. Olson's post to comp.lang.python
#Does left-to-right instead of pow()'s right-to-left,
#thus about 30% faster than the python built-in with small bases
def powMod(base, power, modulus):
nBitScan = 5
""" Return base**power mod modulus, using multi bit scanning
with nBitScan bits at a time."""
#TREV - Added support for negative exponents
negativeResult = False
if (power < 0):
power *= -1
negativeResult = True
exp2 = 2**nBitScan
mask = exp2 - 1
# Break power into a list of digits of nBitScan bits.
# The list is recursive so easy to read in reverse direction.
nibbles = None
while power:
nibbles = int(power & mask), nibbles
power = power >> nBitScan
# Make a table of powers of base up to 2**nBitScan - 1
lowPowers = [1]
for i in xrange(1, exp2):
lowPowers.append((lowPowers[i-1] * base) % modulus)
# To exponentiate by the first nibble, look it up in the table
nib, nibbles = nibbles
prod = lowPowers[nib]
# For the rest, square nBitScan times, then multiply by
# base^nibble
while nibbles:
nib, nibbles = nibbles
for i in xrange(nBitScan):
prod = (prod * prod) % modulus
if nib: prod = (prod * lowPowers[nib]) % modulus
#TREV - Added support for negative exponents
if negativeResult:
prodInv = invMod(prod, modulus)
#Check to make sure the inverse is correct
if (prod * prodInv) % modulus != 1:
raise AssertionError()
return prodInv
return prod
#Pre-calculate a sieve of the ~100 primes < 1000:
def makeSieve(n):
sieve = range(n)
for count in range(2, int(math.sqrt(n))):
if sieve[count] == 0:
continue
x = sieve[count] * 2
while x < len(sieve):
sieve[x] = 0
x += sieve[count]
sieve = [x for x in sieve[2:] if x]
return sieve
sieve = makeSieve(1000)
def isPrime(n, iterations=5, display=False):
#Trial division with sieve
for x in sieve:
if x >= n: return True
if n % x == 0: return False
#Passed trial division, proceed to Rabin-Miller
#Rabin-Miller implemented per Ferguson & Schneier
#Compute s, t for Rabin-Miller
if display: print "*",
s, t = n-1, 0
while s % 2 == 0:
s, t = s/2, t+1
#Repeat Rabin-Miller x times
a = 2 #Use 2 as a base for first iteration speedup, per HAC
for count in range(iterations):
v = powMod(a, s, n)
if v==1:
continue
i = 0
while v != n-1:
if i == t-1:
return False
else:
v, i = powMod(v, 2, n), i+1
a = getRandomNumber(2, n)
return True
def getRandomPrime(bits, display=False):
if bits < 10:
raise AssertionError()
#The 1.5 ensures the 2 MSBs are set
#Thus, when used for p,q in RSA, n will have its MSB set
#
#Since 30 is lcm(2,3,5), we'll set our test numbers to
#29 % 30 and keep them there
low = (2L ** (bits-1)) * 3/2
high = 2L ** bits - 30
p = getRandomNumber(low, high)
p += 29 - (p % 30)
while 1:
if display: print ".",
p += 30
if p >= high:
p = getRandomNumber(low, high)
p += 29 - (p % 30)
if isPrime(p, display=display):
return p
#Unused at the moment...
def getRandomSafePrime(bits, display=False):
if bits < 10:
raise AssertionError()
#The 1.5 ensures the 2 MSBs are set
#Thus, when used for p,q in RSA, n will have its MSB set
#
#Since 30 is lcm(2,3,5), we'll set our test numbers to
#29 % 30 and keep them there
low = (2 ** (bits-2)) * 3/2
high = (2 ** (bits-1)) - 30
q = getRandomNumber(low, high)
q += 29 - (q % 30)
while 1:
if display: print ".",
q += 30
if (q >= high):
q = getRandomNumber(low, high)
q += 29 - (q % 30)
#Ideas from Tom Wu's SRP code
#Do trial division on p and q before Rabin-Miller
if isPrime(q, 0, display=display):
p = (2 * q) + 1
if isPrime(p, display=display):
if isPrime(q, display=display):
return p

View File

@@ -0,0 +1,75 @@
import os
#Functions for manipulating datetime objects
#CCYY-MM-DDThh:mm:ssZ
def parseDateClass(s):
year, month, day = s.split("-")
day, tail = day[:2], day[2:]
hour, minute, second = tail[1:].split(":")
second = second[:2]
year, month, day = int(year), int(month), int(day)
hour, minute, second = int(hour), int(minute), int(second)
return createDateClass(year, month, day, hour, minute, second)
if os.name != "java":
from datetime import datetime, timedelta
#Helper functions for working with a date/time class
def createDateClass(year, month, day, hour, minute, second):
return datetime(year, month, day, hour, minute, second)
def printDateClass(d):
#Split off fractional seconds, append 'Z'
return d.isoformat().split(".")[0]+"Z"
def getNow():
return datetime.utcnow()
def getHoursFromNow(hours):
return datetime.utcnow() + timedelta(hours=hours)
def getMinutesFromNow(minutes):
return datetime.utcnow() + timedelta(minutes=minutes)
def isDateClassExpired(d):
return d < datetime.utcnow()
def isDateClassBefore(d1, d2):
return d1 < d2
else:
#Jython 2.1 is missing lots of python 2.3 stuff,
#which we have to emulate here:
import java
import jarray
def createDateClass(year, month, day, hour, minute, second):
c = java.util.Calendar.getInstance()
c.setTimeZone(java.util.TimeZone.getTimeZone("UTC"))
c.set(year, month-1, day, hour, minute, second)
return c
def printDateClass(d):
return "%04d-%02d-%02dT%02d:%02d:%02dZ" % \
(d.get(d.YEAR), d.get(d.MONTH)+1, d.get(d.DATE), \
d.get(d.HOUR_OF_DAY), d.get(d.MINUTE), d.get(d.SECOND))
def getNow():
c = java.util.Calendar.getInstance()
c.setTimeZone(java.util.TimeZone.getTimeZone("UTC"))
c.get(c.HOUR) #force refresh?
return c
def getHoursFromNow(hours):
d = getNow()
d.add(d.HOUR, hours)
return d
def isDateClassExpired(d):
n = getNow()
return d.before(n)
def isDateClassBefore(d1, d2):
return d1.before(d2)

View File

@@ -0,0 +1,104 @@
"""HMAC (Keyed-Hashing for Message Authentication) Python module.
Implements the HMAC algorithm as described by RFC 2104.
(This file is modified from the standard library version to do faster
copying)
"""
def _strxor(s1, s2):
"""Utility method. XOR the two strings s1 and s2 (must have same length).
"""
return "".join(map(lambda x, y: chr(ord(x) ^ ord(y)), s1, s2))
# The size of the digests returned by HMAC depends on the underlying
# hashing module used.
digest_size = None
class HMAC:
"""RFC2104 HMAC class.
This supports the API for Cryptographic Hash Functions (PEP 247).
"""
def __init__(self, key, msg = None, digestmod = None):
"""Create a new HMAC object.
key: key for the keyed hash object.
msg: Initial input for the hash, if provided.
digestmod: A module supporting PEP 247. Defaults to the md5 module.
"""
if digestmod is None:
import md5
digestmod = md5
if key == None: #TREVNEW - for faster copying
return #TREVNEW
self.digestmod = digestmod
self.outer = digestmod.new()
self.inner = digestmod.new()
self.digest_size = digestmod.digest_size
blocksize = 64
ipad = "\x36" * blocksize
opad = "\x5C" * blocksize
if len(key) > blocksize:
key = digestmod.new(key).digest()
key = key + chr(0) * (blocksize - len(key))
self.outer.update(_strxor(key, opad))
self.inner.update(_strxor(key, ipad))
if msg is not None:
self.update(msg)
## def clear(self):
## raise NotImplementedError, "clear() method not available in HMAC."
def update(self, msg):
"""Update this hashing object with the string msg.
"""
self.inner.update(msg)
def copy(self):
"""Return a separate copy of this hashing object.
An update to this copy won't affect the original object.
"""
other = HMAC(None) #TREVNEW - for faster copying
other.digest_size = self.digest_size #TREVNEW
other.digestmod = self.digestmod
other.inner = self.inner.copy()
other.outer = self.outer.copy()
return other
def digest(self):
"""Return the hash value of this hashing object.
This returns a string containing 8-bit data. The object is
not altered in any way by this function; you can continue
updating the object after calling this function.
"""
h = self.outer.copy()
h.update(self.inner.digest())
return h.digest()
def hexdigest(self):
"""Like digest(), but returns a string of hexadecimal digits instead.
"""
return "".join([hex(ord(x))[2:].zfill(2)
for x in tuple(self.digest())])
def new(key, msg = None, digestmod = None):
"""Create a new hashing object and return it.
key: The starting key for the hash.
msg: if available, will immediately be hashed into the object's starting
state.
You can now feed arbitrary strings into the object using its update()
method, and can ask for the hash value at any time by calling its digest()
method.
"""
return HMAC(key, msg, digestmod)

View File

@@ -0,0 +1,195 @@
"""Miscellaneous functions to mask Python/Jython differences."""
import os
import sha
if os.name != "java":
BaseException = Exception
from sets import Set
import array
import math
def createByteArraySequence(seq):
return array.array('B', seq)
def createByteArrayZeros(howMany):
return array.array('B', [0] * howMany)
def concatArrays(a1, a2):
return a1+a2
def bytesToString(bytes):
return bytes.tostring()
def stringToBytes(s):
bytes = createByteArrayZeros(0)
bytes.fromstring(s)
return bytes
def numBits(n):
if n==0:
return 0
return int(math.floor(math.log(n, 2))+1)
class CertChainBase: pass
class SelfTestBase: pass
class ReportFuncBase: pass
#Helper functions for working with sets (from Python 2.3)
def iterSet(set):
return iter(set)
def getListFromSet(set):
return list(set)
#Factory function for getting a SHA1 object
def getSHA1(s):
return sha.sha(s)
import sys
import traceback
def formatExceptionTrace(e):
newStr = "".join(traceback.format_exception(sys.exc_type, sys.exc_value, sys.exc_traceback))
return newStr
else:
#Jython 2.1 is missing lots of python 2.3 stuff,
#which we have to emulate here:
import java
import jarray
BaseException = java.lang.Exception
def createByteArraySequence(seq):
if isinstance(seq, type("")): #If it's a string, convert
seq = [ord(c) for c in seq]
return jarray.array(seq, 'h') #use short instead of bytes, cause bytes are signed
def createByteArrayZeros(howMany):
return jarray.zeros(howMany, 'h') #use short instead of bytes, cause bytes are signed
def concatArrays(a1, a2):
l = list(a1)+list(a2)
return createByteArraySequence(l)
#WAY TOO SLOW - MUST BE REPLACED------------
def bytesToString(bytes):
return "".join([chr(b) for b in bytes])
def stringToBytes(s):
bytes = createByteArrayZeros(len(s))
for count, c in enumerate(s):
bytes[count] = ord(c)
return bytes
#WAY TOO SLOW - MUST BE REPLACED------------
def numBits(n):
if n==0:
return 0
n= 1L * n; #convert to long, if it isn't already
return n.__tojava__(java.math.BigInteger).bitLength()
#This properly creates static methods for Jython
class staticmethod:
def __init__(self, anycallable): self.__call__ = anycallable
#Properties are not supported for Jython
class property:
def __init__(self, anycallable): pass
#True and False have to be specially defined
False = 0
True = 1
class StopIteration(Exception): pass
def enumerate(collection):
return zip(range(len(collection)), collection)
class Set:
def __init__(self, seq=None):
self.values = {}
if seq:
for e in seq:
self.values[e] = None
def add(self, e):
self.values[e] = None
def discard(self, e):
if e in self.values.keys():
del(self.values[e])
def union(self, s):
ret = Set()
for e in self.values.keys():
ret.values[e] = None
for e in s.values.keys():
ret.values[e] = None
return ret
def issubset(self, other):
for e in self.values.keys():
if e not in other.values.keys():
return False
return True
def __nonzero__( self):
return len(self.values.keys())
def __contains__(self, e):
return e in self.values.keys()
def iterSet(set):
return set.values.keys()
def getListFromSet(set):
return set.values.keys()
"""
class JCE_SHA1:
def __init__(self, s=None):
self.md = java.security.MessageDigest.getInstance("SHA1")
if s:
self.update(s)
def update(self, s):
self.md.update(s)
def copy(self):
sha1 = JCE_SHA1()
sha1.md = self.md.clone()
return sha1
def digest(self):
digest = self.md.digest()
bytes = jarray.zeros(20, 'h')
for count in xrange(20):
x = digest[count]
if x < 0: x += 256
bytes[count] = x
return bytes
"""
#Factory function for getting a SHA1 object
#The JCE_SHA1 class is way too slow...
#the sha.sha object we use instead is broken in the jython 2.1
#release, and needs to be patched
def getSHA1(s):
#return JCE_SHA1(s)
return sha.sha(s)
#Adjust the string to an array of bytes
def stringToJavaByteArray(s):
bytes = jarray.zeros(len(s), 'b')
for count, c in enumerate(s):
x = ord(c)
if x >= 128: x -= 256
bytes[count] = x
return bytes
import sys
import traceback
def formatExceptionTrace(e):
newStr = "".join(traceback.format_exception(sys.exc_type, sys.exc_value, sys.exc_traceback))
return newStr

View File

@@ -0,0 +1,243 @@
"""Factory functions for asymmetric cryptography.
@sort: generateRSAKey, parseXMLKey, parsePEMKey, parseAsPublicKey,
parseAsPrivateKey
"""
from compat import *
from RSAKey import RSAKey
from Python_RSAKey import Python_RSAKey
import cryptomath
if cryptomath.m2cryptoLoaded:
from OpenSSL_RSAKey import OpenSSL_RSAKey
if cryptomath.pycryptoLoaded:
from PyCrypto_RSAKey import PyCrypto_RSAKey
# **************************************************************************
# Factory Functions for RSA Keys
# **************************************************************************
def generateRSAKey(bits, implementations=["openssl", "python"]):
"""Generate an RSA key with the specified bit length.
@type bits: int
@param bits: Desired bit length of the new key's modulus.
@rtype: L{tlslite.utils.RSAKey.RSAKey}
@return: A new RSA private key.
"""
for implementation in implementations:
if implementation == "openssl" and cryptomath.m2cryptoLoaded:
return OpenSSL_RSAKey.generate(bits)
elif implementation == "python":
return Python_RSAKey.generate(bits)
raise ValueError("No acceptable implementations")
def parseXMLKey(s, private=False, public=False, implementations=["python"]):
"""Parse an XML-format key.
The XML format used here is specific to tlslite and cryptoIDlib. The
format can store the public component of a key, or the public and
private components. For example::
<publicKey xmlns="http://trevp.net/rsa">
<n>4a5yzB8oGNlHo866CAspAC47M4Fvx58zwK8pou...
<e>Aw==</e>
</publicKey>
<privateKey xmlns="http://trevp.net/rsa">
<n>4a5yzB8oGNlHo866CAspAC47M4Fvx58zwK8pou...
<e>Aw==</e>
<d>JZ0TIgUxWXmL8KJ0VqyG1V0J3ern9pqIoB0xmy...
<p>5PreIj6z6ldIGL1V4+1C36dQFHNCQHJvW52GXc...
<q>/E/wDit8YXPCxx126zTq2ilQ3IcW54NJYyNjiZ...
<dP>mKc+wX8inDowEH45Qp4slRo1YveBgExKPROu6...
<dQ>qDVKtBz9lk0shL5PR3ickXDgkwS576zbl2ztB...
<qInv>j6E8EA7dNsTImaXexAmLA1DoeArsYeFAInr...
</privateKey>
@type s: str
@param s: A string containing an XML public or private key.
@type private: bool
@param private: If True, a L{SyntaxError} will be raised if the private
key component is not present.
@type public: bool
@param public: If True, the private key component (if present) will be
discarded, so this function will always return a public key.
@rtype: L{tlslite.utils.RSAKey.RSAKey}
@return: An RSA key.
@raise SyntaxError: If the key is not properly formatted.
"""
for implementation in implementations:
if implementation == "python":
key = Python_RSAKey.parseXML(s)
break
else:
raise ValueError("No acceptable implementations")
return _parseKeyHelper(key, private, public)
#Parse as an OpenSSL or Python key
def parsePEMKey(s, private=False, public=False, passwordCallback=None,
implementations=["openssl", "python"]):
"""Parse a PEM-format key.
The PEM format is used by OpenSSL and other tools. The
format is typically used to store both the public and private
components of a key. For example::
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQDYscuoMzsGmW0pAYsmyHltxB2TdwHS0dImfjCMfaSDkfLdZY5+
dOWORVns9etWnr194mSGA1F0Pls/VJW8+cX9+3vtJV8zSdANPYUoQf0TP7VlJxkH
dSRkUbEoz5bAAs/+970uos7n7iXQIni+3erUTdYEk2iWnMBjTljfgbK/dQIDAQAB
AoGAJHoJZk75aKr7DSQNYIHuruOMdv5ZeDuJvKERWxTrVJqE32/xBKh42/IgqRrc
esBN9ZregRCd7YtxoL+EVUNWaJNVx2mNmezEznrc9zhcYUrgeaVdFO2yBF1889zO
gCOVwrO8uDgeyj6IKa25H6c1N13ih/o7ZzEgWbGG+ylU1yECQQDv4ZSJ4EjSh/Fl
aHdz3wbBa/HKGTjC8iRy476Cyg2Fm8MZUe9Yy3udOrb5ZnS2MTpIXt5AF3h2TfYV
VoFXIorjAkEA50FcJmzT8sNMrPaV8vn+9W2Lu4U7C+K/O2g1iXMaZms5PC5zV5aV
CKXZWUX1fq2RaOzlbQrpgiolhXpeh8FjxwJBAOFHzSQfSsTNfttp3KUpU0LbiVvv
i+spVSnA0O4rq79KpVNmK44Mq67hsW1P11QzrzTAQ6GVaUBRv0YS061td1kCQHnP
wtN2tboFR6lABkJDjxoGRvlSt4SOPr7zKGgrWjeiuTZLHXSAnCY+/hr5L9Q3ZwXG
6x6iBdgLjVIe4BZQNtcCQQDXGv/gWinCNTN3MPWfTW/RGzuMYVmyBFais0/VrgdH
h1dLpztmpQqfyH/zrBXQ9qL/zR4ojS6XYneO/U18WpEe
-----END RSA PRIVATE KEY-----
To generate a key like this with OpenSSL, run::
openssl genrsa 2048 > key.pem
This format also supports password-encrypted private keys. TLS
Lite can only handle password-encrypted private keys when OpenSSL
and M2Crypto are installed. In this case, passwordCallback will be
invoked to query the user for the password.
@type s: str
@param s: A string containing a PEM-encoded public or private key.
@type private: bool
@param private: If True, a L{SyntaxError} will be raised if the
private key component is not present.
@type public: bool
@param public: If True, the private key component (if present) will
be discarded, so this function will always return a public key.
@type passwordCallback: callable
@param passwordCallback: This function will be called, with no
arguments, if the PEM-encoded private key is password-encrypted.
The callback should return the password string. If the password is
incorrect, SyntaxError will be raised. If no callback is passed
and the key is password-encrypted, a prompt will be displayed at
the console.
@rtype: L{tlslite.utils.RSAKey.RSAKey}
@return: An RSA key.
@raise SyntaxError: If the key is not properly formatted.
"""
for implementation in implementations:
if implementation == "openssl" and cryptomath.m2cryptoLoaded:
key = OpenSSL_RSAKey.parse(s, passwordCallback)
break
elif implementation == "python":
key = Python_RSAKey.parsePEM(s)
break
else:
raise ValueError("No acceptable implementations")
return _parseKeyHelper(key, private, public)
def _parseKeyHelper(key, private, public):
if private:
if not key.hasPrivateKey():
raise SyntaxError("Not a private key!")
if public:
return _createPublicKey(key)
if private:
if hasattr(key, "d"):
return _createPrivateKey(key)
else:
return key
return key
def parseAsPublicKey(s):
"""Parse an XML or PEM-formatted public key.
@type s: str
@param s: A string containing an XML or PEM-encoded public or private key.
@rtype: L{tlslite.utils.RSAKey.RSAKey}
@return: An RSA public key.
@raise SyntaxError: If the key is not properly formatted.
"""
try:
return parsePEMKey(s, public=True)
except:
return parseXMLKey(s, public=True)
def parsePrivateKey(s):
"""Parse an XML or PEM-formatted private key.
@type s: str
@param s: A string containing an XML or PEM-encoded private key.
@rtype: L{tlslite.utils.RSAKey.RSAKey}
@return: An RSA private key.
@raise SyntaxError: If the key is not properly formatted.
"""
try:
return parsePEMKey(s, private=True)
except:
return parseXMLKey(s, private=True)
def _createPublicKey(key):
"""
Create a new public key. Discard any private component,
and return the most efficient key possible.
"""
if not isinstance(key, RSAKey):
raise AssertionError()
return _createPublicRSAKey(key.n, key.e)
def _createPrivateKey(key):
"""
Create a new private key. Return the most efficient key possible.
"""
if not isinstance(key, RSAKey):
raise AssertionError()
if not key.hasPrivateKey():
raise AssertionError()
return _createPrivateRSAKey(key.n, key.e, key.d, key.p, key.q, key.dP,
key.dQ, key.qInv)
def _createPublicRSAKey(n, e, implementations = ["openssl", "pycrypto",
"python"]):
for implementation in implementations:
if implementation == "openssl" and cryptomath.m2cryptoLoaded:
return OpenSSL_RSAKey(n, e)
elif implementation == "pycrypto" and cryptomath.pycryptoLoaded:
return PyCrypto_RSAKey(n, e)
elif implementation == "python":
return Python_RSAKey(n, e)
raise ValueError("No acceptable implementations")
def _createPrivateRSAKey(n, e, d, p, q, dP, dQ, qInv,
implementations = ["pycrypto", "python"]):
for implementation in implementations:
if implementation == "pycrypto" and cryptomath.pycryptoLoaded:
return PyCrypto_RSAKey(n, e, d, p, q, dP, dQ, qInv)
elif implementation == "python":
return Python_RSAKey(n, e, d, p, q, dP, dQ, qInv)
raise ValueError("No acceptable implementations")

View File

@@ -0,0 +1,392 @@
"""
A pure python (slow) implementation of rijndael with a decent interface
To include -
from rijndael import rijndael
To do a key setup -
r = rijndael(key, block_size = 16)
key must be a string of length 16, 24, or 32
blocksize must be 16, 24, or 32. Default is 16
To use -
ciphertext = r.encrypt(plaintext)
plaintext = r.decrypt(ciphertext)
If any strings are of the wrong length a ValueError is thrown
"""
# ported from the Java reference code by Bram Cohen, bram@gawth.com, April 2001
# this code is public domain, unless someone makes
# an intellectual property claim against the reference
# code, in which case it can be made public domain by
# deleting all the comments and renaming all the variables
import copy
import string
#-----------------------
#TREV - ADDED BECAUSE THERE'S WARNINGS ABOUT INT OVERFLOW BEHAVIOR CHANGING IN
#2.4.....
import os
if os.name != "java":
import exceptions
if hasattr(exceptions, "FutureWarning"):
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, append=1)
#-----------------------
shifts = [[[0, 0], [1, 3], [2, 2], [3, 1]],
[[0, 0], [1, 5], [2, 4], [3, 3]],
[[0, 0], [1, 7], [3, 5], [4, 4]]]
# [keysize][block_size]
num_rounds = {16: {16: 10, 24: 12, 32: 14}, 24: {16: 12, 24: 12, 32: 14}, 32: {16: 14, 24: 14, 32: 14}}
A = [[1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 1, 1, 1, 1],
[1, 1, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 1, 1],
[1, 1, 1, 1, 0, 0, 0, 1]]
# produce log and alog tables, needed for multiplying in the
# field GF(2^m) (generator = 3)
alog = [1]
for i in xrange(255):
j = (alog[-1] << 1) ^ alog[-1]
if j & 0x100 != 0:
j ^= 0x11B
alog.append(j)
log = [0] * 256
for i in xrange(1, 255):
log[alog[i]] = i
# multiply two elements of GF(2^m)
def mul(a, b):
if a == 0 or b == 0:
return 0
return alog[(log[a & 0xFF] + log[b & 0xFF]) % 255]
# substitution box based on F^{-1}(x)
box = [[0] * 8 for i in xrange(256)]
box[1][7] = 1
for i in xrange(2, 256):
j = alog[255 - log[i]]
for t in xrange(8):
box[i][t] = (j >> (7 - t)) & 0x01
B = [0, 1, 1, 0, 0, 0, 1, 1]
# affine transform: box[i] <- B + A*box[i]
cox = [[0] * 8 for i in xrange(256)]
for i in xrange(256):
for t in xrange(8):
cox[i][t] = B[t]
for j in xrange(8):
cox[i][t] ^= A[t][j] * box[i][j]
# S-boxes and inverse S-boxes
S = [0] * 256
Si = [0] * 256
for i in xrange(256):
S[i] = cox[i][0] << 7
for t in xrange(1, 8):
S[i] ^= cox[i][t] << (7-t)
Si[S[i] & 0xFF] = i
# T-boxes
G = [[2, 1, 1, 3],
[3, 2, 1, 1],
[1, 3, 2, 1],
[1, 1, 3, 2]]
AA = [[0] * 8 for i in xrange(4)]
for i in xrange(4):
for j in xrange(4):
AA[i][j] = G[i][j]
AA[i][i+4] = 1
for i in xrange(4):
pivot = AA[i][i]
if pivot == 0:
t = i + 1
while AA[t][i] == 0 and t < 4:
t += 1
assert t != 4, 'G matrix must be invertible'
for j in xrange(8):
AA[i][j], AA[t][j] = AA[t][j], AA[i][j]
pivot = AA[i][i]
for j in xrange(8):
if AA[i][j] != 0:
AA[i][j] = alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255]
for t in xrange(4):
if i != t:
for j in xrange(i+1, 8):
AA[t][j] ^= mul(AA[i][j], AA[t][i])
AA[t][i] = 0
iG = [[0] * 4 for i in xrange(4)]
for i in xrange(4):
for j in xrange(4):
iG[i][j] = AA[i][j + 4]
def mul4(a, bs):
if a == 0:
return 0
r = 0
for b in bs:
r <<= 8
if b != 0:
r = r | mul(a, b)
return r
T1 = []
T2 = []
T3 = []
T4 = []
T5 = []
T6 = []
T7 = []
T8 = []
U1 = []
U2 = []
U3 = []
U4 = []
for t in xrange(256):
s = S[t]
T1.append(mul4(s, G[0]))
T2.append(mul4(s, G[1]))
T3.append(mul4(s, G[2]))
T4.append(mul4(s, G[3]))
s = Si[t]
T5.append(mul4(s, iG[0]))
T6.append(mul4(s, iG[1]))
T7.append(mul4(s, iG[2]))
T8.append(mul4(s, iG[3]))
U1.append(mul4(t, iG[0]))
U2.append(mul4(t, iG[1]))
U3.append(mul4(t, iG[2]))
U4.append(mul4(t, iG[3]))
# round constants
rcon = [1]
r = 1
for t in xrange(1, 30):
r = mul(2, r)
rcon.append(r)
del A
del AA
del pivot
del B
del G
del box
del log
del alog
del i
del j
del r
del s
del t
del mul
del mul4
del cox
del iG
class rijndael:
def __init__(self, key, block_size = 16):
if block_size != 16 and block_size != 24 and block_size != 32:
raise ValueError('Invalid block size: ' + str(block_size))
if len(key) != 16 and len(key) != 24 and len(key) != 32:
raise ValueError('Invalid key size: ' + str(len(key)))
self.block_size = block_size
ROUNDS = num_rounds[len(key)][block_size]
BC = block_size / 4
# encryption round keys
Ke = [[0] * BC for i in xrange(ROUNDS + 1)]
# decryption round keys
Kd = [[0] * BC for i in xrange(ROUNDS + 1)]
ROUND_KEY_COUNT = (ROUNDS + 1) * BC
KC = len(key) / 4
# copy user material bytes into temporary ints
tk = []
for i in xrange(0, KC):
tk.append((ord(key[i * 4]) << 24) | (ord(key[i * 4 + 1]) << 16) |
(ord(key[i * 4 + 2]) << 8) | ord(key[i * 4 + 3]))
# copy values into round key arrays
t = 0
j = 0
while j < KC and t < ROUND_KEY_COUNT:
Ke[t / BC][t % BC] = tk[j]
Kd[ROUNDS - (t / BC)][t % BC] = tk[j]
j += 1
t += 1
tt = 0
rconpointer = 0
while t < ROUND_KEY_COUNT:
# extrapolate using phi (the round key evolution function)
tt = tk[KC - 1]
tk[0] ^= (S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^ \
(S[(tt >> 8) & 0xFF] & 0xFF) << 16 ^ \
(S[ tt & 0xFF] & 0xFF) << 8 ^ \
(S[(tt >> 24) & 0xFF] & 0xFF) ^ \
(rcon[rconpointer] & 0xFF) << 24
rconpointer += 1
if KC != 8:
for i in xrange(1, KC):
tk[i] ^= tk[i-1]
else:
for i in xrange(1, KC / 2):
tk[i] ^= tk[i-1]
tt = tk[KC / 2 - 1]
tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF) ^ \
(S[(tt >> 8) & 0xFF] & 0xFF) << 8 ^ \
(S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^ \
(S[(tt >> 24) & 0xFF] & 0xFF) << 24
for i in xrange(KC / 2 + 1, KC):
tk[i] ^= tk[i-1]
# copy values into round key arrays
j = 0
while j < KC and t < ROUND_KEY_COUNT:
Ke[t / BC][t % BC] = tk[j]
Kd[ROUNDS - (t / BC)][t % BC] = tk[j]
j += 1
t += 1
# inverse MixColumn where needed
for r in xrange(1, ROUNDS):
for j in xrange(BC):
tt = Kd[r][j]
Kd[r][j] = U1[(tt >> 24) & 0xFF] ^ \
U2[(tt >> 16) & 0xFF] ^ \
U3[(tt >> 8) & 0xFF] ^ \
U4[ tt & 0xFF]
self.Ke = Ke
self.Kd = Kd
def encrypt(self, plaintext):
if len(plaintext) != self.block_size:
raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(plaintext)))
Ke = self.Ke
BC = self.block_size / 4
ROUNDS = len(Ke) - 1
if BC == 4:
SC = 0
elif BC == 6:
SC = 1
else:
SC = 2
s1 = shifts[SC][1][0]
s2 = shifts[SC][2][0]
s3 = shifts[SC][3][0]
a = [0] * BC
# temporary work array
t = []
# plaintext to ints + key
for i in xrange(BC):
t.append((ord(plaintext[i * 4 ]) << 24 |
ord(plaintext[i * 4 + 1]) << 16 |
ord(plaintext[i * 4 + 2]) << 8 |
ord(plaintext[i * 4 + 3]) ) ^ Ke[0][i])
# apply round transforms
for r in xrange(1, ROUNDS):
for i in xrange(BC):
a[i] = (T1[(t[ i ] >> 24) & 0xFF] ^
T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^
T3[(t[(i + s2) % BC] >> 8) & 0xFF] ^
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i]
t = copy.copy(a)
# last round is special
result = []
for i in xrange(BC):
tt = Ke[ROUNDS][i]
result.append((S[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
result.append((S[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
result.append((S[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF)
result.append((S[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF)
return string.join(map(chr, result), '')
def decrypt(self, ciphertext):
if len(ciphertext) != self.block_size:
raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(plaintext)))
Kd = self.Kd
BC = self.block_size / 4
ROUNDS = len(Kd) - 1
if BC == 4:
SC = 0
elif BC == 6:
SC = 1
else:
SC = 2
s1 = shifts[SC][1][1]
s2 = shifts[SC][2][1]
s3 = shifts[SC][3][1]
a = [0] * BC
# temporary work array
t = [0] * BC
# ciphertext to ints + key
for i in xrange(BC):
t[i] = (ord(ciphertext[i * 4 ]) << 24 |
ord(ciphertext[i * 4 + 1]) << 16 |
ord(ciphertext[i * 4 + 2]) << 8 |
ord(ciphertext[i * 4 + 3]) ) ^ Kd[0][i]
# apply round transforms
for r in xrange(1, ROUNDS):
for i in xrange(BC):
a[i] = (T5[(t[ i ] >> 24) & 0xFF] ^
T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^
T7[(t[(i + s2) % BC] >> 8) & 0xFF] ^
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i]
t = copy.copy(a)
# last round is special
result = []
for i in xrange(BC):
tt = Kd[ROUNDS][i]
result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
result.append((Si[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
result.append((Si[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF)
result.append((Si[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF)
return string.join(map(chr, result), '')
def encrypt(key, block):
return rijndael(key, len(block)).encrypt(block)
def decrypt(key, block):
return rijndael(key, len(block)).decrypt(block)
def test():
def t(kl, bl):
b = 'b' * bl
r = rijndael('a' * kl, bl)
assert r.decrypt(r.encrypt(b)) == b
t(16, 16)
t(16, 24)
t(16, 32)
t(24, 16)
t(24, 24)
t(24, 32)
t(32, 16)
t(32, 24)
t(32, 32)

View File

@@ -0,0 +1,202 @@
"""Helper functions for XML.
This module has misc. helper functions for working with XML DOM nodes."""
from compat import *
import os
import re
if os.name == "java":
# Only for Jython
from javax.xml.parsers import *
import java
builder = DocumentBuilderFactory.newInstance().newDocumentBuilder()
def parseDocument(s):
stream = java.io.ByteArrayInputStream(java.lang.String(s).getBytes())
return builder.parse(stream)
else:
from xml.dom import minidom
from xml.sax import saxutils
def parseDocument(s):
return minidom.parseString(s)
def parseAndStripWhitespace(s):
try:
element = parseDocument(s).documentElement
except BaseException, e:
raise SyntaxError(str(e))
stripWhitespace(element)
return element
#Goes through a DOM tree and removes whitespace besides child elements,
#as long as this whitespace is correctly tab-ified
def stripWhitespace(element, tab=0):
element.normalize()
lastSpacer = "\n" + ("\t"*tab)
spacer = lastSpacer + "\t"
#Zero children aren't allowed (i.e. <empty/>)
#This makes writing output simpler, and matches Canonical XML
if element.childNodes.length==0: #DON'T DO len(element.childNodes) - doesn't work in Jython
raise SyntaxError("Empty XML elements not allowed")
#If there's a single child, it must be text context
if element.childNodes.length==1:
if element.firstChild.nodeType == element.firstChild.TEXT_NODE:
#If it's an empty element, remove
if element.firstChild.data == lastSpacer:
element.removeChild(element.firstChild)
return
#If not text content, give an error
elif element.firstChild.nodeType == element.firstChild.ELEMENT_NODE:
raise SyntaxError("Bad whitespace under '%s'" % element.tagName)
else:
raise SyntaxError("Unexpected node type in XML document")
#Otherwise there's multiple child element
child = element.firstChild
while child:
if child.nodeType == child.ELEMENT_NODE:
stripWhitespace(child, tab+1)
child = child.nextSibling
elif child.nodeType == child.TEXT_NODE:
if child == element.lastChild:
if child.data != lastSpacer:
raise SyntaxError("Bad whitespace under '%s'" % element.tagName)
elif child.data != spacer:
raise SyntaxError("Bad whitespace under '%s'" % element.tagName)
next = child.nextSibling
element.removeChild(child)
child = next
else:
raise SyntaxError("Unexpected node type in XML document")
def checkName(element, name):
if element.nodeType != element.ELEMENT_NODE:
raise SyntaxError("Missing element: '%s'" % name)
if name == None:
return
if element.tagName != name:
raise SyntaxError("Wrong element name: should be '%s', is '%s'" % (name, element.tagName))
def getChild(element, index, name=None):
if element.nodeType != element.ELEMENT_NODE:
raise SyntaxError("Wrong node type in getChild()")
child = element.childNodes.item(index)
if child == None:
raise SyntaxError("Missing child: '%s'" % name)
checkName(child, name)
return child
def getChildIter(element, index):
class ChildIter:
def __init__(self, element, index):
self.element = element
self.index = index
def next(self):
if self.index < len(self.element.childNodes):
retVal = self.element.childNodes.item(self.index)
self.index += 1
else:
retVal = None
return retVal
def checkEnd(self):
if self.index != len(self.element.childNodes):
raise SyntaxError("Too many elements under: '%s'" % self.element.tagName)
return ChildIter(element, index)
def getChildOrNone(element, index):
if element.nodeType != element.ELEMENT_NODE:
raise SyntaxError("Wrong node type in getChild()")
child = element.childNodes.item(index)
return child
def getLastChild(element, index, name=None):
if element.nodeType != element.ELEMENT_NODE:
raise SyntaxError("Wrong node type in getLastChild()")
child = element.childNodes.item(index)
if child == None:
raise SyntaxError("Missing child: '%s'" % name)
if child != element.lastChild:
raise SyntaxError("Too many elements under: '%s'" % element.tagName)
checkName(child, name)
return child
#Regular expressions for syntax-checking attribute and element content
nsRegEx = "http://trevp.net/cryptoID\Z"
cryptoIDRegEx = "([a-km-z3-9]{5}\.){3}[a-km-z3-9]{5}\Z"
urlRegEx = "http(s)?://.{1,100}\Z"
sha1Base64RegEx = "[A-Za-z0-9+/]{27}=\Z"
base64RegEx = "[A-Za-z0-9+/]+={0,4}\Z"
certsListRegEx = "(0)?(1)?(2)?(3)?(4)?(5)?(6)?(7)?(8)?(9)?\Z"
keyRegEx = "[A-Z]\Z"
keysListRegEx = "(A)?(B)?(C)?(D)?(E)?(F)?(G)?(H)?(I)?(J)?(K)?(L)?(M)?(N)?(O)?(P)?(Q)?(R)?(S)?(T)?(U)?(V)?(W)?(X)?(Y)?(Z)?\Z"
dateTimeRegEx = "\d\d\d\d-\d\d-\d\dT\d\d:\d\d:\d\dZ\Z"
shortStringRegEx = ".{1,100}\Z"
exprRegEx = "[a-zA-Z0-9 ,()]{1,200}\Z"
notAfterDeltaRegEx = "0|([1-9][0-9]{0,8})\Z" #A number from 0 to (1 billion)-1
booleanRegEx = "(true)|(false)"
def getReqAttribute(element, attrName, regEx=""):
if element.nodeType != element.ELEMENT_NODE:
raise SyntaxError("Wrong node type in getReqAttribute()")
value = element.getAttribute(attrName)
if not value:
raise SyntaxError("Missing Attribute: " + attrName)
if not re.match(regEx, value):
raise SyntaxError("Bad Attribute Value for '%s': '%s' " % (attrName, value))
element.removeAttribute(attrName)
return str(value) #de-unicode it; this is needed for bsddb, for example
def getAttribute(element, attrName, regEx=""):
if element.nodeType != element.ELEMENT_NODE:
raise SyntaxError("Wrong node type in getAttribute()")
value = element.getAttribute(attrName)
if value:
if not re.match(regEx, value):
raise SyntaxError("Bad Attribute Value for '%s': '%s' " % (attrName, value))
element.removeAttribute(attrName)
return str(value) #de-unicode it; this is needed for bsddb, for example
def checkNoMoreAttributes(element):
if element.nodeType != element.ELEMENT_NODE:
raise SyntaxError("Wrong node type in checkNoMoreAttributes()")
if element.attributes.length!=0:
raise SyntaxError("Extra attributes on '%s'" % element.tagName)
def getText(element, regEx=""):
textNode = element.firstChild
if textNode == None:
raise SyntaxError("Empty element '%s'" % element.tagName)
if textNode.nodeType != textNode.TEXT_NODE:
raise SyntaxError("Non-text node: '%s'" % element.tagName)
if not re.match(regEx, textNode.data):
raise SyntaxError("Bad Text Value for '%s': '%s' " % (element.tagName, textNode.data))
return str(textNode.data) #de-unicode it; this is needed for bsddb, for example
#Function for adding tabs to a string
def indent(s, steps, ch="\t"):
tabs = ch*steps
if s[-1] != "\n":
s = tabs + s.replace("\n", "\n"+tabs)
else:
s = tabs + s.replace("\n", "\n"+tabs)
s = s[ : -len(tabs)]
return s
def escape(s):
return saxutils.escape(s)