faset over fra Z3950 til google books

This commit is contained in:
2010-09-23 13:57:37 +00:00
parent d173b9396e
commit 644e79f9b5
221 changed files with 60948 additions and 27273 deletions

View File

@@ -0,0 +1,238 @@
#
# DSA.py : Digital Signature Algorithm
#
# Part of the Python Cryptography Toolkit
#
# Distribute and use freely; there are no restrictions on further
# dissemination and usage except those imposed by the laws of your
# country of residence. This software is provided "as is" without
# warranty of fitness for use or suitability for any purpose, express
# or implied. Use at your own risk or not at all.
#
__revision__ = "$Id: DSA.py,v 1.16 2004/05/06 12:52:54 akuchling Exp $"
from Crypto.PublicKey.pubkey import *
from Crypto.Util import number
from Crypto.Util.number import bytes_to_long, long_to_bytes
from Crypto.Hash import SHA
try:
from Crypto.PublicKey import _fastmath
except ImportError:
_fastmath = None
class error (Exception):
pass
def generateQ(randfunc):
S=randfunc(20)
hash1=SHA.new(S).digest()
hash2=SHA.new(long_to_bytes(bytes_to_long(S)+1)).digest()
q = bignum(0)
for i in range(0,20):
c=ord(hash1[i])^ord(hash2[i])
if i==0:
c=c | 128
if i==19:
c= c | 1
q=q*256+c
while (not isPrime(q)):
q=q+2
if pow(2,159L) < q < pow(2,160L):
return S, q
raise error, 'Bad q value generated'
def generate(bits, randfunc, progress_func=None):
"""generate(bits:int, randfunc:callable, progress_func:callable)
Generate a DSA key of length 'bits', using 'randfunc' to get
random data and 'progress_func', if present, to display
the progress of the key generation.
"""
if bits<160:
raise error, 'Key length <160 bits'
obj=DSAobj()
# Generate string S and prime q
if progress_func:
progress_func('p,q\n')
while (1):
S, obj.q = generateQ(randfunc)
n=(bits-1)/160
C, N, V = 0, 2, {}
b=(obj.q >> 5) & 15
powb=pow(bignum(2), b)
powL1=pow(bignum(2), bits-1)
while C<4096:
for k in range(0, n+1):
V[k]=bytes_to_long(SHA.new(S+str(N)+str(k)).digest())
W=V[n] % powb
for k in range(n-1, -1, -1):
W=(W<<160L)+V[k]
X=W+powL1
p=X-(X%(2*obj.q)-1)
if powL1<=p and isPrime(p):
break
C, N = C+1, N+n+1
if C<4096:
break
if progress_func:
progress_func('4096 multiples failed\n')
obj.p = p
power=(p-1)/obj.q
if progress_func:
progress_func('h,g\n')
while (1):
h=bytes_to_long(randfunc(bits)) % (p-1)
g=pow(h, power, p)
if 1<h<p-1 and g>1:
break
obj.g=g
if progress_func:
progress_func('x,y\n')
while (1):
x=bytes_to_long(randfunc(20))
if 0 < x < obj.q:
break
obj.x, obj.y = x, pow(g, x, p)
return obj
def construct(tuple):
"""construct(tuple:(long,long,long,long)|(long,long,long,long,long)):DSAobj
Construct a DSA object from a 4- or 5-tuple of numbers.
"""
obj=DSAobj()
if len(tuple) not in [4,5]:
raise error, 'argument for construct() wrong length'
for i in range(len(tuple)):
field = obj.keydata[i]
setattr(obj, field, tuple[i])
return obj
class DSAobj(pubkey):
keydata=['y', 'g', 'p', 'q', 'x']
def _encrypt(self, s, Kstr):
raise error, 'DSA algorithm cannot encrypt data'
def _decrypt(self, s):
raise error, 'DSA algorithm cannot decrypt data'
def _sign(self, M, K):
if (K<2 or self.q<=K):
raise error, 'K is not between 2 and q'
r=pow(self.g, K, self.p) % self.q
s=(inverse(K, self.q)*(M+self.x*r)) % self.q
return (r,s)
def _verify(self, M, sig):
r, s = sig
if r<=0 or r>=self.q or s<=0 or s>=self.q:
return 0
w=inverse(s, self.q)
u1, u2 = (M*w) % self.q, (r*w) % self.q
v1 = pow(self.g, u1, self.p)
v2 = pow(self.y, u2, self.p)
v = ((v1*v2) % self.p)
v = v % self.q
if v==r:
return 1
return 0
def size(self):
"Return the maximum number of bits that can be handled by this key."
return number.size(self.p) - 1
def has_private(self):
"""Return a Boolean denoting whether the object contains
private components."""
if hasattr(self, 'x'):
return 1
else:
return 0
def can_sign(self):
"""Return a Boolean value recording whether this algorithm can generate signatures."""
return 1
def can_encrypt(self):
"""Return a Boolean value recording whether this algorithm can encrypt data."""
return 0
def publickey(self):
"""Return a new key object containing only the public information."""
return construct((self.y, self.g, self.p, self.q))
object=DSAobj
generate_py = generate
construct_py = construct
class DSAobj_c(pubkey):
keydata = ['y', 'g', 'p', 'q', 'x']
def __init__(self, key):
self.key = key
def __getattr__(self, attr):
if attr in self.keydata:
return getattr(self.key, attr)
else:
if self.__dict__.has_key(attr):
self.__dict__[attr]
else:
raise AttributeError, '%s instance has no attribute %s' % (self.__class__, attr)
def __getstate__(self):
d = {}
for k in self.keydata:
if hasattr(self.key, k):
d[k]=getattr(self.key, k)
return d
def __setstate__(self, state):
y,g,p,q = state['y'], state['g'], state['p'], state['q']
if not state.has_key('x'):
self.key = _fastmath.dsa_construct(y,g,p,q)
else:
x = state['x']
self.key = _fastmath.dsa_construct(y,g,p,q,x)
def _sign(self, M, K):
return self.key._sign(M, K)
def _verify(self, M, (r, s)):
return self.key._verify(M, r, s)
def size(self):
return self.key.size()
def has_private(self):
return self.key.has_private()
def publickey(self):
return construct_c((self.key.y, self.key.g, self.key.p, self.key.q))
def can_sign(self):
return 1
def can_encrypt(self):
return 0
def generate_c(bits, randfunc, progress_func=None):
obj = generate_py(bits, randfunc, progress_func)
y,g,p,q,x = obj.y, obj.g, obj.p, obj.q, obj.x
return construct_c((y,g,p,q,x))
def construct_c(tuple):
key = apply(_fastmath.dsa_construct, tuple)
return DSAobj_c(key)
if _fastmath:
#print "using C version of DSA"
generate = generate_c
construct = construct_c
error = _fastmath.error

View File

@@ -0,0 +1,132 @@
#
# ElGamal.py : ElGamal encryption/decryption and signatures
#
# Part of the Python Cryptography Toolkit
#
# Distribute and use freely; there are no restrictions on further
# dissemination and usage except those imposed by the laws of your
# country of residence. This software is provided "as is" without
# warranty of fitness for use or suitability for any purpose, express
# or implied. Use at your own risk or not at all.
#
__revision__ = "$Id: ElGamal.py,v 1.9 2003/04/04 19:44:26 akuchling Exp $"
from Crypto.PublicKey.pubkey import *
from Crypto.Util import number
class error (Exception):
pass
# Generate an ElGamal key with N bits
def generate(bits, randfunc, progress_func=None):
"""generate(bits:int, randfunc:callable, progress_func:callable)
Generate an ElGamal key of length 'bits', using 'randfunc' to get
random data and 'progress_func', if present, to display
the progress of the key generation.
"""
obj=ElGamalobj()
# Generate prime p
if progress_func:
progress_func('p\n')
obj.p=bignum(getPrime(bits, randfunc))
# Generate random number g
if progress_func:
progress_func('g\n')
size=bits-1-(ord(randfunc(1)) & 63) # g will be from 1--64 bits smaller than p
if size<1:
size=bits-1
while (1):
obj.g=bignum(getPrime(size, randfunc))
if obj.g < obj.p:
break
size=(size+1) % bits
if size==0:
size=4
# Generate random number x
if progress_func:
progress_func('x\n')
while (1):
size=bits-1-ord(randfunc(1)) # x will be from 1 to 256 bits smaller than p
if size>2:
break
while (1):
obj.x=bignum(getPrime(size, randfunc))
if obj.x < obj.p:
break
size = (size+1) % bits
if size==0:
size=4
if progress_func:
progress_func('y\n')
obj.y = pow(obj.g, obj.x, obj.p)
return obj
def construct(tuple):
"""construct(tuple:(long,long,long,long)|(long,long,long,long,long)))
: ElGamalobj
Construct an ElGamal key from a 3- or 4-tuple of numbers.
"""
obj=ElGamalobj()
if len(tuple) not in [3,4]:
raise error, 'argument for construct() wrong length'
for i in range(len(tuple)):
field = obj.keydata[i]
setattr(obj, field, tuple[i])
return obj
class ElGamalobj(pubkey):
keydata=['p', 'g', 'y', 'x']
def _encrypt(self, M, K):
a=pow(self.g, K, self.p)
b=( M*pow(self.y, K, self.p) ) % self.p
return ( a,b )
def _decrypt(self, M):
if (not hasattr(self, 'x')):
raise error, 'Private key not available in this object'
ax=pow(M[0], self.x, self.p)
plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
return plaintext
def _sign(self, M, K):
if (not hasattr(self, 'x')):
raise error, 'Private key not available in this object'
p1=self.p-1
if (GCD(K, p1)!=1):
raise error, 'Bad K value: GCD(K,p-1)!=1'
a=pow(self.g, K, self.p)
t=(M-self.x*a) % p1
while t<0: t=t+p1
b=(t*inverse(K, p1)) % p1
return (a, b)
def _verify(self, M, sig):
v1=pow(self.y, sig[0], self.p)
v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
v2=pow(self.g, M, self.p)
if v1==v2:
return 1
return 0
def size(self):
"Return the maximum number of bits that can be handled by this key."
return number.size(self.p) - 1
def has_private(self):
"""Return a Boolean denoting whether the object contains
private components."""
if hasattr(self, 'x'):
return 1
else:
return 0
def publickey(self):
"""Return a new key object containing only the public information."""
return construct((self.p, self.g, self.y))
object=ElGamalobj

View File

@@ -0,0 +1,256 @@
#
# RSA.py : RSA encryption/decryption
#
# Part of the Python Cryptography Toolkit
#
# Distribute and use freely; there are no restrictions on further
# dissemination and usage except those imposed by the laws of your
# country of residence. This software is provided "as is" without
# warranty of fitness for use or suitability for any purpose, express
# or implied. Use at your own risk or not at all.
#
__revision__ = "$Id: RSA.py,v 1.20 2004/05/06 12:52:54 akuchling Exp $"
from Crypto.PublicKey import pubkey
from Crypto.Util import number
try:
from Crypto.PublicKey import _fastmath
except ImportError:
_fastmath = None
class error (Exception):
pass
def generate(bits, randfunc, progress_func=None):
"""generate(bits:int, randfunc:callable, progress_func:callable)
Generate an RSA key of length 'bits', using 'randfunc' to get
random data and 'progress_func', if present, to display
the progress of the key generation.
"""
obj=RSAobj()
# Generate the prime factors of n
if progress_func:
progress_func('p,q\n')
p = q = 1L
while number.size(p*q) < bits:
p = pubkey.getPrime(bits/2, randfunc)
q = pubkey.getPrime(bits/2, randfunc)
# p shall be smaller than q (for calc of u)
if p > q:
(p, q)=(q, p)
obj.p = p
obj.q = q
if progress_func:
progress_func('u\n')
obj.u = pubkey.inverse(obj.p, obj.q)
obj.n = obj.p*obj.q
obj.e = 65537L
if progress_func:
progress_func('d\n')
obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1))
assert bits <= 1+obj.size(), "Generated key is too small"
return obj
def construct(tuple):
"""construct(tuple:(long,) : RSAobj
Construct an RSA object from a 2-, 3-, 5-, or 6-tuple of numbers.
"""
obj=RSAobj()
if len(tuple) not in [2,3,5,6]:
raise error, 'argument for construct() wrong length'
for i in range(len(tuple)):
field = obj.keydata[i]
setattr(obj, field, tuple[i])
if len(tuple) >= 5:
# Ensure p is smaller than q
if obj.p>obj.q:
(obj.p, obj.q)=(obj.q, obj.p)
if len(tuple) == 5:
# u not supplied, so we're going to have to compute it.
obj.u=pubkey.inverse(obj.p, obj.q)
return obj
class RSAobj(pubkey.pubkey):
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
def _encrypt(self, plaintext, K=''):
if self.n<=plaintext:
raise error, 'Plaintext too large'
return (pow(plaintext, self.e, self.n),)
def _decrypt(self, ciphertext):
if (not hasattr(self, 'd')):
raise error, 'Private key not available in this object'
if self.n<=ciphertext[0]:
raise error, 'Ciphertext too large'
return pow(ciphertext[0], self.d, self.n)
def _sign(self, M, K=''):
return (self._decrypt((M,)),)
def _verify(self, M, sig):
m2=self._encrypt(sig[0])
if m2[0]==M:
return 1
else: return 0
def _blind(self, M, B):
tmp = pow(B, self.e, self.n)
return (M * tmp) % self.n
def _unblind(self, M, B):
tmp = pubkey.inverse(B, self.n)
return (M * tmp) % self.n
def can_blind (self):
"""can_blind() : bool
Return a Boolean value recording whether this algorithm can
blind data. (This does not imply that this
particular key object has the private information required to
to blind a message.)
"""
return 1
def size(self):
"""size() : int
Return the maximum number of bits that can be handled by this key.
"""
return number.size(self.n) - 1
def has_private(self):
"""has_private() : bool
Return a Boolean denoting whether the object contains
private components.
"""
if hasattr(self, 'd'):
return 1
else: return 0
def publickey(self):
"""publickey(): RSAobj
Return a new key object containing only the public key information.
"""
return construct((self.n, self.e))
class RSAobj_c(pubkey.pubkey):
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
def __init__(self, key):
self.key = key
def __getattr__(self, attr):
if attr in self.keydata:
return getattr(self.key, attr)
else:
if self.__dict__.has_key(attr):
self.__dict__[attr]
else:
raise AttributeError, '%s instance has no attribute %s' % (self.__class__, attr)
def __getstate__(self):
d = {}
for k in self.keydata:
if hasattr(self.key, k):
d[k]=getattr(self.key, k)
return d
def __setstate__(self, state):
n,e = state['n'], state['e']
if not state.has_key('d'):
self.key = _fastmath.rsa_construct(n,e)
else:
d = state['d']
if not state.has_key('q'):
self.key = _fastmath.rsa_construct(n,e,d)
else:
p, q, u = state['p'], state['q'], state['u']
self.key = _fastmath.rsa_construct(n,e,d,p,q,u)
def _encrypt(self, plain, K):
return (self.key._encrypt(plain),)
def _decrypt(self, cipher):
return self.key._decrypt(cipher[0])
def _sign(self, M, K):
return (self.key._sign(M),)
def _verify(self, M, sig):
return self.key._verify(M, sig[0])
def _blind(self, M, B):
return self.key._blind(M, B)
def _unblind(self, M, B):
return self.key._unblind(M, B)
def can_blind (self):
return 1
def size(self):
return self.key.size()
def has_private(self):
return self.key.has_private()
def publickey(self):
return construct_c((self.key.n, self.key.e))
def generate_c(bits, randfunc, progress_func = None):
# Generate the prime factors of n
if progress_func:
progress_func('p,q\n')
p = q = 1L
while number.size(p*q) < bits:
p = pubkey.getPrime(bits/2, randfunc)
q = pubkey.getPrime(bits/2, randfunc)
# p shall be smaller than q (for calc of u)
if p > q:
(p, q)=(q, p)
if progress_func:
progress_func('u\n')
u=pubkey.inverse(p, q)
n=p*q
e = 65537L
if progress_func:
progress_func('d\n')
d=pubkey.inverse(e, (p-1)*(q-1))
key = _fastmath.rsa_construct(n,e,d,p,q,u)
obj = RSAobj_c(key)
## print p
## print q
## print number.size(p), number.size(q), number.size(q*p),
## print obj.size(), bits
assert bits <= 1+obj.size(), "Generated key is too small"
return obj
def construct_c(tuple):
key = apply(_fastmath.rsa_construct, tuple)
return RSAobj_c(key)
object = RSAobj
generate_py = generate
construct_py = construct
if _fastmath:
#print "using C version of RSA"
generate = generate_c
construct = construct_c
error = _fastmath.error

View File

@@ -0,0 +1,17 @@
"""Public-key encryption and signature algorithms.
Public-key encryption uses two different keys, one for encryption and
one for decryption. The encryption key can be made public, and the
decryption key is kept private. Many public-key algorithms can also
be used to sign messages, and some can *only* be used for signatures.
Crypto.PublicKey.DSA Digital Signature Algorithm. (Signature only)
Crypto.PublicKey.ElGamal (Signing and encryption)
Crypto.PublicKey.RSA (Signing, encryption, and blinding)
Crypto.PublicKey.qNEW (Signature only)
"""
__all__ = ['RSA', 'DSA', 'ElGamal', 'qNEW']
__revision__ = "$Id: __init__.py,v 1.4 2003/04/03 20:27:13 akuchling Exp $"

View File

@@ -0,0 +1,172 @@
#
# pubkey.py : Internal functions for public key operations
#
# Part of the Python Cryptography Toolkit
#
# Distribute and use freely; there are no restrictions on further
# dissemination and usage except those imposed by the laws of your
# country of residence. This software is provided "as is" without
# warranty of fitness for use or suitability for any purpose, express
# or implied. Use at your own risk or not at all.
#
__revision__ = "$Id: pubkey.py,v 1.11 2003/04/03 20:36:14 akuchling Exp $"
import types, warnings
from Crypto.Util.number import *
# Basic public key class
class pubkey:
def __init__(self):
pass
def __getstate__(self):
"""To keep key objects platform-independent, the key data is
converted to standard Python long integers before being
written out. It will then be reconverted as necessary on
restoration."""
d=self.__dict__
for key in self.keydata:
if d.has_key(key): d[key]=long(d[key])
return d
def __setstate__(self, d):
"""On unpickling a key object, the key data is converted to the big
number representation being used, whether that is Python long
integers, MPZ objects, or whatever."""
for key in self.keydata:
if d.has_key(key): self.__dict__[key]=bignum(d[key])
def encrypt(self, plaintext, K):
"""encrypt(plaintext:string|long, K:string|long) : tuple
Encrypt the string or integer plaintext. K is a random
parameter required by some algorithms.
"""
wasString=0
if isinstance(plaintext, types.StringType):
plaintext=bytes_to_long(plaintext) ; wasString=1
if isinstance(K, types.StringType):
K=bytes_to_long(K)
ciphertext=self._encrypt(plaintext, K)
if wasString: return tuple(map(long_to_bytes, ciphertext))
else: return ciphertext
def decrypt(self, ciphertext):
"""decrypt(ciphertext:tuple|string|long): string
Decrypt 'ciphertext' using this key.
"""
wasString=0
if not isinstance(ciphertext, types.TupleType):
ciphertext=(ciphertext,)
if isinstance(ciphertext[0], types.StringType):
ciphertext=tuple(map(bytes_to_long, ciphertext)) ; wasString=1
plaintext=self._decrypt(ciphertext)
if wasString: return long_to_bytes(plaintext)
else: return plaintext
def sign(self, M, K):
"""sign(M : string|long, K:string|long) : tuple
Return a tuple containing the signature for the message M.
K is a random parameter required by some algorithms.
"""
if (not self.has_private()):
raise error, 'Private key not available in this object'
if isinstance(M, types.StringType): M=bytes_to_long(M)
if isinstance(K, types.StringType): K=bytes_to_long(K)
return self._sign(M, K)
def verify (self, M, signature):
"""verify(M:string|long, signature:tuple) : bool
Verify that the signature is valid for the message M;
returns true if the signature checks out.
"""
if isinstance(M, types.StringType): M=bytes_to_long(M)
return self._verify(M, signature)
# alias to compensate for the old validate() name
def validate (self, M, signature):
warnings.warn("validate() method name is obsolete; use verify()",
DeprecationWarning)
def blind(self, M, B):
"""blind(M : string|long, B : string|long) : string|long
Blind message M using blinding factor B.
"""
wasString=0
if isinstance(M, types.StringType):
M=bytes_to_long(M) ; wasString=1
if isinstance(B, types.StringType): B=bytes_to_long(B)
blindedmessage=self._blind(M, B)
if wasString: return long_to_bytes(blindedmessage)
else: return blindedmessage
def unblind(self, M, B):
"""unblind(M : string|long, B : string|long) : string|long
Unblind message M using blinding factor B.
"""
wasString=0
if isinstance(M, types.StringType):
M=bytes_to_long(M) ; wasString=1
if isinstance(B, types.StringType): B=bytes_to_long(B)
unblindedmessage=self._unblind(M, B)
if wasString: return long_to_bytes(unblindedmessage)
else: return unblindedmessage
# The following methods will usually be left alone, except for
# signature-only algorithms. They both return Boolean values
# recording whether this key's algorithm can sign and encrypt.
def can_sign (self):
"""can_sign() : bool
Return a Boolean value recording whether this algorithm can
generate signatures. (This does not imply that this
particular key object has the private information required to
to generate a signature.)
"""
return 1
def can_encrypt (self):
"""can_encrypt() : bool
Return a Boolean value recording whether this algorithm can
encrypt data. (This does not imply that this
particular key object has the private information required to
to decrypt a message.)
"""
return 1
def can_blind (self):
"""can_blind() : bool
Return a Boolean value recording whether this algorithm can
blind data. (This does not imply that this
particular key object has the private information required to
to blind a message.)
"""
return 0
# The following methods will certainly be overridden by
# subclasses.
def size (self):
"""size() : int
Return the maximum number of bits that can be handled by this key.
"""
return 0
def has_private (self):
"""has_private() : bool
Return a Boolean denoting whether the object contains
private components.
"""
return 0
def publickey (self):
"""publickey(): object
Return a new key object containing only the public information.
"""
return self
def __eq__ (self, other):
"""__eq__(other): 0, 1
Compare us to other for equality.
"""
return self.__getstate__() == other.__getstate__()

View File

@@ -0,0 +1,170 @@
#
# qNEW.py : The q-NEW signature algorithm.
#
# Part of the Python Cryptography Toolkit
#
# Distribute and use freely; there are no restrictions on further
# dissemination and usage except those imposed by the laws of your
# country of residence. This software is provided "as is" without
# warranty of fitness for use or suitability for any purpose, express
# or implied. Use at your own risk or not at all.
#
__revision__ = "$Id: qNEW.py,v 1.8 2003/04/04 15:13:35 akuchling Exp $"
from Crypto.PublicKey import pubkey
from Crypto.Util.number import *
from Crypto.Hash import SHA
class error (Exception):
pass
HASHBITS = 160 # Size of SHA digests
def generate(bits, randfunc, progress_func=None):
"""generate(bits:int, randfunc:callable, progress_func:callable)
Generate a qNEW key of length 'bits', using 'randfunc' to get
random data and 'progress_func', if present, to display
the progress of the key generation.
"""
obj=qNEWobj()
# Generate prime numbers p and q. q is a 160-bit prime
# number. p is another prime number (the modulus) whose bit
# size is chosen by the caller, and is generated so that p-1
# is a multiple of q.
#
# Note that only a single seed is used to
# generate p and q; if someone generates a key for you, you can
# use the seed to duplicate the key generation. This can
# protect you from someone generating values of p,q that have
# some special form that's easy to break.
if progress_func:
progress_func('p,q\n')
while (1):
obj.q = getPrime(160, randfunc)
# assert pow(2, 159L)<obj.q<pow(2, 160L)
obj.seed = S = long_to_bytes(obj.q)
C, N, V = 0, 2, {}
# Compute b and n such that bits-1 = b + n*HASHBITS
n= (bits-1) / HASHBITS
b= (bits-1) % HASHBITS ; powb=2L << b
powL1=pow(long(2), bits-1)
while C<4096:
# The V array will contain (bits-1) bits of random
# data, that are assembled to produce a candidate
# value for p.
for k in range(0, n+1):
V[k]=bytes_to_long(SHA.new(S+str(N)+str(k)).digest())
p = V[n] % powb
for k in range(n-1, -1, -1):
p= (p << long(HASHBITS) )+V[k]
p = p+powL1 # Ensure the high bit is set
# Ensure that p-1 is a multiple of q
p = p - (p % (2*obj.q)-1)
# If p is still the right size, and it's prime, we're done!
if powL1<=p and isPrime(p):
break
# Otherwise, increment the counter and try again
C, N = C+1, N+n+1
if C<4096:
break # Ended early, so exit the while loop
if progress_func:
progress_func('4096 values of p tried\n')
obj.p = p
power=(p-1)/obj.q
# Next parameter: g = h**((p-1)/q) mod p, such that h is any
# number <p-1, and g>1. g is kept; h can be discarded.
if progress_func:
progress_func('h,g\n')
while (1):
h=bytes_to_long(randfunc(bits)) % (p-1)
g=pow(h, power, p)
if 1<h<p-1 and g>1:
break
obj.g=g
# x is the private key information, and is
# just a random number between 0 and q.
# y=g**x mod p, and is part of the public information.
if progress_func:
progress_func('x,y\n')
while (1):
x=bytes_to_long(randfunc(20))
if 0 < x < obj.q:
break
obj.x, obj.y=x, pow(g, x, p)
return obj
# Construct a qNEW object
def construct(tuple):
"""construct(tuple:(long,long,long,long)|(long,long,long,long,long)
Construct a qNEW object from a 4- or 5-tuple of numbers.
"""
obj=qNEWobj()
if len(tuple) not in [4,5]:
raise error, 'argument for construct() wrong length'
for i in range(len(tuple)):
field = obj.keydata[i]
setattr(obj, field, tuple[i])
return obj
class qNEWobj(pubkey.pubkey):
keydata=['p', 'q', 'g', 'y', 'x']
def _sign(self, M, K=''):
if (self.q<=K):
raise error, 'K is greater than q'
if M<0:
raise error, 'Illegal value of M (<0)'
if M>=pow(2,161L):
raise error, 'Illegal value of M (too large)'
r=pow(self.g, K, self.p) % self.q
s=(K- (r*M*self.x % self.q)) % self.q
return (r,s)
def _verify(self, M, sig):
r, s = sig
if r<=0 or r>=self.q or s<=0 or s>=self.q:
return 0
if M<0:
raise error, 'Illegal value of M (<0)'
if M<=0 or M>=pow(2,161L):
return 0
v1 = pow(self.g, s, self.p)
v2 = pow(self.y, M*r, self.p)
v = ((v1*v2) % self.p)
v = v % self.q
if v==r:
return 1
return 0
def size(self):
"Return the maximum number of bits that can be handled by this key."
return 160
def has_private(self):
"""Return a Boolean denoting whether the object contains
private components."""
return hasattr(self, 'x')
def can_sign(self):
"""Return a Boolean value recording whether this algorithm can generate signatures."""
return 1
def can_encrypt(self):
"""Return a Boolean value recording whether this algorithm can encrypt data."""
return 0
def publickey(self):
"""Return a new key object containing only the public information."""
return construct((self.p, self.q, self.g, self.y))
object = qNEWobj