Projects/worblehat-old
Projects
/
worblehat-old
Archived
12
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
worblehat-old/python/gdata/tlslite/utils/cryptomath.py

405 lines
11 KiB
Python
Raw Normal View History

2010-09-23 15:57:37 +02:00
"""cryptomath module
This module has basic math/crypto code."""
import os
import sys
import math
import base64
import binascii
if sys.version_info[:2] <= (2, 4):
from sha import sha as sha1
else:
from hashlib import sha1
from compat import *
# **************************************************************************
# Load Optional Modules
# **************************************************************************
# Try to load M2Crypto/OpenSSL
try:
from M2Crypto import m2
m2cryptoLoaded = True
except ImportError:
m2cryptoLoaded = False
# Try to load cryptlib
try:
import cryptlib_py
try:
cryptlib_py.cryptInit()
except cryptlib_py.CryptException, e:
#If tlslite and cryptoIDlib are both present,
#they might each try to re-initialize this,
#so we're tolerant of that.
if e[0] != cryptlib_py.CRYPT_ERROR_INITED:
raise
cryptlibpyLoaded = True
except ImportError:
cryptlibpyLoaded = False
#Try to load GMPY
try:
import gmpy
gmpyLoaded = True
except ImportError:
gmpyLoaded = False
#Try to load pycrypto
try:
import Crypto.Cipher.AES
pycryptoLoaded = True
except ImportError:
pycryptoLoaded = False
# **************************************************************************
# PRNG Functions
# **************************************************************************
# Get os.urandom PRNG
try:
os.urandom(1)
def getRandomBytes(howMany):
return stringToBytes(os.urandom(howMany))
prngName = "os.urandom"
except:
# Else get cryptlib PRNG
if cryptlibpyLoaded:
def getRandomBytes(howMany):
randomKey = cryptlib_py.cryptCreateContext(cryptlib_py.CRYPT_UNUSED,
cryptlib_py.CRYPT_ALGO_AES)
cryptlib_py.cryptSetAttribute(randomKey,
cryptlib_py.CRYPT_CTXINFO_MODE,
cryptlib_py.CRYPT_MODE_OFB)
cryptlib_py.cryptGenerateKey(randomKey)
bytes = createByteArrayZeros(howMany)
cryptlib_py.cryptEncrypt(randomKey, bytes)
return bytes
prngName = "cryptlib"
else:
#Else get UNIX /dev/urandom PRNG
try:
devRandomFile = open("/dev/urandom", "rb")
def getRandomBytes(howMany):
return stringToBytes(devRandomFile.read(howMany))
prngName = "/dev/urandom"
except IOError:
#Else get Win32 CryptoAPI PRNG
try:
import win32prng
def getRandomBytes(howMany):
s = win32prng.getRandomBytes(howMany)
if len(s) != howMany:
raise AssertionError()
return stringToBytes(s)
prngName ="CryptoAPI"
except ImportError:
#Else no PRNG :-(
def getRandomBytes(howMany):
raise NotImplementedError("No Random Number Generator "\
"available.")
prngName = "None"
# **************************************************************************
# Converter Functions
# **************************************************************************
def bytesToNumber(bytes):
total = 0L
multiplier = 1L
for count in range(len(bytes)-1, -1, -1):
byte = bytes[count]
total += multiplier * byte
multiplier *= 256
return total
def numberToBytes(n):
howManyBytes = numBytes(n)
bytes = createByteArrayZeros(howManyBytes)
for count in range(howManyBytes-1, -1, -1):
bytes[count] = int(n % 256)
n >>= 8
return bytes
def bytesToBase64(bytes):
s = bytesToString(bytes)
return stringToBase64(s)
def base64ToBytes(s):
s = base64ToString(s)
return stringToBytes(s)
def numberToBase64(n):
bytes = numberToBytes(n)
return bytesToBase64(bytes)
def base64ToNumber(s):
bytes = base64ToBytes(s)
return bytesToNumber(bytes)
def stringToNumber(s):
bytes = stringToBytes(s)
return bytesToNumber(bytes)
def numberToString(s):
bytes = numberToBytes(s)
return bytesToString(bytes)
def base64ToString(s):
try:
return base64.decodestring(s)
except binascii.Error, e:
raise SyntaxError(e)
except binascii.Incomplete, e:
raise SyntaxError(e)
def stringToBase64(s):
return base64.encodestring(s).replace("\n", "")
def mpiToNumber(mpi): #mpi is an openssl-format bignum string
if (ord(mpi[4]) & 0x80) !=0: #Make sure this is a positive number
raise AssertionError()
bytes = stringToBytes(mpi[4:])
return bytesToNumber(bytes)
def numberToMPI(n):
bytes = numberToBytes(n)
ext = 0
#If the high-order bit is going to be set,
#add an extra byte of zeros
if (numBits(n) & 0x7)==0:
ext = 1
length = numBytes(n) + ext
bytes = concatArrays(createByteArrayZeros(4+ext), bytes)
bytes[0] = (length >> 24) & 0xFF
bytes[1] = (length >> 16) & 0xFF
bytes[2] = (length >> 8) & 0xFF
bytes[3] = length & 0xFF
return bytesToString(bytes)
# **************************************************************************
# Misc. Utility Functions
# **************************************************************************
def numBytes(n):
if n==0:
return 0
bits = numBits(n)
return int(math.ceil(bits / 8.0))
def hashAndBase64(s):
return stringToBase64(sha1(s).digest())
def getBase64Nonce(numChars=22): #defaults to an 132 bit nonce
bytes = getRandomBytes(numChars)
bytesStr = "".join([chr(b) for b in bytes])
return stringToBase64(bytesStr)[:numChars]
# **************************************************************************
# Big Number Math
# **************************************************************************
def getRandomNumber(low, high):
if low >= high:
raise AssertionError()
howManyBits = numBits(high)
howManyBytes = numBytes(high)
lastBits = howManyBits % 8
while 1:
bytes = getRandomBytes(howManyBytes)
if lastBits:
bytes[0] = bytes[0] % (1 << lastBits)
n = bytesToNumber(bytes)
if n >= low and n < high:
return n
def gcd(a,b):
a, b = max(a,b), min(a,b)
while b:
a, b = b, a % b
return a
def lcm(a, b):
#This will break when python division changes, but we can't use // cause
#of Jython
return (a * b) / gcd(a, b)
#Returns inverse of a mod b, zero if none
#Uses Extended Euclidean Algorithm
def invMod(a, b):
c, d = a, b
uc, ud = 1, 0
while c != 0:
#This will break when python division changes, but we can't use //
#cause of Jython
q = d / c
c, d = d-(q*c), c
uc, ud = ud - (q * uc), uc
if d == 1:
return ud % b
return 0
if gmpyLoaded:
def powMod(base, power, modulus):
base = gmpy.mpz(base)
power = gmpy.mpz(power)
modulus = gmpy.mpz(modulus)
result = pow(base, power, modulus)
return long(result)
else:
#Copied from Bryan G. Olson's post to comp.lang.python
#Does left-to-right instead of pow()'s right-to-left,
#thus about 30% faster than the python built-in with small bases
def powMod(base, power, modulus):
nBitScan = 5
""" Return base**power mod modulus, using multi bit scanning
with nBitScan bits at a time."""
#TREV - Added support for negative exponents
negativeResult = False
if (power < 0):
power *= -1
negativeResult = True
exp2 = 2**nBitScan
mask = exp2 - 1
# Break power into a list of digits of nBitScan bits.
# The list is recursive so easy to read in reverse direction.
nibbles = None
while power:
nibbles = int(power & mask), nibbles
power = power >> nBitScan
# Make a table of powers of base up to 2**nBitScan - 1
lowPowers = [1]
for i in xrange(1, exp2):
lowPowers.append((lowPowers[i-1] * base) % modulus)
# To exponentiate by the first nibble, look it up in the table
nib, nibbles = nibbles
prod = lowPowers[nib]
# For the rest, square nBitScan times, then multiply by
# base^nibble
while nibbles:
nib, nibbles = nibbles
for i in xrange(nBitScan):
prod = (prod * prod) % modulus
if nib: prod = (prod * lowPowers[nib]) % modulus
#TREV - Added support for negative exponents
if negativeResult:
prodInv = invMod(prod, modulus)
#Check to make sure the inverse is correct
if (prod * prodInv) % modulus != 1:
raise AssertionError()
return prodInv
return prod
#Pre-calculate a sieve of the ~100 primes < 1000:
def makeSieve(n):
sieve = range(n)
for count in range(2, int(math.sqrt(n))):
if sieve[count] == 0:
continue
x = sieve[count] * 2
while x < len(sieve):
sieve[x] = 0
x += sieve[count]
sieve = [x for x in sieve[2:] if x]
return sieve
sieve = makeSieve(1000)
def isPrime(n, iterations=5, display=False):
#Trial division with sieve
for x in sieve:
if x >= n: return True
if n % x == 0: return False
#Passed trial division, proceed to Rabin-Miller
#Rabin-Miller implemented per Ferguson & Schneier
#Compute s, t for Rabin-Miller
if display: print "*",
s, t = n-1, 0
while s % 2 == 0:
s, t = s/2, t+1
#Repeat Rabin-Miller x times
a = 2 #Use 2 as a base for first iteration speedup, per HAC
for count in range(iterations):
v = powMod(a, s, n)
if v==1:
continue
i = 0
while v != n-1:
if i == t-1:
return False
else:
v, i = powMod(v, 2, n), i+1
a = getRandomNumber(2, n)
return True
def getRandomPrime(bits, display=False):
if bits < 10:
raise AssertionError()
#The 1.5 ensures the 2 MSBs are set
#Thus, when used for p,q in RSA, n will have its MSB set
#
#Since 30 is lcm(2,3,5), we'll set our test numbers to
#29 % 30 and keep them there
low = (2L ** (bits-1)) * 3/2
high = 2L ** bits - 30
p = getRandomNumber(low, high)
p += 29 - (p % 30)
while 1:
if display: print ".",
p += 30
if p >= high:
p = getRandomNumber(low, high)
p += 29 - (p % 30)
if isPrime(p, display=display):
return p
#Unused at the moment...
def getRandomSafePrime(bits, display=False):
if bits < 10:
raise AssertionError()
#The 1.5 ensures the 2 MSBs are set
#Thus, when used for p,q in RSA, n will have its MSB set
#
#Since 30 is lcm(2,3,5), we'll set our test numbers to
#29 % 30 and keep them there
low = (2 ** (bits-2)) * 3/2
high = (2 ** (bits-1)) - 30
q = getRandomNumber(low, high)
q += 29 - (q % 30)
while 1:
if display: print ".",
q += 30
if (q >= high):
q = getRandomNumber(low, high)
q += 29 - (q % 30)
#Ideas from Tom Wu's SRP code
#Do trial division on p and q before Rabin-Miller
if isPrime(q, 0, display=display):
p = (2 * q) + 1
if isPrime(p, display=display):
if isPrime(q, display=display):
return p