Removed arpack eigs in pls_jk due to convergence problems
This commit is contained in:
parent
8e9c4c1c58
commit
bc23d933c3
@ -6,7 +6,7 @@ __all__ = ['lpls_val', 'pls_jk', 'lpls_jk']
|
||||
__docformat__ = "restructuredtext en"
|
||||
|
||||
from numpy import dot,empty,zeros,sqrt,atleast_2d,argmax,asarray,median,\
|
||||
array_split,arange
|
||||
array_split,arange, isnan, any
|
||||
from numpy.random import shuffle
|
||||
|
||||
from engines import pls
|
||||
@ -188,6 +188,8 @@ def pls_jk(X, Y, a_opt, nsets=None, center_axis=True, verbose=False):
|
||||
if verbose:
|
||||
print "Segment number: %d" %i
|
||||
dat = pls(X[cal,:], Y[cal,:], a_opt, scale='loads', mode='fast', center_axis=[0, 0])
|
||||
if any(isnan(dat['W'])):
|
||||
1/0
|
||||
Wcv[i,:,:] = dat['W']
|
||||
|
||||
return Wcv
|
||||
|
@ -8,7 +8,7 @@ __docformat__ = "restructuredtext en"
|
||||
from math import sqrt as msqrt
|
||||
|
||||
from numpy import dot,empty,zeros,apply_along_axis,newaxis,finfo,sqrt,r_,expand_dims,\
|
||||
minimum
|
||||
minimum, any, isnan
|
||||
from numpy.linalg import inv,svd
|
||||
from scipy.sandbox import arpack
|
||||
|
||||
@ -335,16 +335,30 @@ def pls(X, Y, aopt=2, scale='scores', mode='normal', center_axis=[0, 0]):
|
||||
w = XY.reshape(n, l)
|
||||
w = w/vnorm(w)
|
||||
elif n < l: # more yvars than xvars
|
||||
s, w = arpack.eigen_symmetric(dot(XY, XY.T),k=1, tol=1e-10, maxiter=100)
|
||||
#w, s, vh = svd(dot(XY, XY.T))
|
||||
#w = w[:,:1]
|
||||
|
||||
#!!! fixme
|
||||
# Arpack has convergence problems on large equal eigenvalues
|
||||
# which is typical for design/category in Y so we switch to regular svd.
|
||||
# Need to decide wether to remove arpack here or check for system
|
||||
# with many samples, many x-vars and many non-orth y-vars (where arpack speed
|
||||
# shines)
|
||||
#############
|
||||
|
||||
#s, w = arpack.eigen_symmetric(dot(XY, XY.T),k=1, tol=1e-10, maxiter=1000)
|
||||
#if s[0] == 0:
|
||||
# print "Arpack did not converge... using svd"
|
||||
w, s, vh = svd(dot(XY, XY.T))
|
||||
w = w[:,:1]
|
||||
else: # more xvars than yvars
|
||||
s, q = arpack.eigen_symmetric(dot(XY.T, XY), k=1, tol=1e-10, maxiter=100)
|
||||
#q, s, vh = svd(dot(XY.T, XY))
|
||||
#q = q[:,:1]
|
||||
#s, q = arpack.eigen_symmetric(dot(XY.T, XY), k=1, tol=1e-10, maxiter=1000)
|
||||
#if s[0] == 0:
|
||||
# print "Arpack did not converge... using svd"
|
||||
q, s, vh = svd(dot(XY.T, XY))
|
||||
q = q[:,:1]
|
||||
|
||||
w = dot(XY, q)
|
||||
w = w/vnorm(w)
|
||||
|
||||
r = w.copy()
|
||||
if i > 0:
|
||||
for j in range(0, i, 1):
|
||||
|
@ -262,8 +262,7 @@ def lpls_qvals(X, Y, Z, aopt=None, alpha=.3, zx_alpha=.5, n_iter=20,
|
||||
return _fdr(cal_tsq_z, pert_tsq_z, median), _fdr(cal_tsq_x, pert_tsq_x, median)
|
||||
|
||||
|
||||
def pls_qvals(X, Y, aopt, alpha=.3, zx_alpha=.5, n_iter=20,
|
||||
sim_method='shuffle',p_center='med', cov_center=median,
|
||||
def pls_qvals(X, Y, aopt, alpha=.3, n_iter=20,p_center='med', cov_center=median,
|
||||
crot=True,strict=False, center_axis=[0,0], nsets=None, zorth=False):
|
||||
|
||||
"""Returns qvals for pls model by permutation analysis.
|
||||
|
Reference in New Issue
Block a user