Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/workflows/pca_workflow.py

90 lines
2.7 KiB
Python

import gtk
import logger
from workflow import *
from scipy import array
from data import read_affy_annot
import plots
class PCAWorkflow(Workflow):
def __init__(self, app):
Workflow.__init__(self, app)
self.name = 'PCAs Workflow'
load = Stage('load', 'Load Data')
load.add_function(Function('load_mootha', 'Load Microarrays'))
self.add_stage(load)
preproc = Stage('preprocess', 'Preprocessing')
preproc.add_function(Function('log2', 'Logarithm'))
self.add_stage(preproc)
annot = Stage('annot', 'Affy annotations')
annot.add_function(LoadAnnotationsFunction())
self.add_stage(annot)
model = Stage('model', 'Model')
model.add_function(Function('pca', 'PCA'))
self.add_stage(model)
logger.log('debug', '\tPCA\'s workflow is now active')
class LoadAnnotationsFunction(Function):
def __init__(self):
Function.__init__(self, 'load', 'Load Annotations')
self.annotations = None
def load_affy_file(self, filename):
f = open(filename)
logger.log('notice', 'Loading annotation file: %s' % filename)
self.file = f
def on_response(self, dialog, response):
if response == gtk.RESPONSE_OK:
logger.log('notice', 'Reading file: %s' % dialog.get_filename())
self.load_affy_file(dialog.get_filename())
def run(self, data):
btns = ('Open', gtk.RESPONSE_OK, \
'Cancel', gtk.RESPONSE_CANCEL)
dialog = gtk.FileChooserDialog('Open Affy Annotation File',
buttons=btns)
dialog.connect('response', self.on_response)
dialog.run()
dialog.destroy()
### Reading and aprsing here
annot = read_affy_annot(self.file)
return [self.annotations]
class PCAFunction(Function):
def __init__(self):
Function.__init__(self, 'X', 'a_opt')
self.output = None
def run(self, data):
logger.log('debug', 'datatype: %s' % type(data))
if not isinstance(data,dataset.Dataset):
return None
logger.log('debug', 'dimensions: %s' % data.dims)
## calculations
T,P,E,tsq = pca(data._data,a_opt=2)
comp_def = ['comp',['1','2']]
singel_def = ['1',['s']]
col_def = [data._dim_names[0],data.names(0)]
row_def = [data._dim_names[1],data.names(1)]
T = dataset.Dataset(T,[col_def,comp_def])
P = dataset.Dataset(T,[row_def,comp_def])
E = dataset.Dataset(E,[col_def,row_def])
tsq = dataset.Dataset(tsq,[row_def,sigel_def])
## plots
loading_plot = plots.ScatterPlot()
return [T,P,E,r]