Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0

New pca workflow and datset updates

This commit is contained in:
Arnar Flatberg 2006-04-20 15:30:29 +00:00
parent c09f2ceb92
commit 800e7dc42e
4 changed files with 111 additions and 5 deletions

4
fluent
View File

@ -19,6 +19,7 @@ import logger
import plots
import navigator
import go_workflow
import pca_workflow
import scipy
PROGRAM_NAME = 'fluent'
@ -45,7 +46,8 @@ class FluentApp:
self.current_data = None
gtk.glade.set_custom_handler(self.custom_object_factory)
self.widget_tree = gtk.glade.XML(GLADEFILENAME, 'appwindow')
self.workflow = go_workflow.EinarsWorkflow(self)
self.workflow = pca_workflow.PCAWorkflow(self)
self.workflow.add_project(self.project)
def custom_object_factory(self, glade, function_name, widget_name,\
str1, str2, int1, int2):

View File

@ -12,12 +12,16 @@ class Dataset:
"""
def __init__(self,input_array,def_list):
self._data = asarray(input_array)
self.dims = shape(self._data)
dims = shape(self._data)
self.def_list = def_list
self._ids_set = set()
self.ids={}
self._dim_num = {}
self._dim_names = []
if len(dims)==1: # a vector is defined to be column vector!
self.dims = (dims[0],1)
else:
self.dims = dims
if len(def_list)!=len(self.dims):
raise ValueError,"array dims and identifyer mismatch"
for axis,(dim_name,ids) in enumerate(def_list):
@ -25,7 +29,7 @@ class Dataset:
#if dim_name not in project.c_p.dim_names:
# dim_name = project.c_p.suggest_dim_name(dim_name)
if not ids:
logger.log('debug','Creating identifiers along: '+dim_name)
logger.log('debug','Creating identifiers along: '+ str(dim_name))
ids = self._create_identifiers(axis)
for num,name in enumerate(ids):
enum_ids[name] = num
@ -40,13 +44,21 @@ class Dataset:
raise ValueError,"dim size and identifyer mismatch"
def names(self,axis=0):
"""Returns identifier names of a dimension. NB: not in any order! """
"""Returns identifier names of a dimension.
NB: sorted by values!
OK? necessary?"""
if type(axis)==int:
dim_name = self._dim_names[axis]
elif type(axis)==str:
dim_name = axis
return self.ids[dim_name].keys()
if dim_name not in self._dim_names:
raise ValueError, dim_name + " not a dimension in dataset"
items = self.ids[dim_name].items()
backitems=[ [v[1],v[0]] for v in items]
backitems.sort()
sorted_ids=[ backitems[i][1] for i in range(0,len(backitems))]
return sorted_ids
def extract_data(self,ids,dim_name):
"""Extracts data along a dimension by identifiers"""

View File

@ -27,6 +27,9 @@ class Workflow:
for fun in stage.functions:
print ' %s' % fun.name
def add_project(self,project):
self.project = project
class Stage:
"""A stage is a part of the data analysis process.

89
workflows/pca_workflow.py Normal file
View File

@ -0,0 +1,89 @@
import gtk
import logger
from workflow import *
from scipy import array
from data import read_affy_annot
import plots
class PCAWorkflow(Workflow):
def __init__(self, app):
Workflow.__init__(self, app)
self.name = 'PCAs Workflow'
load = Stage('load', 'Load Data')
load.add_function(Function('load_mootha', 'Load Microarrays'))
self.add_stage(load)
preproc = Stage('preprocess', 'Preprocessing')
preproc.add_function(Function('log2', 'Logarithm'))
self.add_stage(preproc)
annot = Stage('annot', 'Affy annotations')
annot.add_function(LoadAnnotationsFunction())
self.add_stage(annot)
model = Stage('model', 'Model')
model.add_function(Function('pca', 'PCA'))
self.add_stage(model)
logger.log('debug', '\tPCA\'s workflow is now active')
class LoadAnnotationsFunction(Function):
def __init__(self):
Function.__init__(self, 'load', 'Load Annotations')
self.annotations = None
def load_affy_file(self, filename):
f = open(filename)
logger.log('notice', 'Loading annotation file: %s' % filename)
self.file = f
def on_response(self, dialog, response):
if response == gtk.RESPONSE_OK:
logger.log('notice', 'Reading file: %s' % dialog.get_filename())
self.load_affy_file(dialog.get_filename())
def run(self, data):
btns = ('Open', gtk.RESPONSE_OK, \
'Cancel', gtk.RESPONSE_CANCEL)
dialog = gtk.FileChooserDialog('Open Affy Annotation File',
buttons=btns)
dialog.connect('response', self.on_response)
dialog.run()
dialog.destroy()
### Reading and aprsing here
annot = read_affy_annot(self.file)
return [self.annotations]
class PCAFunction(Function):
def __init__(self):
Function.__init__(self, 'X', 'a_opt')
self.output = None
def run(self, data):
logger.log('debug', 'datatype: %s' % type(data))
if not isinstance(data,dataset.Dataset):
return None
logger.log('debug', 'dimensions: %s' % data.dims)
## calculations
T,P,E,tsq = pca(data._data,a_opt=2)
comp_def = ['comp',['1','2']]
singel_def = ['1',['s']]
col_def = [data._dim_names[0],data.names(0)]
row_def = [data._dim_names[1],data.names(1)]
T = dataset.Dataset(T,[col_def,comp_def])
P = dataset.Dataset(T,[row_def,comp_def])
E = dataset.Dataset(E,[col_def,row_def])
tsq = dataset.Dataset(tsq,[row_def,sigel_def])
## plots
loading_plot = plots.ScatterPlot()
return [T,P,E,r]