Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/lib/blmplots.py

303 lines
10 KiB
Python

"""Specialised plots for functions defined in blmfuncs.py.
fixme:
-- If scatterplot is not inited with a colorvector there will be no
colorbar, but when adding colors the colorbar shoud be created.
"""
from matplotlib import cm
import gtk
import fluents
from fluents import plots
import scipy
from scipy import dot,sum,diag,arange,log,mean,newaxis,sqrt,apply_along_axis
class BlmScatterPlot(plots.ScatterPlot):
"""Scatter plot used for scores and loadings in bilinear models."""
def __init__(self, title, model, absi=0, ordi=1, part_name='T', color_by=None):
if model.model.has_key(part_name)!=True:
raise ValueError("Model part: %s not found in model" %mod_param)
self._T = model.model[part_name]
if self._T.shape[1]==1:
logger.log('notice', 'Scores have only one component')
absi= ordi = 0
self._absi = absi
self._ordi = ordi
self._cmap = cm.jet
dataset_1 = model.as_dataset(part_name)
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
col = 'b'
if model.model.has_key(color_by):
col = model.model[color_by].ravel()
plots.ScatterPlot.__init__(self, dataset_1, dataset_1, id_dim, sel_dim, id_1, id_2 ,c=col ,s=40 , name=title)
self._mappable.set_cmap(self._cmap)
self.sc = self._mappable
self.add_pc_spin_buttons(self._T.shape[1], absi, ordi)
def _update_color_from_dataset(self, data):
"""Overriding scatter for testing of colormaps.
"""
is_category = False
array = data.asarray()
#only support for 2d-arrays:
try:
m, n = array.shape
except:
raise ValueError, "No support for more than 2 dimensions."
# is dataset a vector or matrix?
if not n==1:
# we have a category dataset
if isinstance(data, fluents.dataset.CategoryDataset):
is_category = True
map_vec = scipy.dot(array, scipy.diag(scipy.arange(n))).sum(1)
else:
map_vec = array.sum(1)
else:
map_vec = array.ravel()
# update facecolors
self.sc.set_array(map_vec)
self.sc.set_clim(map_vec.min(), map_vec.max())
if is_category:
cmap = cm.Paired
else:
cmap = cm.jet
self.sc.set_cmap(cmap)
self.sc.update_scalarmappable() #sets facecolors from array
self.canvas.draw()
def set_facecolor(self, colors):
"""Set patch facecolors.
"""
pass
def set_alphas(self, alphas):
"""Set alpha channel for all patches."""
pass
def set_sizes(self, sizes):
"""Set patch sizes."""
pass
def add_pc_spin_buttons(self, amax, absi, ordi):
sb_a = gtk.SpinButton(climb_rate=1)
sb_a.set_range(1, amax)
sb_a.set_value(absi+1)
sb_a.set_increments(1, 5)
sb_a.connect('value_changed', self.set_absicca)
sb_o = gtk.SpinButton(climb_rate=1)
sb_o.set_range(1, amax)
sb_o.set_value(ordi+1)
sb_o.set_increments(1, 5)
sb_o.connect('value_changed', self.set_ordinate)
hbox = gtk.HBox()
gtk_label_a = gtk.Label("A:")
gtk_label_o = gtk.Label(" O:")
toolitem = gtk.ToolItem()
toolitem.set_expand(False)
toolitem.set_border_width(2)
toolitem.add(hbox)
hbox.pack_start(gtk_label_a)
hbox.pack_start(sb_a)
hbox.pack_start(gtk_label_o)
hbox.pack_start(sb_o)
self._toolbar.insert(toolitem, -1)
toolitem.set_tooltip(self._toolbar.tooltips, "Set Principal component")
self._toolbar.show_all() #do i need this?
def set_absicca(self, sb):
self._absi = sb.get_value_as_int() - 1
xy = self._T[:,[self._absi, self._ordi]]
self.xaxis_data = xy[:,0]
self.yaxis_data = xy[:,1]
self.sc._offsets = xy
self.selection_collection._offsets = xy
self.canvas.draw_idle()
pad = abs(self.xaxis_data.min()-self.xaxis_data.max())*0.05
new_lims = (self.xaxis_data.min()+pad, self.xaxis_data.max()+pad)
self.axes.set_xlim(new_lims, emit=True)
self.canvas.draw_idle()
def set_ordinate(self, sb):
self._ordi = sb.get_value_as_int() - 1
xy = self._T[:,[self._absi, self._ordi]]
self.xaxis_data = xy[:,0]
self.yaxis_data = xy[:,1]
self.sc._offsets = xy
self.selection_collection._offsets = xy
pad = abs(self.yaxis_data.min()-self.yaxis_data.max())*0.05
new_lims = (self.yaxis_data.min()+pad, self.yaxis_data.max()+pad)
self.axes.set_ylim(new_lims, emit=True)
self.canvas.draw_idle()
def show_labels(self, index=None):
if self._text_labels == None:
x = self.xaxis_data
y = self.yaxis_data
self._text_labels = {}
for name, n in self.dataset_1[self.current_dim].items():
txt = self.axes.text(x[n],y[n], name)
txt.set_visible(False)
self._text_labels[n] = txt
if index!=None:
self.hide_labels()
for indx,txt in self._text_labels.items():
if indx in index:
txt.set_visible(True)
self.canvas.draw()
def hide_labels(self):
for txt in self._text_labels.values():
txt.set_visible(False)
self.canvas.draw()
class PcaScorePlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Pca scores (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T')
class PcaLoadingPlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Pca loadings (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='p_tsq')
class PlsScorePlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Pls scores (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T')
class PlsLoadingPlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Pls loadings (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='w_tsq')
class PlsCorrelationLoadingPlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Pls correlation loadings (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='CP')
class LplsHypoidCorrelationPlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Hypoid correlations(%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='W')
class LineViewXc(plots.LineViewPlot):
"""A line view of centered raw data
"""
def __init__(self, model, name='Profiles'):
# copy, center, plot
x = model._dataset['X'].copy()
x._array = x._array - mean(x._array,0)[newaxis]
plots.LineViewPlot.__init__(self, x, 1, None, name)
class ParalellCoordinates(plots.Plot):
"""Parallell coordinates for score loads with many comp.
"""
def __init__(self, model, p='loads'):
pass
class PlsQvalScatter(plots.ScatterPlot):
"""A vulcano like plot of loads vs qvals
"""
def __init__(self, model, pc=0):
if not model.model.has_key('w_tsq'):
return None
self._W = model.model['W']
dataset_1 = model.as_dataset('W')
dataset_2 = model.as_dataset('w_tsq')
id_dim = dataset_1.get_dim_name(0) #genes
sel_dim = dataset_1.get_dim_name(1) #_comp
sel_dim_2 = dataset_2.get_dim_name(1) #_zero_dim
id_1, = dataset_1.get_identifiers(sel_dim, [0])
id_2, = dataset_2.get_identifiers(sel_dim_2, [0])
if model.model.has_key('w_tsq'):
col = model.model['w_tsq'].ravel()
#col = normalise(col)
else:
col = 'g'
plots.ScatterPlot.__init__(self, dataset_1, dataset_2,
id_dim, sel_dim, id_1, id_2,
c=col, s=20, sel_dim_2=sel_dim_2,
name='Load Volcano')
class PredictionErrorPlot(plots.Plot):
"""A boxplot of prediction error vs. comp. number.
"""
def __init__(self, model, name="Prediction Error"):
if not model.model.has_key('sep'):
logger.log('notice', 'Model has no calculations of sep')
return None
plots.Plot.__init__(self, name)
self._frozen = True
self.current_dim = 'johndoe'
self.axes = self.fig.add_subplot(111)
# draw
sep = model.model['sep']
aopt = model.model['aopt']
bx_plot_lines = self.axes.boxplot(sqrt(sep))
aopt_marker = self.axes.axvline(aopt, linewidth=10,
color='r',zorder=0,
alpha=.5)
# add canvas
self.add(self.canvas)
self.canvas.show()
def set_current_selection(self, selection):
pass
class TRBiplot(plots.ScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Target rotation biplot(%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, 'B')
B = model.model.get('B')
# normalize B
Bnorm = scipy.apply_along_axis(scipy.linalg.norm, 1, B)
x = model._dataset['X'].copy()
Xc = x._array - mean(x._array,0)[newaxis]
w_rot = B/Bnorm
t_rot = dot(Xc, w_rot)
class InfluencePlot(plots.ScatterPlot):
"""
"""
pass
class RMSEPPlot(plots.BarPlot):
def __init__(self, model, name="RMSEP"):
if not model.model.has_key('rmsep'):
logger.log('notice', 'Model has no calculations of sep')
return
dataset = model.as_dataset('rmsep')
plots.BarPlot.__init__(self, dataset, name=name)
def normalise(x):
"""Scale vector x to [0,1]
"""
x = x - x.min()
x = x/x.max()
return x