"""Specialised plots for functions defined in blmfuncs.py. fixme: -- If scatterplot is not inited with a colorvector there will be no colorbar, but when adding colors the colorbar shoud be created. """ from matplotlib import cm import gtk import fluents from fluents import plots import scipy from scipy import dot,sum,diag,arange,log,mean,newaxis,sqrt,apply_along_axis class BlmScatterPlot(plots.ScatterPlot): """Scatter plot used for scores and loadings in bilinear models.""" def __init__(self, title, model, absi=0, ordi=1, part_name='T', color_by=None): if model.model.has_key(part_name)!=True: raise ValueError("Model part: %s not found in model" %mod_param) self._T = model.model[part_name] if self._T.shape[1]==1: logger.log('notice', 'Scores have only one component') absi= ordi = 0 self._absi = absi self._ordi = ordi self._cmap = cm.jet dataset_1 = model.as_dataset(part_name) id_dim = dataset_1.get_dim_name(0) sel_dim = dataset_1.get_dim_name(1) id_1, = dataset_1.get_identifiers(sel_dim, [absi]) id_2, = dataset_1.get_identifiers(sel_dim, [ordi]) col = 'b' if model.model.has_key(color_by): col = model.model[color_by].ravel() plots.ScatterPlot.__init__(self, dataset_1, dataset_1, id_dim, sel_dim, id_1, id_2 ,c=col ,s=40 , name=title) self._mappable.set_cmap(self._cmap) self.sc = self._mappable self.add_pc_spin_buttons(self._T.shape[1], absi, ordi) def _update_color_from_dataset(self, data): """Overriding scatter for testing of colormaps. """ is_category = False array = data.asarray() #only support for 2d-arrays: try: m, n = array.shape except: raise ValueError, "No support for more than 2 dimensions." # is dataset a vector or matrix? if not n==1: # we have a category dataset if isinstance(data, fluents.dataset.CategoryDataset): is_category = True map_vec = scipy.dot(array, scipy.diag(scipy.arange(n))).sum(1) else: map_vec = array.sum(1) else: map_vec = array.ravel() # update facecolors self.sc.set_array(map_vec) self.sc.set_clim(map_vec.min(), map_vec.max()) if is_category: cmap = cm.Paired else: cmap = cm.jet self.sc.set_cmap(cmap) self.sc.update_scalarmappable() #sets facecolors from array self.canvas.draw() def set_facecolor(self, colors): """Set patch facecolors. """ pass def set_alphas(self, alphas): """Set alpha channel for all patches.""" pass def set_sizes(self, sizes): """Set patch sizes.""" pass def add_pc_spin_buttons(self, amax, absi, ordi): sb_a = gtk.SpinButton(climb_rate=1) sb_a.set_range(1, amax) sb_a.set_value(absi+1) sb_a.set_increments(1, 5) sb_a.connect('value_changed', self.set_absicca) sb_o = gtk.SpinButton(climb_rate=1) sb_o.set_range(1, amax) sb_o.set_value(ordi+1) sb_o.set_increments(1, 5) sb_o.connect('value_changed', self.set_ordinate) hbox = gtk.HBox() gtk_label_a = gtk.Label("A:") gtk_label_o = gtk.Label(" O:") toolitem = gtk.ToolItem() toolitem.set_expand(False) toolitem.set_border_width(2) toolitem.add(hbox) hbox.pack_start(gtk_label_a) hbox.pack_start(sb_a) hbox.pack_start(gtk_label_o) hbox.pack_start(sb_o) self._toolbar.insert(toolitem, -1) toolitem.set_tooltip(self._toolbar.tooltips, "Set Principal component") self._toolbar.show_all() #do i need this? def set_absicca(self, sb): self._absi = sb.get_value_as_int() - 1 xy = self._T[:,[self._absi, self._ordi]] self.xaxis_data = xy[:,0] self.yaxis_data = xy[:,1] self.sc._offsets = xy self.selection_collection._offsets = xy self.canvas.draw_idle() pad = abs(self.xaxis_data.min()-self.xaxis_data.max())*0.05 new_lims = (self.xaxis_data.min()+pad, self.xaxis_data.max()+pad) self.axes.set_xlim(new_lims, emit=True) self.canvas.draw_idle() def set_ordinate(self, sb): self._ordi = sb.get_value_as_int() - 1 xy = self._T[:,[self._absi, self._ordi]] self.xaxis_data = xy[:,0] self.yaxis_data = xy[:,1] self.sc._offsets = xy self.selection_collection._offsets = xy pad = abs(self.yaxis_data.min()-self.yaxis_data.max())*0.05 new_lims = (self.yaxis_data.min()+pad, self.yaxis_data.max()+pad) self.axes.set_ylim(new_lims, emit=True) self.canvas.draw_idle() def show_labels(self, index=None): if self._text_labels == None: x = self.xaxis_data y = self.yaxis_data self._text_labels = {} for name, n in self.dataset_1[self.current_dim].items(): txt = self.axes.text(x[n],y[n], name) txt.set_visible(False) self._text_labels[n] = txt if index!=None: self.hide_labels() for indx,txt in self._text_labels.items(): if indx in index: txt.set_visible(True) self.canvas.draw() def hide_labels(self): for txt in self._text_labels.values(): txt.set_visible(False) self.canvas.draw() class PcaScorePlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Pca scores (%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T') class PcaLoadingPlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Pca loadings (%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='p_tsq') class PlsScorePlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Pls scores (%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T') class PlsLoadingPlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Pls loadings (%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='w_tsq') class PlsCorrelationLoadingPlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Pls correlation loadings (%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='CP') class LplsHypoidCorrelationPlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Hypoid correlations(%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='W') class LineViewXc(plots.LineViewPlot): """A line view of centered raw data """ def __init__(self, model, name='Profiles'): # copy, center, plot x = model._dataset['X'].copy() x._array = x._array - mean(x._array,0)[newaxis] plots.LineViewPlot.__init__(self, x, 1, None, name) class ParalellCoordinates(plots.Plot): """Parallell coordinates for score loads with many comp. """ def __init__(self, model, p='loads'): pass class PlsQvalScatter(plots.ScatterPlot): """A vulcano like plot of loads vs qvals """ def __init__(self, model, pc=0): if not model.model.has_key('w_tsq'): return None self._W = model.model['W'] dataset_1 = model.as_dataset('W') dataset_2 = model.as_dataset('w_tsq') id_dim = dataset_1.get_dim_name(0) #genes sel_dim = dataset_1.get_dim_name(1) #_comp sel_dim_2 = dataset_2.get_dim_name(1) #_zero_dim id_1, = dataset_1.get_identifiers(sel_dim, [0]) id_2, = dataset_2.get_identifiers(sel_dim_2, [0]) if model.model.has_key('w_tsq'): col = model.model['w_tsq'].ravel() #col = normalise(col) else: col = 'g' plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2, c=col, s=20, sel_dim_2=sel_dim_2, name='Load Volcano') class PredictionErrorPlot(plots.Plot): """A boxplot of prediction error vs. comp. number. """ def __init__(self, model, name="Prediction Error"): if not model.model.has_key('sep'): logger.log('notice', 'Model has no calculations of sep') return None plots.Plot.__init__(self, name) self._frozen = True self.current_dim = 'johndoe' self.axes = self.fig.add_subplot(111) # draw sep = model.model['sep'] aopt = model.model['aopt'] bx_plot_lines = self.axes.boxplot(sqrt(sep)) aopt_marker = self.axes.axvline(aopt, linewidth=10, color='r',zorder=0, alpha=.5) # add canvas self.add(self.canvas) self.canvas.show() def set_current_selection(self, selection): pass class TRBiplot(plots.ScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Target rotation biplot(%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, 'B') B = model.model.get('B') # normalize B Bnorm = scipy.apply_along_axis(scipy.linalg.norm, 1, B) x = model._dataset['X'].copy() Xc = x._array - mean(x._array,0)[newaxis] w_rot = B/Bnorm t_rot = dot(Xc, w_rot) class InfluencePlot(plots.ScatterPlot): """ """ pass class RMSEPPlot(plots.BarPlot): def __init__(self, model, name="RMSEP"): if not model.model.has_key('rmsep'): logger.log('notice', 'Model has no calculations of sep') return dataset = model.as_dataset('rmsep') plots.BarPlot.__init__(self, dataset, name=name) def normalise(x): """Scale vector x to [0,1] """ x = x - x.min() x = x/x.max() return x