165 lines
4.8 KiB
Python
165 lines
4.8 KiB
Python
import sys
|
|
import rpy
|
|
from pylab import gca, figure, subplot
|
|
from scipy import *
|
|
from lpls import *
|
|
import rpy_go
|
|
sys.path.append("../../fluents") # home of dataset
|
|
sys.path.append("../../fluents/lib") # home of cx_stats
|
|
import dataset
|
|
import cx_stats
|
|
from plots_lpls import plot_corrloads
|
|
|
|
######## DATA ##########
|
|
# full smoker data
|
|
DX = dataset.read_ftsv(open("../../data/smokers-full/Xfull.ftsv"))
|
|
DY = dataset.read_ftsv(open("../../data/smokers-full/Yg.ftsv"))
|
|
Y = DY.asarray().astype('d')
|
|
# select subset genes by SAM
|
|
rpy.r.library("siggenes")
|
|
rpy.r.library("qvalue")
|
|
data = DX.asarray().T
|
|
# data = data[:100,:]
|
|
rpy.r.assign("data", data)
|
|
cl = dot(DY.asarray(), diag([1,2,3])).sum(1)
|
|
rpy.r.assign("cl", cl)
|
|
rpy.r.assign("B", 100)
|
|
# Perform a SAM analysis.
|
|
print "Starting SAM"
|
|
sam = rpy.r('sam.out<-sam(data=data,cl=cl,B=B,rand=123)')
|
|
print "SAM done"
|
|
# Compute the q-values of the genes.
|
|
qq = rpy.r('qobj<-qvalue(sam.out@p.value)')
|
|
qvals = asarray(qq['qvalues'])
|
|
# cut off
|
|
co = 0.001
|
|
index = where(qvals<0.01)[0]
|
|
|
|
# Subset data
|
|
X = DX.asarray()
|
|
Xr = X[:,index]
|
|
gene_ids = DX.get_identifiers('gene_ids', index)
|
|
print "\nWorkiing on subset with %s genes " %len(gene_ids)
|
|
### Build GO data ####
|
|
|
|
print "Go terms ..."
|
|
goterms = rpy_go.goterms_from_gene(gene_ids)
|
|
terms = set()
|
|
for t in goterms.values():
|
|
terms.update(t)
|
|
terms = list(terms)
|
|
print "Number of go-terms: %s" %len(terms)
|
|
rpy.r.library("GOSim")
|
|
# Go-term similarity matrix
|
|
methods = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
|
|
meth = methods[0]
|
|
print "Term-term similarity matrix (method = %s)" %meth
|
|
if meth=="CoutoEnriched":
|
|
rpy.r('setEnrichmentFactors(alpha=0.1,beta=0.5)')
|
|
print "Calculating term-term similarity matrix"
|
|
tmat = rpy.r.getTermSim(terms, verbose=False, method=meth)
|
|
# check if all terms where found
|
|
nanindex = where(isnan(tmat[:,0]))[0]
|
|
keep=[]
|
|
has_miss = False
|
|
if len(nanindex)>0:
|
|
has_miss = True
|
|
print "Some terms missing in similarity matrix"
|
|
keep = where(isnan(tmat[:,0])!=True)[0]
|
|
print "Number of nans: %d" %len(nanindex)
|
|
tmat_new = tmat[:,keep][keep,:]
|
|
new_terms = [i for ind,i in enumerate(terms) if ind in keep]
|
|
bad_terms = [i for ind,i in enumerate(terms) if ind not in keep]
|
|
# update go-term dict
|
|
for gene,trm in goterms.items():
|
|
for t in trm:
|
|
if t in bad_terms:
|
|
trm.remove(t)
|
|
if len(trm)==0:
|
|
print "Removing gene: %s" %gene
|
|
goterms[gene]=trm
|
|
terms = new_terms
|
|
tmat = tmat_new
|
|
# Z-matrix
|
|
# func (min, max, median, mean, etc),
|
|
# func decides on the representation of gene-> goterm when multiple
|
|
# goterms exist for one gene
|
|
Z, newind = rpy_go.genego_matrix(goterms, tmat, gene_ids, terms,func=mean)
|
|
Z = Z.T
|
|
# update X matrix (no go-terms available)
|
|
Xr = Xr[:,newind]
|
|
new_gene_ids = asarray(gene_ids)[newind]
|
|
|
|
|
|
######## LPLSR ########
|
|
print "LPLSR ..."
|
|
a_max = 5
|
|
aopt = 2
|
|
alpha=.6
|
|
T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(Xr,Y,Z, a_max, alpha)
|
|
|
|
# Correlation loadings
|
|
dx,Rx,rssx = correlation_loadings(Xr, T, P)
|
|
dx,Ry,rssy = correlation_loadings(Y, T, Q)
|
|
cadz,Rz,rssz = correlation_loadings(Z.T, W, L)
|
|
# Prediction error
|
|
rmsep , yhat, class_error = cv_lpls(Xr, Y, Z, a_max, alpha=alpha)
|
|
alpha_check=False
|
|
if alpha_check:
|
|
Alpha = arange(0.01, 1, .1)
|
|
Rmsep,Yhat, CE = [],[],[]
|
|
for a in Alpha:
|
|
rmsep , yhat, ce = cv_lpls(Xr, Y, Z, a_max, alpha=alpha)
|
|
Rmsep.append(rmsep)
|
|
Yhat.append(yhat)
|
|
CE.append(yhat)
|
|
Rmsep = asarray(Rmsep)
|
|
Yhat = asarray(Yhat)
|
|
CE = asarray(CE)
|
|
|
|
|
|
# Significance Hotellings T
|
|
Wx, Wz, Wy, = jk_lpls(Xr, Y, Z, aopt)
|
|
Ws = W*apply_along_axis(norm, 0, T)
|
|
tsqx = cx_stats.hotelling(Wx, Ws[:,:aopt])
|
|
tsqz = cx_stats.hotelling(Wz, L[:,:aopt])
|
|
|
|
|
|
## plots ##
|
|
figure(1) #rmsep
|
|
bar_w = .2
|
|
bar_col = 'rgb'*5
|
|
m = Y.shape[1]
|
|
for a in range(m):
|
|
bar(arange(a_max)+a*bar_w+.1, rmsep[:,a], width=bar_w, color=bar_col[a])
|
|
ylim([rmsep.min()-.05, rmsep.max()+.05])
|
|
title('RMSEP')
|
|
|
|
figure(2) # Hypoid correlations
|
|
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='b', zorder=5, expvar=evz, ax=None)
|
|
ax = gca()
|
|
ylabels = DY.get_identifiers('_cat', sorted=True)
|
|
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax,labels=ylabels)
|
|
|
|
figure(3)
|
|
subplot(221)
|
|
ax = gca()
|
|
plot_corrloads(Rx, pc1=0, pc2=1, s=tsqx/2.0, c='b', zorder=5, expvar=evx, ax=ax)
|
|
# title('X correlation')
|
|
subplot(222)
|
|
ax = gca()
|
|
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax)
|
|
#title('Y correlation')
|
|
subplot(223)
|
|
ax = gca()
|
|
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='r', zorder=5, expvar=evz, ax=ax)
|
|
#title('Z correlation')
|
|
subplot(224)
|
|
plot(arange(len(evx)), evx, 'b', label='X', linewidth=2)
|
|
plot(evy, 'g', label='Y', linewidth=2)
|
|
plot(evz, 'r', label='Z', linewidth=2)
|
|
legend(loc=2)
|
|
ylabel('Explained variance')
|
|
xlabel('Component')
|
|
show()
|