import sys import rpy from pylab import gca, figure, subplot from scipy import * from lpls import * import rpy_go sys.path.append("../../fluents") # home of dataset sys.path.append("../../fluents/lib") # home of cx_stats import dataset import cx_stats from plots_lpls import plot_corrloads ######## DATA ########## # full smoker data DX = dataset.read_ftsv(open("../../data/smokers-full/Xfull.ftsv")) DY = dataset.read_ftsv(open("../../data/smokers-full/Yg.ftsv")) Y = DY.asarray().astype('d') # select subset genes by SAM rpy.r.library("siggenes") rpy.r.library("qvalue") data = DX.asarray().T # data = data[:100,:] rpy.r.assign("data", data) cl = dot(DY.asarray(), diag([1,2,3])).sum(1) rpy.r.assign("cl", cl) rpy.r.assign("B", 100) # Perform a SAM analysis. print "Starting SAM" sam = rpy.r('sam.out<-sam(data=data,cl=cl,B=B,rand=123)') print "SAM done" # Compute the q-values of the genes. qq = rpy.r('qobj<-qvalue(sam.out@p.value)') qvals = asarray(qq['qvalues']) # cut off co = 0.001 index = where(qvals<0.01)[0] # Subset data X = DX.asarray() Xr = X[:,index] gene_ids = DX.get_identifiers('gene_ids', index) print "\nWorkiing on subset with %s genes " %len(gene_ids) ### Build GO data #### print "Go terms ..." goterms = rpy_go.goterms_from_gene(gene_ids) terms = set() for t in goterms.values(): terms.update(t) terms = list(terms) print "Number of go-terms: %s" %len(terms) rpy.r.library("GOSim") # Go-term similarity matrix methods = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin") meth = methods[0] print "Term-term similarity matrix (method = %s)" %meth if meth=="CoutoEnriched": rpy.r('setEnrichmentFactors(alpha=0.1,beta=0.5)') print "Calculating term-term similarity matrix" tmat = rpy.r.getTermSim(terms, verbose=False, method=meth) # check if all terms where found nanindex = where(isnan(tmat[:,0]))[0] keep=[] has_miss = False if len(nanindex)>0: has_miss = True print "Some terms missing in similarity matrix" keep = where(isnan(tmat[:,0])!=True)[0] print "Number of nans: %d" %len(nanindex) tmat_new = tmat[:,keep][keep,:] new_terms = [i for ind,i in enumerate(terms) if ind in keep] bad_terms = [i for ind,i in enumerate(terms) if ind not in keep] # update go-term dict for gene,trm in goterms.items(): for t in trm: if t in bad_terms: trm.remove(t) if len(trm)==0: print "Removing gene: %s" %gene goterms[gene]=trm terms = new_terms tmat = tmat_new # Z-matrix # func (min, max, median, mean, etc), # func decides on the representation of gene-> goterm when multiple # goterms exist for one gene Z, newind = rpy_go.genego_matrix(goterms, tmat, gene_ids, terms,func=mean) Z = Z.T # update X matrix (no go-terms available) Xr = Xr[:,newind] new_gene_ids = asarray(gene_ids)[newind] ######## LPLSR ######## print "LPLSR ..." a_max = 5 aopt = 2 alpha=.6 T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(Xr,Y,Z, a_max, alpha) # Correlation loadings dx,Rx,rssx = correlation_loadings(Xr, T, P) dx,Ry,rssy = correlation_loadings(Y, T, Q) cadz,Rz,rssz = correlation_loadings(Z.T, W, L) # Prediction error rmsep , yhat, class_error = cv_lpls(Xr, Y, Z, a_max, alpha=alpha) alpha_check=False if alpha_check: Alpha = arange(0.01, 1, .1) Rmsep,Yhat, CE = [],[],[] for a in Alpha: rmsep , yhat, ce = cv_lpls(Xr, Y, Z, a_max, alpha=alpha) Rmsep.append(rmsep) Yhat.append(yhat) CE.append(yhat) Rmsep = asarray(Rmsep) Yhat = asarray(Yhat) CE = asarray(CE) # Significance Hotellings T Wx, Wz, Wy, = jk_lpls(Xr, Y, Z, aopt) Ws = W*apply_along_axis(norm, 0, T) tsqx = cx_stats.hotelling(Wx, Ws[:,:aopt]) tsqz = cx_stats.hotelling(Wz, L[:,:aopt]) ## plots ## figure(1) #rmsep bar_w = .2 bar_col = 'rgb'*5 m = Y.shape[1] for a in range(m): bar(arange(a_max)+a*bar_w+.1, rmsep[:,a], width=bar_w, color=bar_col[a]) ylim([rmsep.min()-.05, rmsep.max()+.05]) title('RMSEP') figure(2) # Hypoid correlations plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='b', zorder=5, expvar=evz, ax=None) ax = gca() ylabels = DY.get_identifiers('_cat', sorted=True) plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax,labels=ylabels) figure(3) subplot(221) ax = gca() plot_corrloads(Rx, pc1=0, pc2=1, s=tsqx/2.0, c='b', zorder=5, expvar=evx, ax=ax) # title('X correlation') subplot(222) ax = gca() plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax) #title('Y correlation') subplot(223) ax = gca() plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='r', zorder=5, expvar=evz, ax=ax) #title('Z correlation') subplot(224) plot(arange(len(evx)), evx, 'b', label='X', linewidth=2) plot(evy, 'g', label='Y', linewidth=2) plot(evz, 'r', label='Z', linewidth=2) legend(loc=2) ylabel('Explained variance') xlabel('Component') show()