ups
This commit is contained in:
parent
26ab6c3fe7
commit
e06eeb6d17
@ -5,7 +5,7 @@ import networkx as nx
|
||||
def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,drawback=True, labels=None):
|
||||
""" Correlation loading plot."""
|
||||
|
||||
# backgorund
|
||||
# background
|
||||
if ax==None or drawback==True:
|
||||
radius = 1
|
||||
center = (0,0)
|
||||
|
@ -2,7 +2,7 @@
|
||||
import scipy
|
||||
import rpy
|
||||
silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r)
|
||||
|
||||
import collections
|
||||
|
||||
def goterms_from_gene(genelist, ontology='BP', garbage=None):
|
||||
""" Returns the go-terms from a specified genelist (Entrez id).
|
||||
@ -18,7 +18,7 @@ def goterms_from_gene(genelist, ontology='BP', garbage=None):
|
||||
"IDA" : "inferred from direct assay",
|
||||
"IEP" : "inferred from expression pattern",
|
||||
"IEA" : "inferred from electronic annotation",
|
||||
"TAS" : "traceable author statement",
|
||||
"TAS" : "traceable author statement",
|
||||
"NAS" : "non-traceable author statement",
|
||||
"ND" : "no biological data available",
|
||||
"IC" : "inferred by curator"
|
||||
@ -167,3 +167,47 @@ def gene_GO_hypergeo_test(genelist,universe="entrezUniverse",ontology="BP",chip
|
||||
result = rpy.r.summary(rpy.r.hyperGTest(params))
|
||||
|
||||
return rpy.r.summary(result), params
|
||||
|
||||
def data_aff2loc_hgu133a(X, aff_ids, verbose=False):
|
||||
aff_ids = scipy.asarray(aff_ids)
|
||||
if verbose:
|
||||
print "\nNumber of probesets in affy list: %s" %len(aff_ids)
|
||||
import rpy
|
||||
rpy.r.library("hgu133a")
|
||||
trans_table = rpy.r.as_list(rpy.r.hgu133aENTREZID)
|
||||
if verbose:
|
||||
print "Number of entrez ids: %d" %(scipy.asarray(trans_table.values())>0).sum()
|
||||
enz2aff = collections.defaultdict(list)
|
||||
#aff2enz = collections.defaultdict(list)
|
||||
for aff, enz in trans_table.items():
|
||||
if int(enz)>0 and (aff in aff_ids):
|
||||
enz2aff[enz].append(aff)
|
||||
#aff2enz[aff].append(enz)
|
||||
if verbose:
|
||||
print "\nNumber of translated entrez ids: %d" %len(enz2aff)
|
||||
aff2ind = dict(zip(aff_ids, scipy.arange(len(aff_ids))))
|
||||
var_x = X.var(0)
|
||||
new_data = []
|
||||
new_ids = []
|
||||
m = 0
|
||||
s = 0
|
||||
for enz, aff_id_list in enz2aff.items():
|
||||
index = [aff2ind[aff_id] for aff_id in aff_id_list]
|
||||
if len(index)>1:
|
||||
m+=1
|
||||
if verbose:
|
||||
pass
|
||||
#print "\nEntrez id: %s has %d probesets" %(enz, len(index))
|
||||
#print index
|
||||
xsub = X[:,index]
|
||||
choose_this = scipy.argmax(xsub.var(0))
|
||||
new_data.append(xsub[:,choose_this].ravel())
|
||||
else:
|
||||
s+=1
|
||||
new_data.append(X[:,index].ravel())
|
||||
new_ids.append(enz)
|
||||
if verbose:
|
||||
print "Ids with multiple probesets: %d" %m
|
||||
print "Ids with unique probeset: %d" %s
|
||||
X = scipy.asarray(new_data).T
|
||||
return X, new_ids
|
||||
|
@ -11,41 +11,30 @@ import cx_stats
|
||||
from plots_lpls import plot_corrloads
|
||||
|
||||
######## DATA ##########
|
||||
# full smoker data
|
||||
DX = dataset.read_ftsv(open("../../data/smokers-full/Smokers.ftsv"))
|
||||
DY = dataset.read_ftsv(open("../../data/smokers-full/Yg.ftsv"))
|
||||
Y = DY.asarray().astype('d')
|
||||
# select subset genes by SAM
|
||||
rpy.r.library("siggenes")
|
||||
rpy.r.library("qvalue")
|
||||
data = DX.asarray().T
|
||||
# data = data[:100,:]
|
||||
rpy.r.assign("data", data)
|
||||
cl = dot(DY.asarray(), diag([1,2,3])).sum(1)
|
||||
rpy.r.assign("cl", cl)
|
||||
rpy.r.assign("B", 20)
|
||||
# Perform a SAM analysis.
|
||||
print "Starting SAM"
|
||||
sam = rpy.r('sam.out<-sam(data=data,cl=cl,B=B,rand=123)')
|
||||
print "SAM done"
|
||||
# Compute the q-values of the genes.
|
||||
qq = rpy.r('qobj<-qvalue(sam.out@p.value)')
|
||||
qvals = asarray(qq['qvalues'])
|
||||
# cut off
|
||||
cutoff = 0.05
|
||||
index = where(qvals<cutoff)[0]
|
||||
use_data='uma'
|
||||
if use_data=='smoker':
|
||||
# full smoker data
|
||||
DX = dataset.read_ftsv(open("../../data/smokers-full/Smokers.ftsv"))
|
||||
DY = dataset.read_ftsv(open("../../data/smokers-full/Yg.ftsv"))
|
||||
Y = DY.asarray().astype('d')
|
||||
gene_ids = DX.get_identifiers('gene_ids', sorted=True)
|
||||
elif use_data=='scherf':
|
||||
DX = dataset.read_ftsv(open("../../data/scherf/Scherf.ftsv"))
|
||||
DY = dataset.read_ftsv(open("../../data/scherf/Yd.ftsv"))
|
||||
Y = DY.asarray().astype('d')
|
||||
gene_ids = DX.get_identifiers('gene_ids', sorted=True)
|
||||
elif use_data=='staunton':
|
||||
pass
|
||||
elif use_data=='uma':
|
||||
DX = dataset.read_ftsv(open("../../data/uma/X133.ftsv"))
|
||||
DY = dataset.read_ftsv(open("../../data/uma/Yg133.ftsv"))
|
||||
Y = DY.asarray().astype('d')
|
||||
gene_ids = DX.get_identifiers('gene_ids', sorted=True)
|
||||
|
||||
# Subset data
|
||||
X = DX.asarray()
|
||||
Xr = X[:,index]
|
||||
gene_ids = DX.get_identifiers('gene_ids', index)
|
||||
print "\nWorking on subset with %s genes " %len(gene_ids)
|
||||
#gene2ind = {}
|
||||
#for i, gene in enumerate(gene_ids):
|
||||
# gene2ind[gene] = i
|
||||
|
||||
### Build GO data ####
|
||||
# Use only subset defined on GO
|
||||
ontology = 'BP'
|
||||
print "\n\nFiltering genes by Go terms "
|
||||
|
||||
gene2goterms = rpy_go.goterms_from_gene(gene_ids)
|
||||
all_terms = set()
|
||||
for t in gene2goterms.values():
|
||||
@ -55,61 +44,72 @@ print "\nNumber of go-terms: %s" %len(terms)
|
||||
# update genelist
|
||||
gene_ids = gene2goterms.keys()
|
||||
print "\nNumber of genes: %s" %len(gene_ids)
|
||||
|
||||
# use subset based on SAM or IQR
|
||||
subset = 'm'
|
||||
if subset=='sam':
|
||||
# select subset genes by SAM
|
||||
rpy.r.library("siggenes")
|
||||
rpy.r.library("qvalue")
|
||||
data = DX.asarray().T
|
||||
# data = data[:100,:]
|
||||
rpy.r.assign("data", data)
|
||||
cl = dot(DY.asarray(), diag([1,2,3])).sum(1)
|
||||
rpy.r.assign("cl", cl)
|
||||
rpy.r.assign("B", 20)
|
||||
# Perform a SAM analysis.
|
||||
print "Starting SAM"
|
||||
sam = rpy.r('sam.out<-sam(data=data,cl=cl,B=B,rand=123)')
|
||||
print "SAM done"
|
||||
# Compute the q-values of the genes.
|
||||
qq = rpy.r('qobj<-qvalue(sam.out@p.value)')
|
||||
qvals = asarray(qq['qvalues'])
|
||||
# cut off
|
||||
cutoff = 0.001
|
||||
index = where(qvals<cutoff)[0]
|
||||
# Subset data
|
||||
X = DX.asarray()
|
||||
#Xr = X[:,index]
|
||||
gene_ids = DX.get_identifiers('gene_ids', index)
|
||||
print "\nWorking on subset with %s genes " %len(gene_ids)
|
||||
else:
|
||||
# noimp (smoker data is prefiltered)
|
||||
pass
|
||||
|
||||
|
||||
rpy.r.library("GOSim")
|
||||
# Go-term similarity matrix
|
||||
methods = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
|
||||
meth = methods[0]
|
||||
meth = methods[2]
|
||||
print "Term-term similarity matrix (method = %s)" %meth
|
||||
if meth=="CoutoEnriched":
|
||||
rpy.r('setEnrichmentFactors(alpha=0.1,beta=0.5)')
|
||||
|
||||
print "\nCalculating term-term similarity matrix"
|
||||
|
||||
rpytmat1 = rpy.with_mode(rpy.NO_CONVERSION, rpy.r.getTermSim)(terms, method=meth,verbose=False)
|
||||
tmat1 = rpy.r.assign("haha", rpytmat1)
|
||||
|
||||
# check if all terms where found
|
||||
nanindex = where(isnan(tmat1[:,0]))[0]
|
||||
if len(nanindex)>0:
|
||||
raise valueError("NANs in tmat")
|
||||
|
||||
# Z-matrix
|
||||
#Z, newind = rpy_go.genego_matrix(terms, tmat, gene_ids, terms,func=mean)
|
||||
#Z = Z.T
|
||||
Z = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat1,go_term_sim="OA",term_sim=meth)
|
||||
|
||||
|
||||
#### do another
|
||||
#meth = methods[4]
|
||||
#rpytmat = rpy.with_mode(rpy.NO_CONVERSION, rpy.r.getTermSim)(terms, method=meth,verbose=False)
|
||||
#tmat = rpy.r.assign("haha", rpytmat)
|
||||
|
||||
# check if all terms where found
|
||||
#nanindex = where(isnan(tmat[:,0]))[0]
|
||||
#if len(nanindex)>0:
|
||||
# raise valueError("NANs in tmat")
|
||||
|
||||
# Z-matrix
|
||||
#Z, newind = rpy_go.genego_matrix(terms, tmat, gene_ids, terms,func=mean)
|
||||
#Z = Z.T
|
||||
#Z = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat,go_term_sim="OA",term_sim=meth)
|
||||
|
||||
|
||||
rpytmat = rpy.with_mode(rpy.NO_CONVERSION, rpy.r.getTermSim)(terms, method=meth,verbose=False)
|
||||
tmat = rpy.r.assign("haha", rpytmat)
|
||||
print "\n Calculating Z matrix"
|
||||
Z = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat,go_term_sim="OA",term_sim=meth)
|
||||
|
||||
# update data (X) matrix
|
||||
#newind = [gene2ind[gene] for gene in gene_ids]
|
||||
newind = DX.get_indices('gene_ids', gene_ids)
|
||||
Xr = X[:,newind]
|
||||
#new_gene_ids = asarray(gene_ids)[newind]
|
||||
Xr = DX.asarray()[:,newind]
|
||||
|
||||
|
||||
######## LPLSR ########
|
||||
print "LPLSR ..."
|
||||
a_max = 5
|
||||
aopt = 3
|
||||
alpha=.4
|
||||
mean_ctr = [2, 0, 1]
|
||||
xz_alpha = .5
|
||||
w_alpha = .1
|
||||
mean_ctr = [2, 0, 2]
|
||||
|
||||
# standardize Z?
|
||||
sdtz = False
|
||||
if sdtz:
|
||||
Z = Z/Z.std(0)
|
||||
|
||||
T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(Xr,Y,Z, a_max,
|
||||
alpha=alpha,
|
||||
alpha=xz_alpha,
|
||||
mean_ctr=mean_ctr)
|
||||
|
||||
# Correlation loadings
|
||||
@ -117,24 +117,22 @@ dx,Rx,rssx = correlation_loadings(Xr, T, P)
|
||||
dx,Ry,rssy = correlation_loadings(Y, T, Q)
|
||||
cadz,Rz,rssz = correlation_loadings(Z.T, W, L)
|
||||
# Prediction error
|
||||
rmsep , yhat, class_error = cv_lpls(Xr, Y, Z, a_max, alpha=alpha,mean_ctr=mean_ctr)
|
||||
alpha_check=True
|
||||
rmsep , yhat, class_error = cv_lpls(Xr, Y, Z, a_max, alpha=xz_alpha,mean_ctr=mean_ctr)
|
||||
alpha_check=False
|
||||
if alpha_check:
|
||||
Alpha = arange(0.01, 1, .1)
|
||||
Rmsep,Yhat, CE = [],[],[]
|
||||
for a in Alpha:
|
||||
rmsep , yhat, ce = cv_lpls(Xr, Y, Z, a_max, alpha=alpha)
|
||||
rmsep , yhat, ce = cv_lpls(Xr, Y, Z, a_max, alpha=xz_alpha,mean_ctr=mean_ctr)
|
||||
Rmsep.append(rmsep)
|
||||
Yhat.append(yhat)
|
||||
CE.append(ce)
|
||||
Rmsep = asarray(Rmsep)
|
||||
Yhat = asarray(Yhat)
|
||||
CE = asarray(CE)
|
||||
|
||||
|
||||
|
||||
# Significance Hotellings T
|
||||
Wx, Wz, Wy, = jk_lpls(Xr, Y, Z, aopt)
|
||||
Wx, Wz, Wy, = jk_lpls(Xr, Y, Z, aopt, mean_ctr=mean_ctr,alpha=w_alpha)
|
||||
Ws = W*apply_along_axis(norm, 0, T)
|
||||
tsqx = cx_stats.hotelling(Wx, Ws[:,:aopt])
|
||||
tsqz = cx_stats.hotelling(Wz, L[:,:aopt])
|
||||
@ -157,7 +155,8 @@ ylim([class_error.min()-.05, class_error.max()+.05])
|
||||
title('Classification accuracy')
|
||||
|
||||
figure(3) # Hypoid correlations
|
||||
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='b', zorder=5, expvar=evz, ax=None)
|
||||
tsqz_s = 250*tsqz/tsqz.max()
|
||||
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz_s, c='b', zorder=5, expvar=evz, ax=None)
|
||||
ax = gca()
|
||||
ylabels = DY.get_identifiers('_status', sorted=True)
|
||||
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax,labels=ylabels)
|
||||
|
Reference in New Issue
Block a user