updates
This commit is contained in:
parent
7ee7aa968a
commit
98f53d3448
|
@ -403,7 +403,5 @@ def jk_lpls(X, Y, Z, a_max, nsets=None, alpha=.5):
|
|||
WWx[i,:,:] = W
|
||||
WWz[i,:,:] = L
|
||||
WWy[i,:,:] = Q
|
||||
print "Q"
|
||||
print Q
|
||||
|
||||
return WWx, WWz, WWy
|
||||
|
|
|
@ -31,8 +31,8 @@ def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,draw
|
|||
pylab.xlabel(xstring)
|
||||
ystring = "Comp: %d expl.var.: %.1f " %(pc2+1, expvar[pc2])
|
||||
pylab.ylabel(ystring)
|
||||
if labels:
|
||||
if labels!=None:
|
||||
assert(len(labels)==R.shape[0])
|
||||
for name, r in zip(labels, R):
|
||||
ax.text(r[pc1], r[pc2], " " + name)
|
||||
pylab.text(r[pc1], r[pc2], " " + name)
|
||||
#pylab.show()
|
||||
|
|
|
@ -45,7 +45,7 @@ def goterms_from_gene(genelist, ontology=['BP'], garbage = ['IEA', 'ISS', 'ND'])
|
|||
_ONTOLOGIES = ['BP', 'CC', 'MF']
|
||||
assert(scipy.all([(code in _CODES) for code in garbage]))
|
||||
assert(scipy.all([(ont in _ONTOLOGIES) for ont in ontology]))
|
||||
|
||||
have_these = rpy.r('as.list(GOTERM)').keys()
|
||||
goterms = {}
|
||||
for gene in genelist:
|
||||
goterms[gene] = []
|
||||
|
@ -53,8 +53,12 @@ def goterms_from_gene(genelist, ontology=['BP'], garbage = ['IEA', 'ISS', 'ND'])
|
|||
#print info
|
||||
if info:
|
||||
for term, desc in info.items():
|
||||
if term not in have_these:
|
||||
print "GO miss:"
|
||||
print term
|
||||
if desc['Ontology'] in ontology and desc['Evidence'] not in garbage:
|
||||
goterms[gene].append(term)
|
||||
|
||||
return goterms
|
||||
|
||||
def genego_matrix(goterms, tmat, gene_ids, term_ids, func=min):
|
||||
|
@ -97,7 +101,12 @@ def goterm2desc(gotermlist):
|
|||
return term2desc
|
||||
|
||||
def parents_dag(go_terms, ontology=['BP']):
|
||||
""" Returns a list of lists representation of a GO DAG parents of goterms."""
|
||||
""" Returns a list of lists representation of a GO DAG parents of goterms.
|
||||
|
||||
make the networkx graph by:
|
||||
G = networkx.Digraph()
|
||||
G = networkx.from_dict_of_lists(edge_dict, G)
|
||||
"""
|
||||
try:
|
||||
rpy.r.library("GOstats")
|
||||
except:
|
||||
|
@ -105,6 +114,11 @@ def parents_dag(go_terms, ontology=['BP']):
|
|||
assert(go_terms[0][:3]=='GO:')
|
||||
|
||||
# go valid namespace
|
||||
go_env = {'BP':rpy.r.BPPARENTS, 'MF':rpy.r.MFPARENTS, 'CC': rpy.r.CCPARENTS}
|
||||
|
||||
|
||||
go_env = {'BP':rpy.r.GOBPPARENTS, 'MF':rpy.r.GOMFPARENTS, 'CC': rpy.r.GOCCPARENTS}
|
||||
graph = rpy.r.GOGraph(go_terms, go_env[ontology[0]])
|
||||
edges = rpy.r.edges(graph)
|
||||
edges.pop('all')
|
||||
edge_dict = {}
|
||||
for head, nei in edges.items():
|
||||
edge_dict[head] = nei.values()
|
||||
return edge_dict
|
||||
|
|
|
@ -32,7 +32,7 @@ print "SAM done"
|
|||
qq = rpy.r('qobj<-qvalue(sam.out@p.value)')
|
||||
qvals = asarray(qq['qvalues'])
|
||||
# cut off
|
||||
co = 0.001
|
||||
co = 0.1
|
||||
index = where(qvals<0.01)[0]
|
||||
|
||||
# Subset data
|
||||
|
@ -51,7 +51,7 @@ terms = list(terms)
|
|||
rpy.r.library("GOSim")
|
||||
# Go-term similarity matrix
|
||||
methods = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
|
||||
meth = methods[0]
|
||||
meth = methods[2]
|
||||
print "Term-term similarity matrix (method = %s)" %meth
|
||||
if meth=="CoutoEnriched":
|
||||
rpy.r('setEnrichmentFactors(alpha=0.1,beta=0.5)')
|
||||
|
@ -100,7 +100,6 @@ T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(Xr,Y,Z, a_max, alpha)
|
|||
dx,Rx,ssx= correlation_loadings(Xr, T, P)
|
||||
dx,Ry,ssx= correlation_loadings(Y, T, Q)
|
||||
cadx,Rz,ssx= correlation_loadings(Z.T, K, L)
|
||||
|
||||
# Prediction error
|
||||
rmsep , yhat, class_error = cv_lpls(Xr, Y, Z, a_max, alpha=alpha)
|
||||
|
||||
|
@ -112,11 +111,19 @@ tsqz = cx_stats.hotelling(Wz,L[:,:aopt])
|
|||
|
||||
## plots ##
|
||||
figure(1) #rmsep
|
||||
#bar()
|
||||
bar_w = .2
|
||||
bar_col = 'rgb'*5
|
||||
m = Y.shape[1]
|
||||
for a in range(m):
|
||||
bar(arange(a_max)+a*bar_w+.1, rmsep[:,a], width=bar_w, color=bar_col[a])
|
||||
ylim([rmsep.min()-.05, rmsep.max()+.05])
|
||||
|
||||
figure(2) # Hypoid correlations
|
||||
title('RMSEP')
|
||||
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='b', zorder=5, expvar=evz, ax=None)
|
||||
ax = gca()
|
||||
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax)
|
||||
ylabels = DY.get_identifiers('_cat', sorted=True)
|
||||
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax,labels=ylabels)
|
||||
|
||||
figure(3)
|
||||
subplot(221)
|
||||
|
|
Reference in New Issue