Bugfixed pca

This commit is contained in:
Arnar Flatberg 2007-01-25 12:36:32 +00:00
parent aeb37cf4cd
commit 48bb47ec86

View File

@ -19,14 +19,10 @@ def pca(a, aopt, scale='scores', mode='normal'):
m, n = a.shape
if m*10.>n:
v, s, ut = dot(a.T, a)
s = sqrt(s)
eigvals = s
u = u.T
vt = v.T
u, s, vt = esvd(a)
else:
u, s, vt = svd(a, full_matrices=0)
eigvals = (1./m)*s
eigvals = (1./m)*s
T = u*s
T = T[:,:aopt]
P = vt[:aopt,:].T
@ -231,3 +227,29 @@ def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
def m_shape(array):
return matrix(array).shape
def esvd(data,economy=1):
"""SVD with the option of economy sized calculation
Calculate subspaces of X'X or XX' depending on the shape
of the matrix.
Good for extreme fat or thin matrices
Numpy supports this by setting full_matrices=0
"""
m, n = data.shape
if m>=n:
u, s, vt = svd(dot(data.T, data))
u = dot(data, vt.T)
v = vt.T
for i in xrange(n):
s[i] = norm(u[:,i])
u[:,i] = u[:,i]/s[i]
else:
u, s, vt = svd(data, data.T)
v = dot(u.T, data)
for i in xrange(m):
s[i] = norm(v[i,:])
v[i,:] = v[i,:]/s[i]
return u, s, v