This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/lib/engines.py

401 lines
10 KiB
Python
Raw Normal View History

2006-12-18 12:59:12 +01:00
"""Module contain algorithms for (burdensome) calculations.
There is no typechecking of any kind here, just focus on speed
"""
2007-07-23 19:33:21 +02:00
import math
from scipy.linalg import svd,inv
2006-12-18 12:59:12 +01:00
from scipy import dot,empty,eye,newaxis,zeros,sqrt,diag,\
apply_along_axis,mean,ones,randn,empty_like,outer,c_,\
2007-01-25 12:58:10 +01:00
rand,sum,cumsum,matrix
2007-07-26 20:32:48 +02:00
has_sym=True
try:
import symmeig
except:
has_sym = False
2006-12-18 12:59:12 +01:00
def pca(a, aopt, scale='scores', mode='normal'):
""" Principal Component Analysis model
mode:
-- fast : returns smallest dim scaled (T for n<=m, P for n>m )
-- normal : returns all model params and residuals after aopt comp
-- detailed : returns all model params and all residuals
"""
2007-01-25 12:58:10 +01:00
m, n = a.shape
2007-07-26 20:32:48 +02:00
#print "rows: %s cols: %s" %(m,n)
if m>(n+100) or n>(m+100):
2007-07-23 19:33:21 +02:00
u, s, v = esvd(a)
2007-01-25 13:17:16 +01:00
else:
2007-07-26 20:32:48 +02:00
u, s, vt = svd(a, 0)
2007-07-23 19:33:21 +02:00
v = vt.T
2007-01-25 13:36:32 +01:00
eigvals = (1./m)*s
2006-12-18 12:59:12 +01:00
T = u*s
T = T[:,:aopt]
2007-07-23 19:33:21 +02:00
P = v[:,:aopt]
2006-12-18 12:59:12 +01:00
if scale=='loads':
2007-07-23 19:33:21 +02:00
tnorm = apply_along_axis(vnorm, 0, T)
2006-12-18 12:59:12 +01:00
T = T/tnorm
P = P*tnorm
if mode == 'fast':
return {'T':T, 'P':P}
if mode=='detailed':
"""Detailed mode returns residual matrix for all comp.
That is E, is a three-mode matrix: (amax, m, n) """
E = empty((aopt, m, n))
for ai in range(aopt):
e = a - dot(T[:,:ai+1], P[:,:ai+1].T)
E[ai,:,:] = e.copy()
else:
E = a - dot(T,P.T)
return {'T':T, 'P':P, 'E':E}
2007-07-23 19:33:21 +02:00
2007-01-25 12:58:10 +01:00
def pcr(a, b, aopt=2, scale='scores', mode='normal'):
"""Returns Principal component regression model."""
m, n = a.shape
try:
k, l = b.shape
except:
k = b.shape[0]
l = 1
B = empty((aopt, n, l))
U, s, Vt = svd(a, full_matrices=True)
T = U*s
T = T[:,:aopt]
P = Vt[:aopt,:].T
Q = dot(dot(inv(dot(T.T, T)), T.T), b).T
for i in range(aopt):
ti = T[:,:i+1]
r = dot(dot(inv(dot(ti.T,ti)), ti.T), b)
B[i] = dot(P[:,:i+1], r)
E = a - dot(T, P.T)
F = b - dot(T, Q.T)
return {'T':T, 'P':P,'Q': Q, 'B':B, 'E':E, 'F':F}
2006-12-18 12:59:12 +01:00
def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
"""Kernel pls for tall/wide matrices.
Fast pls for calibration. Only inefficient for many Y-vars.
"""
2007-01-25 12:58:10 +01:00
m, n = a.shape
2006-12-18 12:59:12 +01:00
if ab!=None:
2007-01-25 12:58:10 +01:00
mm, l = m_shape(ab)
2006-12-18 12:59:12 +01:00
else:
2007-01-25 12:58:10 +01:00
k, l = m_shape(b)
2006-12-18 12:59:12 +01:00
W = empty((n, aopt))
P = empty((n, aopt))
R = empty((n, aopt))
Q = empty((l, aopt))
T = empty((m, aopt))
B = empty((aopt, n, l))
if ab==None:
ab = dot(a.T, b)
for i in range(aopt):
if ab.shape[1]==1:
2007-01-31 12:57:59 +01:00
w = ab.reshape(n, l)
2006-12-18 12:59:12 +01:00
else:
2007-01-25 12:58:10 +01:00
u, s, vh = svd(dot(ab.T, ab))
w = dot(ab, u[:,:1])
2006-12-18 12:59:12 +01:00
2007-07-23 19:33:21 +02:00
w = w/vnorm(w)
2006-12-18 12:59:12 +01:00
r = w.copy()
if i>0:
for j in range(0,i,1):
r = r - dot(P[:,j].T, w)*R[:,j][:,newaxis]
t = dot(a, r)
2007-07-23 19:33:21 +02:00
tt = vnorm(t)**2
2006-12-18 12:59:12 +01:00
p = dot(a.T, t)/tt
q = dot(r.T, ab).T/tt
ab = ab - dot(p, q.T)*tt
T[:,i] = t.ravel()
W[:,i] = w.ravel()
P[:,i] = p.ravel()
R[:,i] = r.ravel()
if mode=='fast' and i==aopt-1:
if scale=='loads':
2007-07-23 19:33:21 +02:00
tnorm = apply_along_axis(vnorm, 0, T)
2006-12-18 12:59:12 +01:00
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
Q[:,i] = q.ravel()
B[i] = dot(R[:,:i+1], Q[:,:i+1].T)
if mode=='detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
2007-01-25 12:58:10 +01:00
for i in range(1, aopt+1, 1):
E[i-1] = a - dot(T[:,:i], P[:,:i].T)
F[i-1] = b - dot(T[:,:i], Q[:,:i].T)
2006-12-18 12:59:12 +01:00
else:
E = a - dot(T[:,:aopt], P[:,:aopt].T)
F = b - dot(T[:,:aopt], Q[:,:aopt].T)
if scale=='loads':
2007-07-23 19:33:21 +02:00
tnorm = apply_along_axis(vnorm, 0, T)
2006-12-18 12:59:12 +01:00
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
P = P*tnorm
return {'B':B, 'Q':Q, 'P':P, 'T':T, 'W':W, 'R':R, 'E':E, 'F':F}
def w_simpls(aat, b, aopt):
""" Simpls for wide matrices.
Fast pls for crossval, used in calc rmsep for wide X
There is no P,W. T is normalised
"""
bb = b.copy()
2007-01-25 12:58:10 +01:00
m, m = aat.shape
2006-12-18 12:59:12 +01:00
U = empty((m, aopt))
T = empty((m, aopt))
H = empty((m, aopt)) #just like W in simpls
PROJ = empty((m, aopt)) #just like R in simpls
for i in range(aopt):
2007-01-25 12:58:10 +01:00
u, s, vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
2006-12-18 12:59:12 +01:00
u = dot(b, u[:,:1]) #y-factor scores
U[:,i] = u.ravel()
2007-01-25 12:58:10 +01:00
t = dot(aat, u)
2007-07-23 19:33:21 +02:00
t = t/vnorm(t)
2006-12-18 12:59:12 +01:00
T[:,i] = t.ravel()
h = dot(aat, t) #score-weights
H[:,i] = h.ravel()
PROJ[:,:i+1] = dot(T[:,:i+1], inv(dot(T[:,:i+1].T, H[:,:i+1])) )
if i<aopt:
b = b - dot(PROJ[:,:i+1], dot(H[:,:i+1].T,b) )
C = dot(bb.T, T)
2007-01-25 12:58:10 +01:00
return {'T':T, 'U':U, 'Q':C, 'H':H}
2006-12-18 12:59:12 +01:00
def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
"""Undeflated Ridged svd(X'Y)
"""
m, n = a.shape
2007-01-25 12:58:10 +01:00
k, l = m_shape(b)
u, s, vt = svd(b, full_matrices=0)
2006-12-18 12:59:12 +01:00
g0 = dot(u*s, u.T)
g = (1 - r)*g0 + r*eye(m)
ag = dot(a.T, g)
2007-01-25 12:58:10 +01:00
u, s, vt = svd(ag, full_matrices=0)
2006-12-18 12:59:12 +01:00
W = u[:,:aopt]
K = vt[:aopt,:].T
T = dot(a, W)
2007-07-23 19:33:21 +02:00
tnorm = apply_along_axis(vnorm, 0, T) # norm of T-columns
2006-12-18 12:59:12 +01:00
if mode == 'fast':
if scale=='loads':
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
U = dot(g0, K) #fixme check this
2007-01-25 12:58:10 +01:00
Q = dot(b.T, dot(T, inv(dot(T.T, T)) ))
B = zeros((aopt, n, l), dtype='f')
2006-12-18 12:59:12 +01:00
for i in range(aopt):
B[i] = dot(W[:,:i+1], Q[:,:i+1].T)
if mode == 'detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
for i in range(aopt):
E[i] = a - dot(T[:,:i+1], W[:,:i+1].T)
F[i] = b - dot(a, B[i])
else: #normal
F = b - dot(a, B[-1])
E = a - dot(T, W.T)
if scale=='loads':
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
return {'B':B, 'W':W, 'T':T, 'Q':Q, 'E':E, 'F':F, 'U':U, 'P':W}
2007-01-25 12:58:10 +01:00
2007-07-23 19:33:21 +02:00
2007-07-23 20:07:10 +02:00
def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', scale='scores', verbose=False):
2007-07-23 19:33:21 +02:00
""" L-shaped Partial Least Sqaures Regression by the nipals algorithm.
(X!Z)->Y
:input:
X : data matrix (m, n)
Y : data matrix (m, l)
Z : data matrix (n, o)
:output:
T : X-scores
W : X-weights/Z-weights
P : X-loadings
Q : Y-loadings
U : X-Y relation
L : Z-scores
K : Z-loads
B : Regression coefficients X->Y
b0: Regression coefficient intercept
evx : X-explained variance
evy : Y-explained variance
evz : Z-explained variance
:Notes:
"""
if mean_ctr!=None:
xctr, yctr, zctr = mean_ctr
X, mnX = center(X, xctr)
Y, mnY = center(Y, xctr)
Z, mnZ = center(Z, zctr)
2007-07-26 20:32:48 +02:00
print Z.mean(1)
2007-07-23 19:33:21 +02:00
varX = pow(X, 2).sum()
varY = pow(Y, 2).sum()
varZ = pow(Z, 2).sum()
m, n = X.shape
k, l = Y.shape
u, o = Z.shape
# initialize
2007-07-23 20:07:10 +02:00
U = empty((k, a_max))
Q = empty((l, a_max))
T = empty((m, a_max))
W = empty((n, a_max))
P = empty((n, a_max))
K = empty((o, a_max))
L = empty((u, a_max))
var_x = empty((a_max,))
var_y = empty((a_max,))
var_z = empty((a_max,))
2007-07-23 19:33:21 +02:00
2007-07-23 20:07:10 +02:00
for a in range(a_max):
2007-07-23 19:33:21 +02:00
if verbose:
print "\n Working on comp. %s" %a
u = Y[:,:1]
diff = 1
MAX_ITER = 100
lim = 1e-5
niter = 0
while (diff>lim and niter<MAX_ITER):
niter += 1
u1 = u.copy()
w = dot(X.T, u)
w = w/sqrt(dot(w.T, w))
l = dot(Z, w)
k = dot(Z.T, l)
k = k/sqrt(dot(k.T, k))
w = alpha*k + (1-alpha)*w
w = w/sqrt(dot(w.T, w))
t = dot(X, w)
c = dot(Y.T, t)
c = c/sqrt(dot(c.T, c))
u = dot(Y, c)
diff = abs(u1 - u).max()
if verbose:
print "Converged after %s iterations" %niter
tt = dot(t.T, t)
p = dot(X.T, t)/tt
q = dot(Y.T, t)/tt
l = dot(Z, w)
U[:,a] = u.ravel()
W[:,a] = w.ravel()
P[:,a] = p.ravel()
T[:,a] = t.ravel()
Q[:,a] = q.ravel()
L[:,a] = l.ravel()
K[:,a] = k.ravel()
X = X - dot(t, p.T)
Y = Y - dot(t, q.T)
Z = (Z.T - dot(w, l.T)).T
var_x[a] = pow(X, 2).sum()
var_y[a] = pow(Y, 2).sum()
var_z[a] = pow(Z, 2).sum()
B = dot(dot(W, inv(dot(P.T, W))), Q.T)
b0 = mnY - dot(mnX, B)
# variance explained
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
evz = 100.0*(1 - var_z/varZ)
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
knorm = apply_along_axis(vnorm, 0, K)
L = L*knorm
K = K/knorm
return {'T':T, 'W':W, 'P':P, 'Q':Q, 'U':U, 'L':L, 'K':K, 'B':B, 'b0':b0, 'evx':evx, 'evy':evy, 'evz':evz}
########### Helper routines #########
2007-01-25 12:58:10 +01:00
def m_shape(array):
return matrix(array).shape
2007-01-25 13:36:32 +01:00
2007-07-26 20:32:48 +02:00
def esvd(data):
2007-01-25 13:36:32 +01:00
"""SVD with the option of economy sized calculation
Calculate subspaces of X'X or XX' depending on the shape
of the matrix.
Good for extreme fat or thin matrices
2007-07-26 20:32:48 +02:00
:notes:
2007-01-25 13:36:32 +01:00
Numpy supports this by setting full_matrices=0
"""
m, n = data.shape
if m>=n:
2007-07-26 20:32:48 +02:00
kernel = dot(data.T, data)
u, s, vt = svd(kernel)
2007-01-25 13:36:32 +01:00
u = dot(data, vt.T)
v = vt.T
for i in xrange(n):
2007-07-23 19:33:21 +02:00
s[i] = vnorm(u[:,i])
2007-01-25 13:36:32 +01:00
u[:,i] = u[:,i]/s[i]
else:
2007-07-26 20:32:48 +02:00
kernel = dot(data, data.T)
#data = (data + data.T)/2.0
u, s, vt = svd(kernel)
2007-01-25 13:36:32 +01:00
v = dot(u.T, data)
for i in xrange(m):
2007-07-23 19:33:21 +02:00
s[i] = vnorm(v[i,:])
2007-01-25 13:36:32 +01:00
v[i,:] = v[i,:]/s[i]
2007-07-23 19:33:21 +02:00
return u, s, v.T
def vnorm(x):
# assume column arrays (or vectors)
return math.sqrt(dot(x.T, x))
def center(a, axis):
# 0 = col center, 1 = row center, 2 = double center
# -1 = nothing
if axis==-1:
mn = zeros((a.shape[1],))
elif axis==0:
mn = a.mean(0)
elif axis==1:
mn = a.mean(1)[:,newaxis]
elif axis==2:
mn = a.mean(0) + a.mean(1)[:,newaxis] - a.mean()
else:
raise IOError("input error: axis must be in [-1,0,1,2]")
return a - mn, mn