/* * Copyright 2013-2019 Max Kellermann * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef HUGE_ALLOCATOR_HXX #define HUGE_ALLOCATOR_HXX #include "WritableBuffer.hxx" #include "Compiler.h" #include #include #ifdef __linux__ /** * Allocate a huge amount of memory. This will be done in a way that * allows giving the memory back to the kernel as soon as we don't * need it anymore. On the downside, this call is expensive. * * Throws std::bad_alloc on error * * @returns the allocated buffer with a size which may be rounded up * (to the next page size), so callers can take advantage of this * allocation overhead */ WritableBuffer HugeAllocate(size_t size); /** * @param p an allocation returned by HugeAllocate() * @param size the allocation's size as passed to HugeAllocate() */ void HugeFree(void *p, size_t size) noexcept; /** * Control whether this allocation is copied to newly forked child * processes. Disabling that makes forking a little bit cheaper. */ void HugeForkCow(void *p, size_t size, bool enable) noexcept; /** * Discard any data stored in the allocation and give the memory back * to the kernel. After returning, the allocation still exists and * can be reused at any time, but its contents are undefined. * * @param p an allocation returned by HugeAllocate() * @param size the allocation's size as passed to HugeAllocate() */ void HugeDiscard(void *p, size_t size) noexcept; #elif defined(_WIN32) #include WritableBuffer HugeAllocate(size_t size); static inline void HugeFree(void *p, gcc_unused size_t size) noexcept { VirtualFree(p, 0, MEM_RELEASE); } static inline void HugeForkCow(void *, size_t, bool) noexcept { } static inline void HugeDiscard(void *p, size_t size) noexcept { VirtualAlloc(p, size, MEM_RESET, PAGE_NOACCESS); } #else /* not Linux: fall back to standard C calls */ #include static inline WritableBuffer HugeAllocate(size_t size) { return {new uint8_t[size], size}; } static inline void HugeFree(void *_p, size_t) noexcept { auto *p = (uint8_t *)_p; delete[] p; } static inline void HugeForkCow(void *, size_t, bool) noexcept { } static inline void HugeDiscard(void *, size_t) noexcept { } #endif /** * Automatic memory management for a dynamic array in "huge" memory. */ template class HugeArray { typedef WritableBuffer Buffer; Buffer buffer{nullptr}; public: typedef typename Buffer::size_type size_type; typedef typename Buffer::value_type value_type; typedef typename Buffer::reference_type reference; typedef typename Buffer::const_reference_type const_reference; typedef typename Buffer::iterator iterator; typedef typename Buffer::const_iterator const_iterator; constexpr HugeArray() = default; explicit HugeArray(size_type _size) :buffer(Buffer::FromVoidFloor(HugeAllocate(sizeof(value_type) * _size))) {} constexpr HugeArray(HugeArray &&other) noexcept :buffer(std::exchange(other.buffer, nullptr)) {} ~HugeArray() noexcept { if (buffer != nullptr) { auto v = buffer.ToVoid(); HugeFree(v.data, v.size); } } HugeArray &operator=(HugeArray &&other) noexcept { using std::swap; swap(buffer, other.buffer); return *this; } void ForkCow(bool enable) noexcept { auto v = buffer.ToVoid(); HugeForkCow(v.data, v.size, enable); } void Discard() noexcept { auto v = buffer.ToVoid(); HugeDiscard(v.data, v.size); } constexpr bool operator==(std::nullptr_t) const noexcept { return buffer == nullptr; } constexpr bool operator!=(std::nullptr_t) const noexcept { return buffer != nullptr; } /** * Returns the number of allocated elements. */ constexpr size_type size() const noexcept { return buffer.size; } reference front() noexcept { return buffer.front(); } const_reference front() const noexcept { return buffer.front(); } reference back() noexcept { return buffer.back(); } const_reference back() const noexcept { return buffer.back(); } /** * Returns one element. No bounds checking. */ reference operator[](size_type i) noexcept { return buffer[i]; } /** * Returns one constant element. No bounds checking. */ const_reference operator[](size_type i) const noexcept { return buffer[i]; } iterator begin() noexcept { return buffer.begin(); } constexpr const_iterator begin() const noexcept { return buffer.cbegin(); } iterator end() noexcept { return buffer.end(); } constexpr const_iterator end() const noexcept { return buffer.cend(); } }; #endif