When the decoder is finished, break out of the player loop only after
another player.pipe check. We did check the pipe size a few lines
above, but that check was kind of racy.
When a music_chunk only contains a tag but no PCM data, play_chunk()
returns true without freeing the chunk. The caller now assumes that
the chunk is moved into some music_pipe and does not bother to free it
either.
To check for leaked music_chunk objects, free the music buffer on
CLOSE_AUDIO. This invokes an assertion check which ensures that all
chunks have been returned to the buffer.
When all audio outputs have been closed due to failures, pause the
playback instead of stopping it. This way, the user may resume
at the current position after the problem has been dealt with.
When no audio outputs could be opened while seeking, leave MPD seeked
at that position and pause playback. The user may continue from this
point at any time, as soon as the audio outputs are fixed. The old
behaviour triggered an assertion failure: the failure wasn't passed
properly to the do_play() function, which attempted to play audio
chunks.
When the decoder initialization has not been completed yet, all calls
to dc_seek() will fail, because dc.seekable is not initialized yet.
Wait for the decoder to complete its initialization, i.e. until it has
called decoder_initialized().
This updates the copyright header to all be the same, which is
pretty much an update of where to mail request for a copy of the GPL
and the years of the MPD project. This also puts all committers under
'The Music Player Project' umbrella. These entries should go
individually in the AUTHORS file, for consistancy.
After a seek, wait until enough new chunks are decoded before starting
playback. If this takes too long, send silence chunks to the audio
outputs meanwhile.
When playback is unpaused, pass the audio_format to
audio_output_all_open(). Don't assume that output_all.c remembers the
previous audio format. Also check if there has been an audio format
yet.
Instead of passing individual buffers to audio_output_all_play(), pass
music_chunk objects. Append all those chunks asynchronously to a
music_pipe instance. All output threads may then read chunks from
this pipe. This reduces MPD's internal latency by an order of
magnitude.
When a PAUSE command is received while the decoder starts, don't open
the audio device when the decoder becomes ready. It's pointless,
because MPD will close if after that.
In !NDEBUG, remember which audio_format is stored in every chunk and
every pipe. Check the audio_format of every new data block appended
to the music_chunk, and the format of every new chunk appended to the
music_pipe.
Turn the music_pipe into a simple music_chunk queue. The music_chunk
allocation code is moved to music_buffer, and is now managed with a
linked list instead of a ring buffer. Two separate music_pipe objects
are used by the decoder for the "current" and the "next" song, which
greatly simplifies the cross-fading code.
The warning message "problems opening audio device while playing ..."
does not help at all, and should be removed. At this point, the real
error message has already been logged by the output thread.
When a file is not seekable, MPD dropped the audio buffers before even
attempting to seek. This caused noticable sound corruption. Fix:
first attempt to seek, and only if that succeeds, call
audio_output_all_cancel().
The crossfading code shouldn't depend on the audio output code. Pass
the current audio format to cross_fade_calc() and let it compare
directly, instead of using isCurrentAudioFormat().
When we reset pc.next_song if there is no song queued, this might
cause a race condition: the next song to be played is cleared, while
pc.command was already set. Clear the "next_song" only if there is a
song queued for the current do_play() invocation.
After a player command (successful or not), reset pc.next_song,
because the queue is supposed to be empty then. Otherwise,
playlist.queued and pc.next_song may disagree, which triggers an
assertion failure.
Break from the loop instead of returning the function. This calls
player_stop_decoder(), which in turn emits the PLAYLIST event. This
allows the playlist to re-start the player.
The player_thread loop requests the next song from the playlist as
soon as the decoder finishes the song which is currently being played.
This is superfluous, and can lead to synchronization errors and wrong
results. The playlist already knows when the player starts playing
the next song (player_wait_for_decoder() triggers the PLAYLIST event),
and will then trigger the scheduler to provide the next song.
The "TAG" event is emitted by the player thread when the current
song's tag has changed. Split this event from "PLAYLIST" and make it
a separate callback, which is more efficient.