
TDT4258 Low-Level Programming

HS 2022

Lab assignment 2

Building a Cache Simulator

Deadline: Fri 30 Sept 2021, 23:59

Teaching Assistants: Pavel Skipenes, Vetle Harnes
Assignment Coordinator: Roman K. Brunner

Lecturer: Björn Gottschall



Pre-amble

The labs are here for you to deepen your understanding of concepts taught in
the lecture. The goal is that you not only develop a theoretical understanding
of the matter, but also develop the technical skills to apply it in practice.

Each lab has a main project, but we also provide optional exercises for
those who want to go beyond the mandatory exercise. To pass a lab, you
only need to hand in the solution to the main project. The optional
exercises are purely for your entertainment. Some of the optional tasks are
easier than the main task; some are harder. We indicate the difficulty at
the beginning of the problem description. The easier ones can serve as entry
points, if you feel that you are not yet ready to tackle the main task. But
remember that in the end all that counts is solving the main task, as the
optional tasks do not count towards the pass/fail decision.

We assess the lab assignments on a pass/fail basis. To be allowed to sit
in the exam, you have to pass all three labs. As the assignments are part
of the evaluation, they are subject to NTNU’s plagiarism rules 1. We have
tools at our disposal and will run all submissions through plagiarism check-
ers. Copying code from current or past students is considered plagiarism.
Hence, we advise only sharing code after the deadline has passed to prevent
situations where we have to find out who copied from whom.

While copying each other is disallowed, we still encourage student dis-
cussions about your solutions. This will allow you to explore alternative
approaches and solutions and learn about the advantages and challenges of
particular implementations.

1 Description

In this lab, you will write a simulator similar to the one you used for the last
exercise. As a full simulator such as CPUlator is quite extensive work, we will
focus on the cache in this lab. So your task will be to write a parametrized
cache simulator that reads a memory address trace and provides statistics
about cache accesses and hits. You will write the simulator in C. Before you
can execute your program, you need to compile it using GCC. In order to
debug any potential misbehaviors, you can use GDB. To help you get started,
we provide an outline in cache sim.c on blackboard.

We strongly advise you to ensure you fully understand how caches and the
different cache architectures work. If you need to brush up on your caching

1https://i.ntnu.no/wiki/-/wiki/English/Cheating+on+exams

1

https://i.ntnu.no/wiki/-/wiki/English/Cheating+on+exams


knowledge, you should revisit the topic using the lecture slides, videos, and
the course textbook.

Even though we focus on a particular part of a whole system, it is still
plenty of work, hence you are strongly encouraged to start work as soon as
possible.

2 Main Task: Cache Simulator

Almost all current systems make use of some cache. A cache is a particular
type of memory used to gap the difference in performance between the pro-
cessor core and the main memory. A cache can store a limited amount of
instructions and/or data close to the core, thus allowing fast access to the
instruction/data present in the cache. A cache that holds both, instructions
and data is called a unified cache (Similar to memory in the Von Neumann
architecture). However, certain caches use an alternate design, called a split
cache, using two caches: one stores purely data (data cache); the other
solely instructions (instruction cache). This approach should remind you
of the memory organization in the Harvard Architecture, which stores data
and instructions separately.

We usually deploy software simulators in research and engineering instead
of monitoring actual hardware to understand caching behavior. In this exer-
cise, you will investigate a program’s memory access and caching behavior.
To obtain the results, you have to write a flexible cache simulator that meets
the following specifications:

Fixed parameters The following parameters are constant and stay the
same for all simulations:

• We are analyzing a program from a 32-bit system. So you are guaran-
teed that all addresses will always be 32 bits long.

• Data in the cache is organized in blocks of 64 bytes (The size of the
cacheline/cacheblock is 64 bytes)

• The caches use a FIFO replacement policy for associative caches

Variable parameters The following parameters are passed as command-
line arguments to the cache simulator:

• The overall cache size in bytes or kilobytes (Note that the only accept-
able values are powers of 2)

2



• Cache mapping: The cache can either be a direct mapped or fully
associative cache

• Cache organization: The cache can either be unified or split (see
above or lecture slides for more details)

If the cache is configured to use the split cache organization, the cache
size that has been provided is split up equally between the data and the
instruction cache. However, both will use the same mapping (direct/fully
associative mapping).

Sample Commandline Parameters

1. Parameters: cache size = 2KB, cache mapping = direct mapped, cache
organization = unified cache
These parameters result in the following single cache configuration (as
data and instructions are stored in the same cache):

• Cache Mapping: Direct mapped

• Block Size: 64B

• Cache Size: 2KB

• Number of Blocks: 32 (2KB/64B)

• Number of bits for block offset: 6 (Index into 64B)

• Number of bits for the index: 5 (Index into 32 cacheblocks)

• Number of bits for the tag: 21 (= 32 − 6 − 5)

2. Parameters: cache size = 2KB, cache mapping = direct mapped, cache
organization = split cache
These parameters result in the following two separate caches for in-
structions and data. The trace indicates if an access should to to the
data or instruction cache:

• Parameter: Instruction Cache Value / Data Cache Value

• Cache Mapping: Direct Mapped / Direct mapped

• Block Size: 64B / 64B

• Cache Size: 1KB / 1KB (= 2KB/2)

• Number of Blocks: 16 / 16 (= 1KB/64B)

• Number of bits for block offset: 6 / 6 (Index into 64B)

• Number of bits for index: 4 / 4 (Index into 16 cacheblocks)

• Number of bits for tag: 22 / 22 (= 32 − 6 − 4)

3



Expected Results from the Simulator

Your simulator needs to capture a variety of statistics about the caching
behavior of the application under test. The required statistics are

1. Number of accesses to the cache: Just count the total accesses that
your cache has handled

2. Number of hits: Count the number of addresses that were already
present when the program accesses that specific location

3. Hit rate: Relative expression of hits over the total handled instructions

You are free to track additional metrics if it helps debug and test your
cache implementation. We are though only examining the results for the
three mandatory statistics above.

Summary

In this lab assignment, you are expected to write a cache simulator, which
reads a trace file containing memory references and report three different
statistics (accesses, hits, and hit rate). The cache configuration is deter-
mined by parameters that are passed as command line arguments. The
command line parameters are the cache size, cache mapping (DM/FA), and
cache organization (UC/SC).

Hint: You can write your own trace files with easily predictable hit rates
(e.g. a four accesses trace using four different addresses and has a 50% hit
rate) to verify your simulator before using the traces provided to you. Your
simulator will be tested with trace files different from the one that is already
provided to you.

2.1 Trace and Code Files

On Blackboard you find a memory trace file mem trace.txt and an outline
for the cache simulator cache sim.c.

The memory trace file consists of a sequence of memory accesses and
serves as an input to your cache simulator. For each memory access, the trace
file provides whether it is an instruction or data access and the corresponding
32-bit memory address. See the following short excerpt from a trace file:

I 8cda3fa8
I 8158bf94
D 8cd94c50

4



I 8cd94d64
D 8cd94c54

The letter at the beginning of the line indicates the type of access, where
“I” stands for an instruction access, and “D” stands for a data access. In
case of a unified cache, both types of accesses go to the same cache, whereas
in the split cache, memory accesses marked “I” need to go to the instruction
cache and accesses marked “D” to the data cache.

The cache sim.c provides code for:

1. Reading the command-line parameters and initializing the correspond-
ing values

2. Reading the trace file

3. Declaring the cache array and statistics

4. Printing the cache statistics

2.2 Compiling and Running the Simulator

To run your program, you first need to compile it. The most common com-
piler for C code is GCC. If you are running a linux machine, you likely already
have GCC installed2 and can execute it in your terminal using

gcc -o cache sim cache sim.c

to generate an executable cache sim. To run the simulator, you need to
pass command-line parameters as follows: ./cache sim 1024 dm uc.

This would execute your cache simulator with a direct mapped, unified
cache with a size of 1024B.

If you don’t have a linux machine to your disposal, here are a few pointers
that should help you in setting up your development environment:

• Windows users:

– MinGW: A native Windows port of the GNU Compiler Collection
(GCC): https://sourceforge.net/projects/mingw/

– Visual Studio Code integration for Compilation and Debugging:
https://code.visualstudio.com/docs/cpp/config-mingw

2If not: https://www.ubuntupit.com/how-to-install-and-use-gcc-compiler-on-linux-
system/

5

https://sourceforge.net/projects/mingw/
https://code.visualstudio.com/docs/cpp/config-mingw
https://www.ubuntupit.com/how-to-install-and-use-gcc-compiler-on-linux-system/
https://www.ubuntupit.com/how-to-install-and-use-gcc-compiler-on-linux-system/


– Visual Studio Code & Windows Subsystem for Linux (WSL) Setup:
https://code.visualstudio.com/docs/cpp/config-wsl

– Set up a Linux VM, e.g. using VirtualBox: https://www.virtualbox.org/wiki/Downloads

– Using Docker: https://docs.docker.com/desktop/install/windows-
install/ (Docker setup), https://hub.docker.com/ /gcc (GCC Docker
Image)

• Mac users:

– Using Homebrew: Install homebrew (https://brew.sh/) and then
GCC (https://formulae.brew.sh/formula/gcc#default)

– Using Docker: https://docs.docker.com/desktop/install/mac-install/
(Docker setup), https://hub.docker.com/ /gcc (GCC Docker Im-
age)

– Install XCode and use the shipped clang compiler (compile using
cc instead of gcc). Least preferred version, as we cannot help you
if there are any particular differences between the gcc and the
clang compiler.

3 Optional Tasks

• [EASY]: Why can a cache respond faster to the reads and writes from
the processor than the main memory? How many reasons do you find?
Why don’t we just use cache if it is faster?

• [EASY]: Why do we want to simulate the cache in software instead
of running it on actual hardware and just observe how the hardware
behaves?

• [MEDIUM]: In the main task, we asked you to support direct mapped
and fully associative cache. Can you add an implementation for a set
associative cache?

• [HARD]: Extend your simulator to support physical and virtual ad-
dresses. What do you need to change? We suggest first writing down
the precise requirements before you start coding.

6

https://code.visualstudio.com/docs/cpp/config-wsl
https://www.virtualbox.org/wiki/Downloads
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/windows-install/
https://hub.docker.com/_/gcc
https://brew.sh/
https://formulae.brew.sh/formula/gcc#default
https://docs.docker.com/desktop/install/mac-install/
https://hub.docker.com/_/gcc


4 Submission

Submit your commented C code file cache sim.c before the deadline on
Blackboard. Aside from comments, make sure your code is well readable,
variables are sensibly named and that your code is well structured.

5 Assessment

This assignment will be evaluated on a pass/fail basis. Your program will be
judged on correctness and completeness, so please make sure that all above
requirements are respected and functional.

Commenting on your code and keeping it tidy is very important. Helping
us understand what you did, supports us in assessing your work – we can
only give points for what we understand.

6 Similarity Checking and Plagiarism

You must submit your own work. You must write your own code and
not copy it from anywhere else, including your classmates, internet, and
automated tools. Failure to do so is plagiarism. Detailed guidelines on what
constitutes plagiarism can be found at:

https://innsida.ntnu.no/wiki/-/wiki/English/Cheating+on+exams
We check all submitted code for similarity with other submissions. Pla-

giarism detection tools have been effective in the past at finding similar-
ities. They have gotten excellent over time, so it is inadvisable to try
and outsmart them. So don’t do it, not only because we will most likely
catch you, but because it is morally wrong and can undermine your aca-
demic integrity, even a long time into the future. For more references, see
https://www.google.com/search?q=resigns+over+plagiarism+allegations (statis-
tics on the 8th of August: 467’000 results).

7 Questions

If you have any questions about this assignment, we encourage you to ask
the question on the course forum on Piazza. By that, you also help other
students who have the same questions in the future.

7

https://innsida.ntnu.no/wiki/-/wiki/English/Cheating+on+exams
https://www.google.com/search?q=resigns+over+plagiarism+allegations


Figure 1: Source: https://xkcd.com/505/

8

https://xkcd.com/505/

	Description
	Main Task: Cache Simulator
	Trace and Code Files
	Compiling and Running the Simulator

	Optional Tasks
	Submission
	Assessment
	Similarity Checking and Plagiarism
	Questions

