\documentclass[12pt]{article} \usepackage{ntnu} \usepackage{ntnu-math} \author{Øystein Tveit} \title{MA0301 Exercise 3} \begin{document} \ntnuTitle{} \break{} \begin{excs} \exc{} \begin{align*} \neg ((\neg p \wedge q) \vee (\neg p \wedge \neg q)) &\vee (p \wedge q) && \\ \neg (\neg p \wedge (q \vee \neg q)) &\vee (p \wedge q) && \text{Distributive law} \\ \neg (\neg p \wedge T) &\vee (p \wedge q) && \text{Complement law} \\ \neg (\neg p) &\vee (p \wedge q) && \text{Identity law} \\ p &\vee (p \wedge q) && \text{Double negation law} \\ p & && \text{Absortion law} \\ \end{align*} \exc{} \begin{align*} ((p \wedge q) \vee (p \wedge \neg r) \vee \neg(\neg p \vee q)) &\vee ((r \vee s \vee \neg r) \wedge \neg q) && \\ ((p \wedge q) \vee (p \wedge \neg r) \vee (\neg\neg p \wedge \neg q)) &\vee ((r \vee s \vee \neg r) \wedge \neg q) && \text{De Morgans's law} \\ ((p \wedge q) \vee (p \wedge \neg r) \vee ( p \wedge \neg q)) &\vee ((r \vee s \vee \neg r) \wedge \neg q) && \text{Double negation law} \\ ((p \wedge (q \vee \neg q)) \vee (p \wedge \neg r)) &\vee ((r \vee s \vee \neg r) \wedge \neg q) && \text{Distributive law} \\ ((p \wedge T) \vee (p \wedge \neg r)) &\vee ((r \vee s \vee \neg r) \wedge \neg q) && \text{Complement law} \\ ((p) \vee (p \wedge \neg r)) &\vee ((r \vee s \vee \neg r) \wedge \neg q) && \text{Identity law} \\ p &\vee ((r \vee s \vee \neg r) \wedge \neg q) && \text{Absortion law} \\ p &\vee ((\neg q \wedge r) \vee (\neg q \wedge s) \vee (\neg q \wedge \neg r)) && \text{Distributive law} \\ p &\vee (\neg q \wedge r) \vee (\neg q \wedge s) \vee (\neg q \wedge \neg r) && \text{Associative law} \end{align*} \exc{} \renewcommand{\theenumii}{\roman{enumii})} \renewcommand{\theenumiii}{\alph{enumiii})} \begin{subexcs} \subexc{} \begin{ssubexcs} \ssubexc{} \begin{gather*} \{\{2,3,5\} \cup \{6,4\}\} \cap \{4,6,8\} \\ \{\{2,4,6\}\} \cap \{4,6,8\} \\ \emptyset \end{gather*} \ssubexc{} \begin{align*} P(\{7,8,9\}) &- P(\{7,9\}) \\ \{\{7,8,9\}, \{7,8\}, \{8,9\}, \{7,9\}, \{7\}, \{8\}, \{9\}, \emptyset\} &- \{\{7,9\}, \{7\}, \{9\}, \emptyset\} \\ \{\{7,8,9\}, \{7,8\}, \{8,9\}, \{8\}\} & \\ \end{align*} \ssubexc{} \begin{gather*} P(\emptyset) \\ \{\emptyset\} \end{gather*} \ssubexc{} \begin{gather*} \{1, 3, 5\} \times \{0\} \\ \{ \langle 1,0 \rangle, \langle 3,0 \rangle, \langle 5, 0 \rangle \} \end{gather*} \ssubexc{} \begin{gather*} \{2,4,6\} \times \emptyset \\ \emptyset \end{gather*} \ssubexc{} \begin{gather*} P(\{0\}) \times P(\{1\}) \\ \{\emptyset, \{0\}\} \times \{\emptyset, \{1\}\} \\ \{\langle\emptyset,\emptyset\rangle, \langle\emptyset,\{1\}\rangle, \langle\{0\},\emptyset\rangle, \langle\{0\},\{1\}\rangle\} \end{gather*} \ssubexc{} \begin{gather*} P(P(\{2\})) \\ P(\{\emptyset,\{2\}\}) \\ \{ \{\{\emptyset\}, \{2\}\}, \{\{\emptyset\}\}, \{\{2\}\}, \emptyset \} \end{gather*} \end{ssubexcs} \subexc{} Because the elements in a power set can be represented as a binary tree where every leaf node is a set that has the cardinality of $1$, and that $\{\{x\} : x \in A\}$ would make up all the leaf nodes, we can reason that \[ |P(A) - \{\{x\} : x \in A\}| = \frac{n}{2} \] \end{subexcs} \renewcommand{\theenumii}{\alph{enumii})} \renewcommand{\theenumiii}{\roman{enumiii})} \exc{} \begin{subexcs} \subexc{} $\emptyset = \{\emptyset\}$ is {\color{red}False} because $|\emptyset| \neq |\{\emptyset\}|$ \subexc{} $\emptyset = \{0\}$ is {\color{red}False} because $|\emptyset| \neq |\{0\}|$ \subexc{} $|\emptyset| = 0$ is {\color{ForestGreen}True} because $\emptyset$ has $0$ elements \subexc{} $P(\emptyset)$ is {\color{red}False} because $P(\emptyset) = \{\{\emptyset\}\}$ has $1$ element \subexc{} $\emptyset = \{\}$ is {\color{ForestGreen}True} because the empty set is a subset of every possible set \subexc{} $\emptyset = \{x \in \mathbb{N} : x \leq 0 and x > 0\}$ is {\color{red}False} because $x \leq 0 \wedge x > 0 \equiv \F$, which means there are no such elements, and thus the set is empty \end{subexcs} \exc{} \begin{subexcs} \subexc{} \begin{align*} &A \cap (A \cup B) \\ &\{x : x \in A \wedge x \in (A \cup B)\} \\ &\{x : x \in A \wedge (x \in A \vee x \in B)\} \\ &\{x : x \in A\} \\ &A \end{align*} \subexc{} \begin{align*} &A-(B \cap C) \\ &\{x : x \in A \wedge x \notin (B \cap C)\} \\ &\{x : x \in A \wedge (x \notin B \wedge x \notin C)\} \\ &\{x : (x \in A \wedge x \notin B) \vee (x \in A \wedge x \notin C)\} \\ &\{x : x \in (A - B) \vee x \in (A - C)\} \\ &\{x : x \in (A - B) \cup (A - C)\} \\ &(A-B) \cup (A-C) \end{align*} \end{subexcs} \exc{} \renewcommand{\theenumii}{\roman{enumii})} \begin{subexcs} \subexc{} \begin{align*} &(A \cup B) \setminus (A \cap B) \\ &\{x: x \in (A \cup B) \setminus (A \cap B)\} \\ &\{x: x \in (A \cup B) \wedge x \notin (A \cap B)\} \\ &\{x: (x \in A \vee x \in B) \wedge (x \notin A \vee x \notin B)\} \\ &\{x: x \in A \wedge (x \notin A \vee x \notin B) \vee x \in B \wedge (x \notin A \vee x \notin B) \} \\ &\{x: ((x \in A \wedge x \notin A) \vee (x \in A \wedge x \notin B)) \vee ((x \in B \wedge x \notin A) \vee (x \in B \wedge x \notin B)) \} \\ &\{x: (F \vee (x \in A \wedge x \notin B)) \vee ((x \in B \wedge x \notin A) \vee F) \} \\ &\{x: (x \in A \wedge x \notin B) \vee (x \in B \wedge x \notin A) \} \\ &\{x: x \in (A - B) \vee x \in (B - A) \} \\ &\{x: x \in (A - B) \cup (B - A) \} \\ &(A - B) \cup (B - A) \\ \end{align*} \subexc{} For this exercise, I counted the elements which was in either set but not both \[ A \Delta B = \{2, 4, 6, 7, 8\} \] \end{subexcs} \renewcommand{\theenumii}{\alph{enumii})} \exc{} \begin{align*} X &= \{\{1,2,3\}, \{2,3\}, \{ef\}\} \cup \{\{e\}\} \\ &= \{\{1,2,3\}, \{2,3\}, \{ef\}, \{e\}\} \\ \end{align*} \begin{align*} P(x) = \{ \\ &\{\{1,2,3\}, \{2,3\}, \{ef\}, \{e\}\}, \\ &\{\{1,2,3\}, \{2,3\}, \{ef\}\}, \\ &\{\{1,2,3\}, \{2,3\}, \{e\}\}, \\ &\{\{1,2,3\}, \{ef\}, \{e\}\}, \\ &\{\{2,3\}, \{ef\}, \{e\}\}, \\ &\{\{1,2,3\}, \{2,3\}\}, \\ &\{\{1,2,3\}, \{e\}\}, \\ &\{\{1,2,3\}, \{ef\}\}, \\ &\{\{2,3\}, \{ef\}\}, \\ &\{\{2,3\}, \{e\}\}, \\ &\{\{ef\}, \{e\}\}, \\ &\{\{e\}\}, \\ &\{\{ef\}\}, \\ &\{\{2,3\}\}, \\ &\{\{1,2,3\}\} \\ \} \\ \end{align*} \begin{align*} P(X \cap Y) &= P(\{\{1,2,3\}, \{2,3\}, \{ef\}, \{e\}\} \cap \{\{1,2,3,e,f\}\}) \\ &= P(\emptyset) \\ &= \{\emptyset\} \end{align*} \exc{} \begin{subexcs} \subexc{} Here, the exercise says ``[\ldots] four sets $A_1$, $A_2$, $A_3$''. I'm not sure if I'm supposed to do three or four, but I'll assume three sets $A_1$, $A_2$, $A_3$ was the intention. \begin{align*} A_1 \cap A_2 \cap A_3 \\ A_1 \cap A_2 \cap \overline{A_3} \\ A_1 \cap \overline{A_2} \cap A_3 \\ A_1 \cap \overline{A_2} \cap \overline{A_3} \\ \overline{A_1} \cap A_2 \cap A_3 \\ \overline{A_1} \cap A_2 \cap \overline{A_3} \\ \overline{A_1} \cap \overline{A_2} \cap A_3 \\ \overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \\ \end{align*} \subexc{} For each set, the amount of fundamental products is multiplied by $2$. Therefore, the amount of fundamental sets of $n$ sets is $2^n$ \end{subexcs} \exc{} \begin{gather*} A \overline{( B \overline{C} )} \overline{( (A \overline{B}) \overline{C})} \\ A ( \overline{B} + \overline{\overline{C}} ) \overline{(A \overline{B}\ \overline{C})} \\ A ( \overline{B} + C ) \overline{(A \overline{B}\ \overline{C})} \\ A ( \overline{B} + C ) \overline{(A \overline{B}\ \overline{C})} \\ A ( \overline{B} + C ) (\overline{A} + \overline{\overline{B}} + \overline{\overline{C}}) \\ A ( \overline{B} + C ) (\overline{A} + B + C) \\ ( A\overline{B} + AC ) (\overline{A} + B + C) \\ A\overline{B}(\overline{A} + B + C) + AC(\overline{A} + B + C)\\ (A\overline{B}\ \overline{A} + A\overline{B}B + A\overline{B}C) + (AC\overline{A} + ACB + ACC)\\ (0 + 0 + A\overline{B}C) + (0 + ACB + AC)\\ A\overline{B}C + ACB + AC\\ ACB + AC\\ AC \end{gather*} \exc{} LHS \begin{gather*} ((A+B)+(A+C)) \overline{((A+B)(A+C))} \overline{A} \\ (A+B+A+C) \overline{(A+B)(A+C)} \overline{A} \\ (A+B+C) (\overline{(A+B)} + \overline{(A+C)}) \overline{A} \\ (A+B+C) (\overline{A}\ \overline{B} + \overline{A}\ \overline{C}) \overline{A} \\ (\overline{A}A + \overline{A}B + \overline{A}C) (\overline{A}\ \overline{B} + \overline{A}\ \overline{C}) \\ (0 + \overline{A}B + \overline{A}C) (\overline{A}\ \overline{B} + \overline{A}\ \overline{C}) \\ (\overline{A}B + \overline{A}C) (\overline{A}\ \overline{B} + \overline{A}\ \overline{C}) \\ \overline{A}B \overline{A}\ \overline{B} + \overline{A}B \overline{A}\ \overline{C} + \overline{A}C \overline{A}\ \overline{B} + \overline{A}C \overline{A}\ \overline{C} \\ 0 + \overline{A}B \overline{A}\ \overline{C} + \overline{A}C \overline{A}\ \overline{B} + 0 \\ \overline{A}B \overline{C} + \overline{A}C \overline{B} \\ \end{gather*} RHS \begin{gather*} (B+C) \overline{(BC)} \overline{A} \\ (B+C) (\overline{B} + \overline{C}) \overline{A} \\ (\overline{A}B + \overline{A}C) (\overline{B} + \overline{C}) \\ \overline{A}B\overline{B} + \overline{A}B\overline{C} + \overline{A}C\overline{B} + \overline{A}C\overline{C} \\ 0 + \overline{A}B\overline{C} + \overline{A}C\overline{B} + 0 \\ \overline{A}B\overline{C} + \overline{A}C\overline{B} \\ \end{gather*} $LHS = RHS$ \end{excs} \end{document}