\documentclass[12pt]{article} \usepackage{ntnu} \usepackage{ntnu-math} \author{Øystein Tveit} \title{MA0301 Exercise 2} \begin{document} \ntnuTitle{} \break{} \begin{excs} \exc{} \begin{truthtable} {e|c|c|e} {$p$ & $q$ & $p \wedge q$ & $p \vee (p \wedge q)$} \T & \T & \T & \T \\ \T & \F & \F & \T \\ \F & \T & \F & \F \\ \F & \F & \F & \F \\ \end{truthtable} \exc{} (DL1) \begin{truthtable} {c|c|c|c|e|c|c|e} {$\alpha$ & $\beta$ & $\gamma$ & $(\beta \wedge \gamma)$ & $\alpha \vee (\beta \wedge \gamma)$ & $\alpha \vee \beta$ & $\alpha \vee \gamma$ & $(\alpha \vee \gamma) \wedge (\alpha \vee \gamma)$} \T & \T & \T & \T & \T & \T & \T & \T \\ \T & \T & \F & \F & \T & \T & \T & \T \\ \T & \F & \T & \F & \T & \T & \T & \T \\ \T & \F & \F & \F & \T & \T & \T & \T \\ \F & \T & \T & \T & \T & \T & \T & \T \\ \F & \T & \F & \F & \F & \T & \F & \F \\ \F & \F & \T & \F & \F & \F & \T & \F \\ \F & \F & \F & \F & \F & \F & \F & \F \\ \end{truthtable} (DL2) \begin{truthtable} {c|c|c|c|e|c|c|e} {$\alpha$ & $\beta$ & $\gamma$ & $(\beta \vee \gamma)$ & $\alpha \wedge (\beta \vee \gamma)$ & $\alpha \wedge \beta$ & $\alpha \wedge \gamma$ & $(\alpha \wedge \gamma) \vee (\alpha \wedge \gamma)$} \T & \T & \T & \T & \T & \T & \T & \T \\ \T & \T & \F & \T & \T & \T & \F & \T \\ \T & \F & \T & \T & \T & \F & \T & \T \\ \T & \F & \F & \F & \F & \F & \F & \F \\ \F & \T & \T & \T & \F & \F & \F & \F \\ \F & \T & \F & \T & \F & \F & \F & \F \\ \F & \F & \T & \T & \F & \F & \F & \F \\ \F & \F & \F & \F & \F & \F & \F & \F \\ \end{truthtable} \exc{} \begin{align*} p \Rightarrow (q \vee r) &\equiv (p \wedge \neg q) \Rightarrow r \\ &\equiv \neg (p \wedge \neg q) \vee r \\ &\equiv (\neg p \vee \neg\neg q) \vee r \\ &\equiv (\neg p \vee q) \vee r \\ &\equiv \neg p \vee (q \vee r) \\ &\equiv p \Rightarrow (q \vee r) \end{align*} \exc{} \begin{align*} [(q \wedge p) \vee q] \wedge \neg(\neg q \vee p) &\equiv q \wedge \neg p \\ q \wedge \neg p &\equiv [(q \wedge p) \vee q] \wedge \neg(\neg q \vee p) \\ &\equiv [q] \wedge (\neg\neg q \wedge \neg p) \\ &\equiv q \wedge (q \wedge \neg p) \\ &\equiv (q \wedge q) \wedge \neg p \\ &\equiv q \wedge \neg p \end{align*} \exc{} \begin{subexcs} \subexc{} $\forall S(x)[H(x)]$ \subexc{} $\exists S(x)[\neg H(x)]$ \subexc{} $\forall S(x)[\neg H(x)]$ \subexc{} $\forall \neg H(x) \exists S(x)$ \end{subexcs} \exc{} \begin{subexcs} \subexc{} The formula is true because of the case where $x < z < y$ which would mean that $x < y \wedge z < y \wedge x < z \wedge \neg (z < x)$ \subexc{} The formula is false because $p(z, y)$ and $\neg p(z, x)$ cannot be fulfilled at the same time. $z \geq 0 \wedge \neg (z \geq 0) \equiv F$ \setsubexc{4} \subexc{} \fbox{see comment in ovsys} \end{subexcs} \exc{} \begin{align*} \neg (\forall x [p(x) \wedge q(x)]) &\equiv \exists x [\neg(p(x) \wedge q(x))] \\ &\equiv \exists x [\neg p(x) \vee \neg q(x)] \end{align*} \exc{} \begin{align*} \neg (\exists x \forall y [p(y) \vee \neg q(x,y)]) &\equiv \forall x \neg(\forall y [p(y) \vee \neg q(x,y)]) \\ &\equiv \forall x \exists y \neg[p(y) \vee \neg q(x,y)] \\ &\equiv \forall x \exists y [\neg p(y) \wedge \neg\neg q(x,y)] \\ &\equiv \forall x \exists y [\neg p(y) \wedge q(x,y)] \end{align*} \end{excs} \end{document}