{ "Exc": { "scope": "latex", "prefix": ["\\exc"], "body": [ "\\exc{}", "\\begin{subexcs}", " \\subexc{}", " $0", "\\end{subexcs}" ], "description": "Adds new exc with subexcs", }, "Subexc": { "scope": "latex", "prefix": ["\\subexc"], "body": [ "\\subexc{}", "\\begin{ssubexcs}", " \\ssubexc{}", " $0", "\\end{ssubexcs}" ], "description": "Adds new subexc with ssubexcs", }, "Diagram": { "scope": "latex", "prefix": ["dia"], "body": "\\includeDiagram[caption={}, width=1\\linewidth]{graphics/$0.tex}", "description": "Include a diagram", }, "Graph Table": { "scope": "latex", "prefix": ["graph-table"], "body": [ "\\begin{figure}[H]", " \\center", " \\begin{tabular}{c|cc}", " $A$ & \\multicolumn{2}{c}{$v$} \\\\", " \\hline", " & $a$ & $b$ \\\\", " \\hline", " $s_0$ & $s_$ & $s_$ \\\\", " $s_1$ & $s_$ & $s_$ \\\\", " $s_2$ & $s_$ & $s_$ \\\\", " \\end{tabular}", "\\end{figure}" ], "description": "Adds graph-table", }, "Graph Table Double": { "scope": "latex", "prefix": ["graph-dtable"], "body": [ "\\begin{figure}[H]", " \\center", " \\begin{tabular}{c|cc}", " $A$ & \\multicolumn{2}{c}{$v$} \\\\", " \\hline", " & $a$ & $b$ \\\\", " \\hline", " $s_0$ & $s_$ & $s_$ \\\\", " $s_1$ & $s_$ & $s_$ \\\\", " $s_2$ & $s_$ & $s_$ \\\\", " \\end{tabular}", "\\end{figure}" ], "description": "Adds graph-table", }, "Graph Table Line": { "scope": "latex", "prefix": ["gtl"], "body": " $s_$ & $s_$ & $s_$ \\\\", "description": "Adds line inside graph-table", }, "Graph Table Double Line": { "scope": "latex", "prefix": ["gtdl"], "body": " $s_$ & $s_$ & $s_$ & $s_$ & $s_$ \\\\", "description": "Adds line inside a double graph-table", }, "Induction Proof": { "scope": "latex", "prefix": ["prove-induction"], "body": [ "Base case:", "", "\\begin{align*}", "", "\\end{align*}", "", "Assume that", "", "\\[ $1 \\]", "", "Then", "", "\begin{align*}", " &= $1 + \\\\", " &=", "\\end{align*}", "", "\\qed" ], "description": "Template for induction proof", }, "Injective Proof": { "scope": "latex", "prefix": ["prove-injective"], "body": [ "In order for $f(x)$ to be injective, it has to hold that", "", "\\[ f(a) = f(b) \\Rightarrow a = b \\]", "", "\\begin{align*}", " f(a) &= f(b) \\\\", " $0", "\\end{align*}", "", "Hence $f(x)$ is injective." ], "description": "Template for injective proof", }, "Surjective Proof": { "scope": "latex", "prefix": ["prove-surjective"], "body": [ "In order for $f(x)$ to be surjective, it has to hold that", "", "\\[ \\forall x \\in SET \\exists y \\in SET [f(x) = y] \\]", "", "\\begin{align*}", " y &= $1 \\\\", "", " x &= \\\\" , "\\end{align*}", "", "$ $ makes up all the elements in SET", "", "\\begin{align*}", " f(y) &= \\\\", "", "\\end{align*}", "", "Hence $f(x)$ is surjective" ], "description": "Template for surjective proof", }, "Bijective Function Proof": { "scope": "latex", "prefix": ["prove-bijective"], "body": [ "\\textbf{Injective:}", "", "In order for $f(x)$ to be injective, it has to hold that", "", "\\[ f(a) = f(b) \\Rightarrow a = b \\]", "", "\\begin{align*}", " f(a) &= f(b) \\\\", " $0", "\\end{align*}", "", "Hence $f(x)$ is injective.", "", "", "\\textbf{Surjective:}", "", "In order for $f(x)$ to be surjective, it has to hold that", "", "\\[ \\forall x \\in SET \\exists y \\in SET [f(x) = y] \\]", "", "\\begin{align*}", " y &= $1 \\\\", "", " x &= \\\\" , "\\end{align*}", "", "$ $ makes up all the elements in SET", "", "\\begin{align*}", " f(y) &= \\\\", "", "\\end{align*}", "", "Hence $f(x)$ is surjective", "", "", "\\textbf{Inverse:}", "", "The inverse is the same as the expression which makes up $x$ which we used to prove that $f(x)$ is surjective. Hence", "", "\\[ f^{-1}(x) = \\]", ], "description": "Template for bijective proof", }, "Equivalence Relation Proof": { "scope": "latex", "prefix": ["prove-eq-rel"], "body": [ "In order for this relation to be an equivalence equation, it has to be reflexive, symmetric and transitive.", "", "\\textbf{Reflexive:}", "", "\\[ \\]", "", "\\textbf{Symmetric:}", "", "\\[ \\]", "", "\\textbf{Transitive:}", "", "\\[ \\]", "", "Hence the relation is an equivalence relation", ], "description": "Template for equivalence relation proof", }, "Partial Order Proof": { "scope": "latex", "prefix": ["prove-poset"], "body": [ "In order for this relation to be a partial order, it has to be reflexive, antisymmetric and transitive.", "", "\\textbf{Reflexive:}", "", "\\[ \\]", "", "\\textbf{Antisymmetric:}", "", "\\[ \\]", "", "\\textbf{Transitive:}", "", "\\[ \\]", "", "Hence the relation is a partial order", ], "description": "Template for poset proof", }, "Poset MinMax": { "scope": "latex", "prefix": ["minmax-poset"], "body": [ "Minimal elements:", " \\[ \\{ $0 \\} \\]", "Maximal elements:", " \\[ \\{ \\} \\]" ], "description": "Minimal maximal elements for poset", }, "Binomial Coefficient": { "scope": "latex", "prefix": ["binom-co"], "body": "\\[ \nCr{$0}{$1}x^{$2}y^{$1} = $3 x^{$2}y^{$1}\\]", "description": "Formula for a binomial coefficient", }, }