\documentclass[12pt]{article} \usepackage{ntnu} \usepackage{ntnu-math} \author{Øystein Tveit} \title{MA0301 Exercise 1} \begin{document} \ntnuTitle{} \break{} \begin{excs} \exc{} \begin{truthtable} {c|c|c} {$p$ & $q$ & $p \Rightarrow q$} \T & \T & \T \\ \erow{} \T & \F & \F \\ \F & \T & \T \\ \F & \F & \T \\ \end{truthtable} Looking at the truthtable, we can see that $p \Rightarrow q$ only is false when $p$ is true and $q$ is false. \begin{subexcs} \subexc{} \begin{align*} p \wedge q &\equiv T \wedge F \\ &\equiv F \end{align*} \subexc{} \begin{align*} \neg p \vee q &\equiv \neg T \vee F \\ &\equiv F \vee F \\ &\equiv F \end{align*} \subexc{} \begin{align*} q \Rightarrow p &\equiv F \Rightarrow T \\ &\equiv \neg F \vee T \\ &\equiv T \vee T \\ &\equiv T \end{align*} \subexc{} \begin{align*} \neg q \Rightarrow \neg p &\equiv \neg F \Rightarrow \neg T \\ &\equiv T \Rightarrow F \\ &\equiv \neg T \vee F \\ &\equiv F \vee F \\ &\equiv F \end{align*} \end{subexcs} \exc{} \begin{subexcs} \subexc{} If triangle ABC is equilateral then triangle ABC is isosceles. \subexc{} If triangle ABC is not isosceles then triangle ABC is not equilateral. \subexc{} Triangle ABC is equilateral if and only if triangle ABC is equiangular. \subexc{} Triangle ABC is isosceles and triangle ABC is not equilateral. \subexc{} If triangle ABC is equiangular then triangle ABC is isosceles. \end{subexcs} \exc{} \begin{subexcs} \subexc{} \begin{truthtable} {c|c|c|c|c|c|c} {$p$ & $q$ & $\neg p$ & $\neg q$ & $p \wedge \neg q$ & $\neg (p \wedge \neg q)$ & $\neg (p \wedge \neg q) \Rightarrow p$} \T & \T & \F & \F & \F & \T & \F \\ \T & \F & \F & \T & \T & \F & \T \\ \F & \T & \T & \F & \F & \T & \T \\ \F & \F & \T & \T & \F & \T & \T \end{truthtable} \subexc{} \begin{truthtable} {c|c|c|c|c} {$p$ & $q$ & $r$ & $q \Rightarrow r$ & $p \Rightarrow (q \Rightarrow r)$} \T & \T & \T & \T & \T \\ \T & \T & \F & \F & \F \\ \T & \F & \T & \T & \T \\ \T & \F & \F & \T & \T \\ \F & \T & \T & \T & \T \\ \F & \T & \F & \F & \T \\ \F & \F & \T & \T & \T \\ \F & \F & \F & \T & \T \end{truthtable} \end{subexcs} \exc{} \begin{subexcs} \subexc{} \begin{truthtable} {c|c|c|c|c|e} {$p$ & $q$ & $\neg p$ & $\neg q$ & $\neg p \vee \neg q$ & $q \Leftrightarrow (\neg p \vee \neg q)$} \T & \T & \F & \F & \F & \F \\ \T & \F & \F & \T & \T & \F \\ \F & \T & \T & \F & \T & \T \\ \F & \F & \T & \T & \T & \F \\ \end{truthtable} $q \Leftrightarrow (\neg p \vee \neg q)$ is not a tautology. \subexc{} \begin{truthtable} {c|c|c|c|c|c|c|e} {$p$ & $q$ & $r$ & $p \Rightarrow q$ & $q \Rightarrow r$ & $p \Rightarrow r$ & $(p \Rightarrow q) \wedge (q \Rightarrow r)$ & $\left[ (p \Rightarrow q) \wedge (q \Rightarrow r) \right] \Rightarrow (p \Rightarrow r)$} \T & \T & \T & \T & \T & \T & \T & \T \\ \T & \T & \F & \T & \F & \F & \F & \T \\ \T & \F & \T & \F & \T & \T & \F & \T \\ \T & \F & \F & \F & \T & \F & \F & \T \\ \F & \T & \T & \T & \T & \T & \T & \T \\ \F & \T & \F & \T & \F & \T & \F & \T \\ \F & \F & \T & \T & \T & \T & \T & \T \\ \F & \F & \F & \T & \T & \T & \T & \T \end{truthtable} $\left[ (p \Rightarrow q) \wedge (q \Rightarrow r) \right] \Rightarrow (p \Rightarrow r)$ is a tautology. \end{subexcs} \exc{} I start by simplifying the expression, inserting $q$ as $T$ \begin{align*} \left(q \Rightarrow \left[ (\neg p \vee r) \wedge \neg s \right]\right) \wedge \left[\neg s \Rightarrow (\neg r \wedge q)\right] &\equiv \left(T \Rightarrow \left[ (\neg p \vee r) \wedge \neg s \right]\right) \wedge \left[\neg s \Rightarrow (\neg r \wedge T)\right] \\ &\equiv \left(\neg T \vee \left[ (\neg p \vee r) \wedge \neg s \right]\right) \wedge \left[\neg s \Rightarrow \neg r \right] \\ &\equiv \left(F \vee \left[ (\neg p \vee r) \wedge \neg s \right]\right) \wedge \left[\neg s \Rightarrow \neg r \right] \\ &\equiv \left[ (\neg p \vee r) \wedge \neg s \right] \wedge \left[\neg s \Rightarrow \neg r \right] \\ \end{align*} \begin{truthtable} {c|c|c|c|c|c|c|c|c|c} {$p$ & $r$ & $s$ & $\neg p$ & $\neg r$ & $\neg s$ & $\neg p \vee r$ & $(\neg p \vee r) \wedge \neg s$ & $\neg s \Rightarrow \neg r$ & $\left[ (\neg p \vee r) \wedge \neg s \right] \wedge \left[\neg s \Rightarrow \neg r \right]$} \T & \T & \T & \F & \F & \F & \T & \F & \T & \F \\ \T & \T & \F & \F & \F & \T & \T & \T & \F & \F \\ \T & \F & \T & \F & \T & \F & \F & \F & \T & \F \\ \T & \F & \F & \F & \T & \T & \F & \F & \T & \F \\ \F & \T & \T & \T & \F & \F & \T & \F & \T & \F \\ \F & \T & \F & \T & \F & \T & \T & \T & \F & \F \\ \F & \F & \T & \T & \T & \F & \T & \F & \T & \F \\ \erow{} \F & \F & \F & \T & \T & \T & \T & \T & \T & \T \end{truthtable} The statement is only true when $p$, $r$ and $s$ are false. \exc{} \begin{subexcs} \subexc{} \begin{truthtable} {c|c|c|c|e|c|c|e} {$p$ & $q$ & $r$ & $q \wedge r$ & $p \Rightarrow (q \wedge r)$ & $p \Rightarrow q$ & $p \Rightarrow r$ & $(p \Rightarrow q) \wedge (p \Rightarrow r)$} \T & \T & \T & \T & \T & \T & \T & \T \\ \T & \T & \F & \F & \F & \T & \F & \F \\ \T & \F & \T & \F & \F & \F & \T & \F \\ \T & \F & \F & \F & \F & \F & \F & \F \\ \F & \T & \T & \F & \T & \T & \T & \T \\ \F & \T & \F & \F & \T & \T & \T & \T \\ \F & \F & \T & \F & \T & \T & \T & \T \\ \F & \F & \F & \F & \T & \T & \T & \T \end{truthtable} \subexc{} \begin{truthtable} {c|c|c|c|e|c|c|e} {$p$ & $q$ & $r$ & $q \vee r$ & $p \Rightarrow (q \vee r)$ & $\neg r$ & $p \Rightarrow q$ & $\neg r \Rightarrow (p \Rightarrow q)$} \T & \T & \T & \T & \T & \F & \T & \T \\ \T & \T & \F & \T & \T & \T & \T & \T \\ \T & \F & \T & \T & \T & \F & \F & \T \\ \T & \F & \F & \F & \F & \T & \F & \F \\ \F & \T & \T & \T & \T & \F & \T & \T \\ \F & \T & \F & \T & \T & \T & \T & \T \\ \F & \F & \T & \T & \T & \F & \T & \T \\ \F & \F & \F & \F & \T & \T & \T & \T \end{truthtable} \end{subexcs} \exc{} \begin{subexcs} \subexc{} \begin{align*} \neg((p \wedge q) \Rightarrow r) &\equiv \neg(\neg(p \wedge q) \vee r) \\ &\equiv \neg\neg(p \wedge q) \wedge \neg r \\ &\equiv (p \wedge q) \wedge \neg r \\ &\equiv p \wedge q \wedge \neg r \\ \end{align*} \subexc{} \begin{align*} \neg(p \Rightarrow (\neg q \wedge r)) &\equiv \neg(\neg p \vee (\neg q \wedge r)) \\ &\equiv \neg\neg p \wedge \neg(\neg q \wedge r) \\ &\equiv p \wedge (\neg\neg q \vee \neg r) \\ &\equiv p \wedge (q \vee \neg r) \end{align*} \end{subexcs} \exc{} \begin{truthtable} {c|c|c|c|c|e|e} {$\alpha$ & $\beta$ & $\gamma$ & $\alpha \vee \beta$ & $\beta \vee \gamma$ & $(\alpha \vee \beta) \vee \gamma$ & $\alpha \vee (\beta \vee \gamma)$} \T & \T & \T & \T & \T & \T & \T \\ \T & \T & \F & \T & \T & \T & \T \\ \T & \F & \T & \T & \T & \T & \T \\ \T & \F & \F & \T & \F & \T & \T \\ \F & \T & \T & \T & \T & \T & \T \\ \F & \T & \F & \T & \T & \T & \T \\ \F & \F & \T & \F & \T & \T & \T \\ \F & \F & \F & \F & \F & \F & \F \end{truthtable} \exc{} \begin{subexcs} \subexc{} \begin{truthtable} {c|c|c|e} {$p$ & $q$ & $p \vee q$ & $p \Rightarrow (p \vee q)$} \T & \T & \T & \T \\ \T & \F & \T & \T \\ \F & \T & \T & \T \\ \F & \F & \F & \T \\ \end{truthtable} $p \Rightarrow (p \vee q)$ is a tautology \subexc{} Because $\neg(p \Rightarrow (p \vee q))$ is the negation of $p \Rightarrow (p \vee q)$, which we have already evaluated to be a tautology, this has to be a contradiction and thus unsatisfiable. \subexc{} \begin{truthtable} {c|c|c|e} {$p$ & $q$ & $p \Rightarrow q$ & $p \Rightarrow (p \Rightarrow q)$} \T & \T & \T & \T \\ \T & \F & \F & \F \\ \F & \T & \T & \T \\ \F & \F & \T & \T \\ \end{truthtable} $p \Rightarrow (p \Rightarrow q)$ is satisfiable. \end{subexcs} \exc{} \begin{subexcs} \subexc{} $\neg p \Rightarrow (q \Leftrightarrow r)$ \subexc{} $r \Rightarrow \neg p$ \subexc{} $\neg r \wedge (p \wedge q)$ \subexc{} $p \Rightarrow (r \wedge q)$ \subexc{} $\neg q \wedge r$ \end{subexcs} \end{excs} \end{document}