\documentclass[12pt]{article} \usepackage{ntnu} \usepackage{ntnu-math} \author{Øystein Tveit} \title{MA0301 Exercise 2} \begin{document} \ntnuTitle{} \break{} \begin{excs} \exc{} \exc{} \exc{} \begin{subexcs} \subexc{} \begin{ssubexcs} \ssubexc{} \begin{align*} {{2,3,5} \cup {6,4}} &\cap {4,6,8} \\ {{2,4,6}} &\cap {4,6,8} \\ \emptyset \end{align*} \ssubexc{} \begin{align*} P({7,8,9}) &- P({7,9}) \\ {{7,8,9}, {7,8}, {8,9}, {7,9}, {7}, {8}, {9}, \emptyset} &- {{7,9}, {7}, {9}, \emptyset} \\ {{7,8,9}, {7,8}, {8,9}, {8}} \end{align*} \ssubexc{} \begin{align*} P(\emptyset) \\ {\emptyset} \end{align*} \ssubexc{} \begin{align*} {1, 3, 5} \times {0} \\ { \langle 1,0 \rangle, \langle 3,0 \rangle, \langle 5, 0 \rangle } \end{align*} \ssubexc{} \begin{align*} {2,4,6} \times \emptyset \\ \emptyset \end{align*} \ssubexc{} \begin{align*} P({0}) &\times P({1}) \\ {\emptyset, {0}} &\times {\emptyset, {1}} \\ {\langle\emptyset,\emptyset\rangle, \langle\emptyset,{1}\rangle, \langle{0},\emptyset\rangle, \langle{0},{1}\rangle} \end{align*} \ssubexc{} \begin{align*} P(P({2})) \\ P({\emptyset,{2}}) \\ { {{\emptyset}, {2}}, {{\emptyset}}, {{2}}, \emptyset } \end{align*} \end{ssubexcs} \subexc{} Because the elements in a power set can be represented as a binary tree where every leaf node is a set that has the cardinality of $1$, and that ${{x} : x \in A}$ would make up all the leaf nodes, we can reason that \[ |P(A) - {{x} : x \in A}| = \frac{n}{2} \] \end{subexcs} \exc{} \begin{subexcs} \subexc{} $\emptyset = {\emptyset}$ is {\color{red}False} because $|\emptyset| \neq |{\emptyset}|$ \subexc{} $\emptyset = {0}$ is {\color{red}False} because $|\emptyset| \neq |{0}|$ \subexc{} $|\emptyset| = 0$ is {\color{ForestGreen}True} because $\emptyset$ has $0$ elements \subexc{} $P(\emptyset)$ is {\color{red}False} because $P(\emptyset) = {{\emptyset}}$ has $1$ element \subexc{} $\emptyset = {}$ is {\color{ForestGreen}True} because the empty set is a subset of every possible set \subexc{} $\emptyset = {x \in \mathbb{N} : x \leq 0 and x > 0}$ is {\color{red}False} because $x \leq 0 \wedge x > 0 \equiv \F$, which means there are no such elements, and thus the set is empty \end{subexcs} \exc{} \begin{subexcs} \subexc{} \begin{align*} A \cap (\A \cup B) \\ {x : x \in A \wedge x \in (A \cup B)} \\ {x : x \in A \wedge (x \in A \or x \in B)} \\ {x : x \in A} \\ A \end{align*} \subexc{} \begin{align*} A-(B \cap C) \\ {x : x \in A \wedge x \notin (B \cap C)} \\ {x : x \in A \wedge (x \notin B \wedge x \notin C)} \\ {x : (x \in A \wedge x \notin B) \vee (x \in A \wedge x \notin C)} \\ {x : x \in (A - B) \vee x \in (A - C)} \\ {x : x \in (A - B) \cup (A - C)} \\ (A-B) \cup (A-C) \end{align*} \end{subexcs} \exc{} \begin{subexcs} \subexc{} \end{subexcs} \exc{} \begin{align*} X &= {{1,2,3}, {2,3}, {ef}} \cup {{e}} \\ &= {{1,2,3}, {2,3}, {ef}, {e}} \\ \\ P(x) &= { {{1,2,3}, {2,3}, {ef}, {e}}, {{1,2,3}, {2,3}, {ef}}, {{1,2,3}, {2,3}, {e}}, {{1,2,3}, {ef}, {e}}, {{2,3}, {ef}, {e}}, {{1,2,3}, {2,3}} {{1,2,3}, {e}} {{1,2,3}, {ef}} {{2,3}, {ef}} {{2,3}, {e}} {{ef}, {e}} {{e}} {{ef}}, {{2,3}}, {{1,2,3}} } \\ \\ P(X \cap Y) &= P({{1,2,3}, {2,3}, {ef}, {e}} \cap {{1,2,3,e,f}}) \\ &= P(\emptyset) \\ &= {\emptyset} \end{align*} \exc{} \begin{subexcs} \subexc{} Here, the exercise says ``[\ldots] four sets $A_1$, $A_2$, $A_3$''. I'm not sure if I'm supposed to do three or four, but I'll assume three. \begin{align*} A_1 \cap A_2 \cap A_3 \\ A_1 \cap A_2 \cap \overline{A_3} \\ A_1 \cap \overline{A_2} \cap A_3 \\ A_1 \cap \overline{A_2} \cap \overline{A_3} \\ \overline{A_1} \cap A_2 \cap A_3 \\ \overline{A_1} \cap A_2 \cap \overline{A_3} \\ \overline{A_1} \cap \overline{A_2} \cap A_3 \\ \overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \\ \end{align*} \subexc{} For each set, the amount of fundamental products is multiplied by $2$. Therefore, the amount of fundamental sets of $n$ sets is $2^n$ \end{subexcs} \exc{} \begin{align*} A\overline{(B\overline{C})}\overline{((A\overline{B})\overline{C})} \\ A\overline{(B\overline{C})}\overline{((A\overline{B})\overline{C})} \\ \end{align*} \end{excs} \end{document}